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Regional rather than global brain age mediates 
cognitive function in cerebral small vessel 
disease
Pei-Lin Lee,1 Chen-Yuan Kuo,2 Pei-Ning Wang,2,3,4,5 Liang-Kung Chen,2,5,6  

Ching-Po Lin,1,4,7 Kun-Hsien Chou1,4* and Chih-Ping Chung2,3

The factors and mechanisms underlying the heterogeneous cognitive outcomes of cerebral small vessel disease are largely unknown. 
Brain biological age can be estimated by machine learning algorithms that use large brain MRI data sets to integrate and compute 
neuroimaging-derived age-related features. Predicted and chronological ages difference (brain-age gap) reflects advanced or delayed 
brain aging in an individual. The present study firstly reports the brain aging status of cerebral small vessel disease. In addition, we 
investigated whether global or certain regional brain age could mediate the cognitive functions in cerebral small vessel disease. 
Global and regional (400 cortical, 14 subcortical and 28 cerebellum regions of interest) brain-age prediction models were constructed 
using grey matter features from MRI of 1482 healthy individuals (age: 18–92 years). Predicted and chronological ages differences were 
obtained and then applied to non-stroke, non-demented individuals, aged ≥50 years, from another community-dwelling population 
(I-Lan Longitudinal Aging Study cohort). Among the 734 participants from the I-Lan Longitudinal Aging Study cohort, 124 were 
classified into the cerebral small vessel disease group. The cerebral small vessel disease group demonstrated significantly poorer per-
formances in global cognitive, verbal memory and executive functions than that of non-cerebral small vessel disease group. Global 
brain-age gap was significantly higher in the cerebral small vessel disease (3.71 ± 7.60 years) than that in non-cerebral small vessel 
disease (−0.43 ± 9.47 years) group (P = 0.003, η2 = 0.012). There were 82 cerebral cortical, 3 subcortical and 4 cerebellar regions 
showing significantly different brain-age gap between the cerebral small vessel disease and non-cerebral small vessel disease groups. 
Global brain-age gap failed to mediate the relationship between cerebral small vessel disease and any of the cognitive domains. In 89 
regions with increased brain-age gap in the cerebral small vessel disease group, seven regional brain-age gaps were able to show sig-
nificant mediation effects in cerebral small vessel disease-related cognitive impairment (we set the statistical significance P < 0.05 un-
corrected in 89 mediation models). Of these, the left thalamus and left hippocampus brain-age gap explained poorer global cognitive 
performance in cerebral small vessel disease. We demonstrated the interconnections between cerebral small vessel disease and brain 
age. Strategic brain aging, i.e. advanced brain aging in critical regions, may be involved in the pathophysiology of cerebral small vessel 
disease-related cognitive impairment. Regional rather than global brain-age gap could potentially serve as a biomarker for predicting 
heterogeneous cognitive outcomes in patients with cerebral small vessel disease.
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Graphical Abstract

Introduction
Human life expectancy has extended substantially in the past 
two centuries. As a result, age-related morbidities pose a ris-
ing challenge in many developed and developing countries.1

To achieve healthy aging, the processes involved in maintain-
ing functional ability to ensure well-being in older ages, 

identifying who and how they deviate from healthy aging 
trajectories is important. An individual’s biological age may 
differ from chronological age and is a better indicator for 
one’s age-related health status.2 Brain biological age can be 
estimated by machine learning algorithms that use large brain 
MRI data sets to integrate and compute neuroimaging- 
derived age-related features.3,4 This neuroimaging-based 
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brain-age measure reflects advanced or delayed brain aging in 
an individual, based on the difference between predicted 
brain age (brain biological age) and chronological age, that 
is, the brain-age gap (BAG) estimate. The BAG is used to 
evaluate how neurological diseases influence the normal 
brain aging process, and predict clinical outcomes in patients 
with these diseases.,3,4 Sporadic cerebral small vessel disease 
(CSVD) is a manifestation of age-related pathologies of 
the brain vasculature such as arteriosclerosis/lipohyalinosis 
and cerebral amyloid angiopathy.5 Nowadays, it can be diag-
nosed pre-mortem with corresponding brain parenchyma le-
sions noted on MRI, including white matter hyperintensities 
(WMHs), lacunes, and cerebral microbleeds (CMBs).5,6

CSVD is the most common cause of vascular cognitive im-
pairment and dementia in the elderly and also plays an im-
portant role in stroke and neurodegenerative diseases such 
as Alzheimer’s disease.5 Although its clinical significance is 
well acknowledged, how CSVD exerts its influence on the 
brain aging process and their interactive effects on cognitive 
functions are largely unknown.

The present study analyzed a brain anatomical MRI data 
set from a community-based middle-to-old-aged non-stroke 
and non-demented population (≥ 50 years old). The study 
evaluated the pathophysiological burden of CSVD in the 
brain at the onset or early stage of the disease. To estimate 
individual brain age unbiasedly, a brain-age prediction mod-
el was established based on an independent large sample- 
sized brain MRI data set. In addition to the global brain 
age, regional brain age in 400 cortical regions of interest 
(ROIs), 14 subcortical ROIs and 28 cerebellum ROIs were 
estimated for mapping the detailed spatial distribution of 
the accelerated brain aging pattern in each individual with 
asymptomatic CSVD (covert CSVD: non-demented stroke- 
free). First, we investigated whether CSVD would influence 
the brain aging process at the asymptomatic stage by evalu-
ating the global and regional BAG in participants with and 
without CSVD. We hypothesized that advanced brain aging 
would have already occurred at an asymptomatic early stage 
of the disease. Second, we determined if advanced brain 
aging is associated with cognitive functions in CSVD and 
region-specific, and whether strategic advanced brain aging 
is involved in the pathophysiology of CSVD-related cogni-
tive impairment.

Materials and methods
Participants—the 
community-dwelling cohort for 
CSVD analysis
Participants with CSVD analysis were from the I-Lan 
Longitudinal Aging Study (ILAS) cohort, which is a 
community-based aging cohort study in I-Lan County, 
Taiwan, that aims to evaluate the mechanisms of aging.7

Community-dwelling adults, aged ≥50 years, from the 
Yuanshan Township in I-Lan County were invited to 

participate. The inclusion criteria of the ILAS were as follows: 
(i) inhabitants of I-Lan County who were not planning to 
move soon, and (ii) aged ≥50 years. Participants who met 
any of the following conditions were excluded: (i) inability 
to communicate and complete an interview, (ii) inability to 
complete a simple motor task (e.g. a 6 m walk) due to func-
tional disability, (iii) presence of any major illness with asso-
ciated decreased life expectancy (less than 6 months), (iv) 
presence of any contraindication for MRI (such as metal im-
plants) and (v) institutionalization for any reason. 
Participants diagnosed with neuropsychiatric diseases, such 
as dementia, stroke, brain tumour or major depression, 
were also excluded from the present study. The present study 
used demographic information, cognitive assessments and 
multimodal brain MRI data from the initial sampling wave 
of the ILAS (recruited between January 2011 and July 2014).

Participants—independent cohort 
data set for constructing a brain-age 
prediction model
To construct robust global and regional brain-age prediction 
models with larger sample sizes, the T1-weighted anatomical 
scans of healthy participants were drawn from multiple im-
age data sets of our previous studies.8-12 All included partici-
pants were free of neuropsychiatric diseases and had no 
history of head trauma or other major medical conditions. 
A total of 1482 healthy individuals (age range = 18–92 years; 
males = 681, females = 801) were included in the training 
and validation of the constructed global and regional 
brain-age prediction models. Detailed information regarding 
the MR scanner, image acquisition protocol and demograph-
ic variables of each data set are listed in Supplementary 
Table 1 and Supplementary Figure 1.

Multimodal brain MRI acquisition in 
the ILAS cohort
Multimodal neuroimaging acquisition was performed at the 
National Yang Ming Chiao Tung University in Taiwan to 
obtain image-based brain parenchyma CSVD markers and 
grey matter volume (GMV) information for each participant 
in the ILAS cohort. All brain MRI scans were collected on a 
single 3T Siemens MRI scanner (Siemens Magnetom Tim 
Trio, Erlangen, Germany) with an identical vendor-supplied 
12-channel phased-array head coil and imaging protocols. 
The participants’ head position was stabilized with cushions 
during scans, and all MRI scans were acquired without inter- 
slice gap or interpolation. The imaging sequences were as fol-
lows. First, to extract grey matter (GM) volume information 
for each individual, sagittal T1-weighted anatomical scans 
were acquired using the three-dimensional T1-weighted 
magnetization-prepared rapid-acquisition gradient-echo 
sequence [repetition time (TR)/echo time (TE)/inversion 
time (TI) = 3500/3.5/1100 ms; flip angle = 7°; number of ex-
citations (NEXs) = 1; field of view (FOV) = 256 × 256 mm; 

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac233#supplementary-data
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matrix size = 256 × 256; 192 slices; and voxel size = 
1.0 mm3). Second, to evaluate individual lacune and 
WMH, axial T2-weighted fluid-attenuated inversion recov-
ery (FLAIR) images were acquired using a two-dimensional 
T2-weighted FLAIR multi-shot turbo-spin-echo sequence 
(TR/TE/TI = 9000/143/2500 ms; flip angle = 130°; NEX = 
1; FOV = 220 × 220 mm; matrix size = 320 × 320, echo train 
length = 35; 63 slices; and voxel size = 0.69 mm × 0.69 mm × 
2.0 mm). Finally, to evaluate individual’s CMBs, axial 
susceptibility-weighted images (SWIs) were acquired using 
a three-dimensional SWI sequence (TR/TE = 28/21 ms; flip 
angle = 15°, FOV = 256 × 224 mm; matrix size = 256 × 224; 
88 slices; bandwidth = 120 Hz/Px; and voxel size = 1.0 × 
1.0 × 2.0 mm).

Brain-age prediction model 
construction and applications
The overall process of the methods used is outlined in Fig. 1. 
This included feature set generation, brain-age prediction mod-
el construction in an independent large healthy population, 
and brain-age model application in a community-dwelling 
ILAS cohort with and without CSVD.

Feature extraction (voxel-wise and regional-wise GMV 
features) was conducted as follows. Before extracting 

individual voxel-wise GMV information via voxel-based 
morphometry (VBM) analytical framework, an experienced 
neuroradiologist (S.-C.H.) visually examined all MRI scans 
to exclude participants with organic brain disorders (e.g. 
brain tumour) or insufficient image quality scans (e.g. severe 
motion artefacts). Subsequently, individual voxel-wise GMV 
images were obtained using a standard VBM procedure with 
high-dimensional Diffeomorphic Anatomical Registration 
through Exponentiated Lie Algebra approach (DARTEL). 
We used the DARTEL-VBM analytical procedure in our pre-
vious studies.4,13 Briefly, DARTEL-VBM comprises the fol-
lowing (i) tissue segmentation; (ii) study-specific template 
generation; (iii) spatial normalization to standard Montreal 
Neurological Institute (MNI) space; (iv) tissue modulation 
for preserving the actual tissue volume after spatial warping 
procedure and (v) smoothed with a full width at half max-
imum Gaussian kernel of 6 mm. Two types of feature sets 
were generated from the resultant GMV images. More specif-
ically, we applied the composite brain atlas (including 400 
Schaefer’s cortical functional regions,14 14 Harvard-Oxford 
subcortical regions15 and 28 spatially unbiased infratentorial 
template cerebellum regions)16 to extract the mean GMV and 
voxel-wise GMV of each brain region to use as the candidate 
feature sets. The concept of large-scale brain network is 
Schaefer’s cortical parcellation scheme based on. It is 

Figure 1 Study design framework. (A) The structural MRI data went through the VBM preprocessing pipeline and the voxel-wised GMV 
features were extracted. (B) The image features were used to construct and validate the brain-age predictive model in the training data set. The 
performances of models were tested and the best-performed model was selected. (C) The established model was applied to another 
community-dwelling cohort (ILAS) to estimate individual’s BAG. The statistical analysis was further conducted to compare the difference of BAG 
between CSVD and non-CSVD groups and the mediating role of BAG between CSVD and related cognitive impairments. CSVD = cerebral small 
vessel disease; GMV = grey matter volume; ILAS = I-Lan Longitudinal Aging Study; ROI = region of interest; MAE = mean absolute error; VBM = 
voxel-based morphometry.
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postulated that the human brain could be segregated into a 
number of large-scale functional networks comprised widely 
distributed regions. These interconnected brain areas under 
the functional network can interact to perform particular 
functions. Studies by functional MRI have provided evi-
dences supporting this concept and defined seven brain net-
works, namely visual, somatomotor, dorsal attention, 
salience/ventral attention, limbic, default mode and executive 
control.17 Schaefer et al.14 then established this brain parcel-
lation scheme according to the seven brain networks with the 
gradient-weighted Markov Random Field model, a hybrid 
model that integrates local gradient and global similarity ap-
proaches. The local gradient approach is a boundary map-
ping method that reflects cortical areal boundaries by 
detecting abrupt transitions in functional connectivity pat-
tern. The global similarity approach uses a clustering method 
by assigning similar functional connectivity patterns to the 
same region. The resultant GMV images were eventually par-
cellated into 442 brain regions, which included 400 cortical 
regions,14 14 subcortical regions15 and 28 cerebellum re-
gions.16 We extracted the average GMV and voxel-wise 
GMV of each region to serve as the input features for con-
structing the global- and regional-level brain-age predictive 
models, respectively.

Brain-age prediction model construction was conducted 
as follows. Support vector regression (SVR) with the radial 
basis function kernel algorithm which was available in the 
Scikit-learn library was utilized to construct the global- 
and regional-level brain-age prediction models.18 For each 
feature set, the nested 5-fold cross-validation scheme was ap-
plied for the training data set to confirm the reliability of the 
constructed brain-age prediction models.19 Specifically, we 
determined the optimal C and gamma parameter of SVR al-
gorithm from seven values (0.001, 0.01, 0.1, 1, 10, 100 and 
1000) using GridSearch CV function in the inner cross- 
validation loop.20 In the outer cross-validation loop, model 
accuracy was evaluated by comparing brain-predicted age 
with chronological age via the mean absolute error (MAE) 
and coefficient of determination (R2). Subsequently, the final 
brain-age prediction model of the whole training data set 
was constructed using the optimal parameters, which were 
estimated using a 5-fold cross-validation scheme and then 
applied to the ILAS cohort to estimate the brain age of these 
individuals. Finally, the global-level and regional-level BAG 
were calculated for each participant of the ILAS cohort by 
subtracting the chronological age from the predicted brain 
age. Hence, a positive BAG indicates accelerated brain aging 
globally or regionally. BAG measurements were then used 
for further statistical analyses.

Detection and assessment of CSVD in 
the ILAS cohort
Three MRI CSVD markers, CMBs, WMH and lacunes, were 
used to subdivide the participants of the ILAS cohort into 
non-CSVD and CSVD groups. First, CMBs were defined as 
small, rounded, or circular, well-defined, hypointense lesions 

within the brain parenchyma, with clear margins and ≤ 
10 mm in size, on individual SWI scans.21,22 Microbleed mi-
mics, such as vessels, calcification, partial volume, air-bone 
interfaces and haemorrhagic areas within or adjacent to an 
infarct were carefully excluded. Intra-rater reliability was as-
sessed separately by evaluating CMBs in 20 randomly 
sampled images (K = 0.83; 95% confidence interval: 0.79– 
0.90). We also re-assessed CMBs in 25 randomly sampled 
images previously assessed by Dr. Chung and another inves-
tigator (K = 0.82; 95% confidence interval: 0.79–0.88). 
Second, we used quantitation method instead of visual scales 
to detect the WMH, which could display more sensitive and 
better discrimination of WMH burden.23,24 WMH lesion 
volume was estimated from T2-weighted FLAIR images 
using the previously proposed analytical pipeline, which 
combined with Statistical Parametric Mapping (SPM12) 
and the Lesion Segmentation Toolbox (version 3.0.0).13 In 
brief, the estimation pipeline first co-registered the individual 
T2-weighted FLAIR scan to the corresponding T1 scan and 
further generated WMH probability map and lesion-filling 
T1-weighted images for each participant. Using the resultant 
lesion-filling T1-weighted images with the DARTEL-VBM 
approach, the individual WMH probability map was spatial-
ly normalized into the standard MNI space and further 
modulated with the corresponding deformation field to ob-
tain the actual WMH volume information in the MNI space. 
All WMH segmentations were carefully checked visually. 
The total lesion volume was normalized using the total intra-
cranial volume (TIV) to calculate the WMH volume ratio for 
the CSVD definition. Finally, using individual T2-weighted 
FLAIR scans, lacune were manually defined as small (< 
15 mm in diameter) CSF-containing cavities, located in the 
deep GM or white matter, with adjacent WMH.7

Since individual marker might also be the presentation of 
diseases other than CSVD, it would be a more specific strat-
egy for CSVD definition to combine WMH with additional 
lesion marker, especially in the non-demented stroke-free 
(covert CSVD) population.25 In the present study, CSVD 
was defined as the ≥ 50th percentile of WMH volume ratio 
with the presence of lacunes or CMBs. The included partici-
pants from the ILAS cohort were then stratified into CSVD 
and non-CSVD groups.

Measures of cognitive functions in 
ILAS cohort
All participants in the ILAS cohort underwent a face-to-face 
neuropsychological assessment administered by trained in-
terviewers. We used the Mini-Mental State Examination 
(MMSE) to evaluate global cognitive performance. The per-
formance of the four different cognitive domains was as-
sessed using extensive neuropsychological tests. Verbal 
memory was determined using the delay free recall items in 
the Chinese Version Verbal Learning Test (CVVLT).26

Language function was assessed by the Boston Naming 
Test,27 visuospatial function by the copy test of the Taylor 
Complex Figure Test28 and executive function by the 
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category (animal) verbal fluency test (VFT)29,30 and the 
Clock Drawing Test (CDT).31,32

Statistical analysis
(1) Demographic and clinical characteristics
Statistical analyses of the demographic and clinical evalua-
tions were conducted using IBM SPSS Statistics version 25 
(IBM Corp., Armonk, NY, USA). We used the two-sample 
Student’s t-test for continuous variables and the chi-square 
test for categorical variables to identify statistical differences 
between the respective study groups. Clinical assessments of 
continuous variables were performed by covariance analysis 
(ANCOVA) after adjustment for age, sex, and years of edu-
cation. Two-tailed P-values < 0.05, were considered statis-
tically significant in all analyses.

(2) BAG comparisons between CSVD and non-CSVD 
groups
To identify differences in global and regional BAG between 
the study groups, we used ANCOVA adjusted for chrono-
logical age, the square of chronological age, sex, education 
years, entropy focus criterion (EFC) index, TIV and other 
vascular risk factors (including hypertension, diabetes, dysli-
pidemia and cigarette smoking status) as nuisance variables. 
Using individual chronological age as a nuisance variable 
could further adjust age bias in the brain-age predictions.33

The EFC index is a quantitative index for representing image 
blurring and ghosting induced by participants’ head move-
ment and was calculated using the MRI Quality Control 
tool (https://github.com/poldracklab/mriqc).34 The analysis 
of regional BAG differences was corrected for the number 
of brain regions (442 brain regions, Bonferroni-corrected 

P-value < 0.05 = 0.000113, calculated by 0.05/442). No 
multiple comparison correction was necessary for the com-
parison of global BAG between the study groups, as the glo-
bal BAG collapses the multivariate pattern of regional GMV 
into a single measure. Additionally, effect sizes were calcu-
lated using the partial eta squared (η2) approach.

(3) The mediating role of BAG in the associations 
between CSVD and cognitive performances
A standard mediation analysis was performed using the 
Mediation Toolbox developed by Tor Wager’s group 
(https://github.com/canlab/MediationToolbox), which has 
been widely used in many neuroimaging studies.35 We 
used a single-level three-variable mediation model. 
Mediation analysis tests whether the association between 
two variables can be explained by a third variable (the me-
diator). The hypothesis tested here was whether the global 
or each regional BAG (mediator, M) mediated the associ-
ation between CSVD (independent variable, X) and cogni-
tive performances (dependent variable, Y). Confounding 
variables as in the association analysis were regressed out 
in the mediation model. The significance of the mediation 
effect was estimated by the bias-corrected bootstrap ap-
proach (with 10 000 random samplings). More specifically, 
this mediation procedure could be decomposed into three 
regression models. The relationship between X–M and 
X–Y were estimated by path a (M = aX + em) and path c 
(Y = cX + ey), respectively. Path b showed the relationship 
between M–Y, while accounting for the effects of X, path 
c’ (Y = bM + c’X + e’y). The vectors e denoted residual error 
for regression models, respectively. Path a*b indicated the 
presence of a significant difference between path c and 
path c’ (c—c’). All models included the confounding factors 

Table 1 Comparisons of demographics and cognitive functions between CSVD and non-CSVD groups

Demographic variables
Non-CSVD CSVD

P(n= 610) (n= 124)

Age (years) 61.43 ± 7.82 69.07 ± 9.07 <0.001a

Sex (male/female) 264/346 61/63 0.227b

Education years 7.53 ± 5.09 4.88 ± 4.99 <0.00a

EFC index 0.544 ± 0.023 0.546 ± 0.022 0.610a

TIV (litre) 1.310 ± 0.119 1.324 ± 0.123 0.222a

Vascular risk factors
Hypertension 186 (30.5%) 58 (46.8%) <0.00b

Diabetes mellitus 70 (11.5%) 31 (25.0%) <0.00b

Dyslipidemia 29 (4.8%) 12 (9.7%) 0.030b

Smoking 86 (14.1%) 21 (16.9%) 0.058b

Cognitive performance
Mini-Mental State Examination 26.7 ± 3.1 24.2 ± 4.9 0.002c

10 min CVVLT 6.8 ± 1.9 5.5 ± 2.3 0.006c

Clock drawing test 8.1 ± 2.2 6.8 ± 2.9 0.147c

Taylor complex figure test 31.5 ± 5.7 27.9 ± 8.9 0.088c

Boston naming test 12.5 ± 2.4 11.3 ± 2.5 0.851c

Verbal fluency test 15.3 ± 4.9 13.2 ± 4.4 0.018c

Backward digit test 3.8 ± 2.0 2.8 ± 2.1 0.423c

CSVD = cerebral small vessel disease; CVVLT = Chinese version Verbal Learning Test; EFC, entropy focus criterion; TIV, total intracranial volume 
aTwo-sample t-test analysis. 
bTwo-group χ2 test. 
cTwo-group analysis of covariance adjusted for age, sex and education years.

https://github.com/poldracklab/mriqc)
https://github.com/canlab/MediationToolbox


Brain age in small vessel disease                                                                                      BRAIN COMMUNICATIONS 2022: Page 7 of 14 | 7

about chronological age, the square of chronological age, 
sex, education years, EFC index and TIV. Statistical signifi-
cance was evaluated using an accelerated, bias-corrected 
bootstrap approach by estimating the distribution of the 
path coefficients by random sampling (10 000 bootstrap 
samples) to test each of the a, b, a*b path coefficients. We 
set the statistical significance threshold at P-value < 0.05 
for all the relevant paths. The proportion of path a*b to 
path c was further calculated to evaluate the mediation ef-
fect which indicate the percentage effect of BAG can ex-
plained of CSVD to cognitive functions.

Standard protocol approvals and 
patient consents
The study was approved by the Institutional Review Board 
of the National Yang Ming University, Taipei, Taiwan. All 
participants provided written informed consent.

Data availability
The data that support the findings of this study are available 
from the corresponding author upon reasonable request.

Results
Demographics of CSVD and 
non-CSVD groups
Among the 760 ILAS participants with eligible brain MRI 
images, 9 and 17 were excluded due to incidentally detected 

brain tumours and head motion, respectively. A total of 734 
participants were included in the analysis (Supplementary 
Figure 2); the histograms of their CSVD features are demon-
strated in Supplementary Figure 3. The CSVD group 

Figure 2 Performances of global and regional brain-age prediction models in the training data set. (A) Global brain-predicted age 
was highly associated with chronological age (r = 0.901, P < 0.001; MAE = 6.456 years and R2 = 0.812). (B) Regional brain-age prediction models 
also demonstrated moderate to good prediction (MAE range from 5.772 to 13.598 years and R2 range from 0.234 to 0.847). MAE = mean absolute 
error; r = correlation coefficient; R2 = coefficient of determination.

Figure 3 Comparison of global BAG between the CSVD 
and non-CSVD groups. The plot shows distribution (probability 
density plot), summary data (box plot) and raw observations of the 
global BAG for the CSVD and non-CSVD groups. ANCOVA test 
adjusted for chronological age, the square of chronological age, sex, 
education years, EFC index, TIV and vascular risk factors (including 
hypertension, diabetes, dyslipidemia, and cigarette smoking status) 
was used. The estimated global BAG was significantly greater in the 
CSVD group (BAG = 3.71 ± 7.60) than the non-CSVD group 
(BAG=−0.43 ± 9.47; P = 0.003, η2 = 0.012). *P < 0.05. BAG = 
brain-age gap; CSVD = cerebral small vessel disease.

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac233#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac233#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac233#supplementary-data
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comprised 124 participants with brain MRI showing severe 
WMH (≥ 50th WMH volume/TIV ratio in the total popula-
tion = 0.7 × 10−3) in addition to the presence of any lacunes 
or CMBs. The non-CSVD group included 610 participants. 
In the CSVD group, all had severe WMH, 83 (66.9%) had 
lacunes, 69 (55.6%) had CMB and 28 (22.6%) had both la-
cunes and CMBs. The demographics of the CSVD and 
non-CSVD groups are presented in Table 1. Compared 
with the non-CSVD group, the CSVD group was significant-
ly older, less educated and had a higher prevalence of vascu-
lar risk factors, including hypertension, diabetes mellitus and 
dyslipidemia. Table 1 also shows the results of the neuro-
psychological tests. Although all were non-demented and 
stroke-free (asymptomatic CSVD), participants in the 
CSVD group scored lower in all cognitive domains than 
those in the non-CSVD group, with statistical significance 
in the MMSE (global cognitive performance), CVVLT (ver-
bal memory) and VFT (executive function).

Performance of brain-age prediction 
model in the training data set
We demonstrated the association between chronological 
age and global brain-predicted age within the independent 
training data set (Fig. 2A). As expected, global brain- 
predicted age was highly associated with chronological age 
(r = 0.901, P < 0.001; R2 = 0.812, and MAE = 6.456 years). 
Furthermore, the regional brain-age prediction model also 
demonstrated moderate to good prediction, as illustrated 

in Fig. 2B (R2 ranges from 0.234 to 0.847, and MAE ranges 
from 5.772 to 13.598 years).

Global and regional brain ages in the 
CSVD and non-CSVD groups
The results showed that the estimated global BAG was sig-
nificantly increased in the CSVD group (BAG = 3.71 ± 
7.60) than the non-CSVD group (BAG=−0.43 ± 9.47) 
after adjusting for confounders including chronological 
age, sex, education years, TIV, EFC and the presence of 
vascular risk factors including hypertension, diabetes mel-
litus, dyslipidemia and cigarette smoking (P = 0.003, η2 = 
0.012, Fig. 3).

Furthermore, using the regional-level brain-predicted age 
models, we also demonstrated the regional-specific advanced 
aging profile in the CSVD group. After adjusting for con-
founders and the Bonferroni correction, 89 brain regions 
showed significantly different BAG between the CSVD and 
non-CSVD groups (Fig. 4). These regions included 82 cere-
bral cortical regions (mainly fronto-temporal cortices along-
side the Sylvian fissure and the posterior cingulate cortex), 
three subcortical regions (left and right thalamus in addition 
to the left hippocampus) and four regions in the cerebellum 
(Fig. 5). Mapping these 89 regions with the relevant brain 
networks showed that all seven brain networks were in-
volved (Fig. 5). Of these, cortical regions with significantly 
increased BAG in CSVD mostly belonged to the somatomo-
tor and default mode networks (Fig. 5). The mean differences 

Figure 4 Comparison of regional BAGs between CSVD and non-CSVD groups. The left and middle columns show the averaged BAGs 
of 442 brain regions in non-CSVD and CSVD groups. The right column shows the regions with significant BAG differences between CSVD and 
non-CSVD groups. Statistical significance was set as P < 0.000113 (Bonferroni correction). BAG = brain-age gap; CSVD = cerebral small vessel 
disease.
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between the groups in these 89 regions are shown in Fig. 5
and Supplementary Table 2.

Mediating role of BAG in the 
associations between CSVD and 
cognitive functions
We next investigated whether advanced brain aging, global-
ly and regionally, in the CSVD group, is related to cognitive 
impairment, namely, global cognitive performance 
(MMSE), verbal memory (CVVLT) and executive function. 
Figure 6 displays path diagrams for the interactions of these 
variables in a mediation framework. The results showed 
that global BAG failed to mediate the relationship between 
CSVD and any related cognitive impairments. In contrast, 
of the 89 regions with significantly increased BAG in the 
CSVD group, seven regional BAGs showed significant medi-
ation effects in CSVD-related cognitive impairment (Fig. 6). 
Regional BAG in one region of the somatomotor network 

(mediation magnitude: 12% in MMSE), two regions of 
the default mode network (mediation magnitude: 14% in 
CVVLT and 18% in VFT), one region of the visual network 
(mediation magnitude: 15% in VFT), and one region of the 
ventral attention network (mediation magnitude: 15% in 
CVVLT) significantly explained the cognitive function of 
specific domains in CSVD (Fig. 6). There were also two re-
gional BAGs in the subcortical areas with significant medi-
ation effects between CSVD and global cognitive 
performance (MMSE); regional BAG in the left hippocam-
pus (mediation magnitude: 13%) and left thalamus (medi-
ation magnitude: 14%) significantly explained the poorer 
global cognitive performance in CSVD (Fig. 6). The detailed 
data of the path coefficients, significance and magnitude 
(amount of changes) of mediation effects for MMSE, 
CVVLT and VFT in 89 regional BAG is provided in 
Supplementary Table 3–5. We set the statistical significance 
P < 0.05 uncorrected in 89 mediation models. These seven 
results would not survive if  family-wise error rate 
(FWER) corrected.

Figure 5 Demonstration of 89 brain regions with advanced regional brain aging in the CSVD group and the networks the 89 
regions belonged to. Numbers (%) at the outermost circle represent the distribution of networks among the 89 brain regions. BAG = brain-age 
gap; CSVD = cerebral small vessel disease.

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac233#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac233#supplementary-data
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Discussion
The main findings of this study were as follows. First, adults 
aged ≥ 50 years with asymptomatic CSVD showed advanced 
global and regional brain ages, estimated with GM features, 
compared with participants without CSVD. The average 
BAG (difference between predicted brain age and chrono-
logical age) was more than 3 years globally and 4–13 years 
within certain brain regions. Second, the regional rather 
than global BAG mediated the associations between CSVD 
and related cognitive impairments. Notably, the significance 
of mediation effects did not survive if FWER corrected (P < 
0.05/89).

The human brain continuously changes throughout the 
lifespan. Brain volume begins to shrink from the fourth dec-
ade of life.36,37 To determine whether an individual’s brain 
structural changes deviate from the normal aging process 
and thus how certain diseases exert their effects on the aging 
brain, neuroimaging-based brain-age prediction is an emer-
ging and promising approach in neuroscience research.3,4,33

These studies have shown advanced brain age in several 
neurological or systemic diseases and that the BAG can pre-
dict the risk of neurodegenerative diseases and mortality in 
the elderly.2,3,38-42 There are other large cohort studies re-
vealing a relationship between the predicted brain age and 
WMH volume.38,43 They also found a positive association 

Figure 6 The results of mediation analyses. (1) The diagram of mediation hypothesis framework. (2–8) Seven regional BAGs as potential 
mediators between CSVD and related cognitive impairments. The path coefficients and mediating magnitude (effect) are provided in each model. 
Path a: the effect of the CSVD on the mediator (regional BAG); Path b: the effect of the mediator (regional BAG) on the cognitive test’s score; Path 
c: the effect of CSVD on the cognitive test’s score; Path c’: the direct effect of CSVD on the cognitive score controlling for the mediator (regional 
BAG); Path a*b: the difference and its significance between path c and c’. Statistical significance of the mediating effect was evaluated with a 
bootstrap test. The dark solid and light dashed lines indicate a significant and non-significant relationship between each variable, respectively. 
Numbers are the corresponding mean path coefficients with standard error in brackets. Percent values above mediator indicate the effect size 
calculated from the proportion between path a*b and path c. *P < 0.05; **P < 0.01; ***P < 0.001. BAG = brain-age gap; CSVD = cerebral small 
vessel disease; CVVLT = Chinese Version Verbal Learning Test; MMSE = Mini-Mental State Examination; VFT = verbal fluency test.
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between predicted brain age or BAG and WMH volume. 
However, in their approaches, confounders such as age or 
vascular risk factors were not corrected and other CSVD 
markers were not considered. We are the first to validate 
the associations between CSVD and predicted brain age. 
Our results suggest that CSVD, even when asymptomatic, 
can influence the neurobiology of global brain aging, inde-
pendent of chronological age and vascular risk factors. The 
present study may contribute insights to the underlying me-
chanisms, not only of the CSVD-related clinical conse-
quences, but also of CSVD-associated neurodegenerative 
diseases.44,45 Our results also suggest that CSVD should be 
considered in future studies that aim to evaluate abnormal 
brain aging in other diseases.

CSVD is manifested by focal brain lesions but usually af-
fects remote and widespread brain functions and structures 
beyond the local lesions.13,46,47 In addition to detected struc-
tural or functional abnormalities in normal-appearance 
white matter surrounding the CSVD lesions,48,49 increasing 
evidence suggests that CSVD, though presented with local le-
sions mostly located in white matter, is a global disease that 
disrupts the brain functional networks.46,50 The functional 
networks refer to different brain regions that are spatially re-
mote but functionally linked to maintain brain functions.17

Abnormal networks that have been reported in CSVD in-
clude the default mode network, the dorsal attention net-
work and the frontoparietal control network.46,50 It has 
been proposed that CSVD lesions located in white matter 
or rich-club nodes would disconnect the nerve tract of net-
works and result in structural changes, commonly volume 
reduction, in remote cortical regions within the networks.46

CSVD may also cause advanced brain aging via this postu-
lated pathway. In the present study, we used network-based 
brain parcellation to measure regional brain age to under-
stand the spatial effects of CSVD on brain age.14 We investi-
gated whether CSVD at the early, asymptomatic stage had 
accelerated brain age in regions restricted to certain net-
works and attempted to determine the early network in-
volved in the pathophysiology of CSVD. Nevertheless, the 
results showed that, in asymptomatic CSVD, all networks 
were involved in the accelerating brain age process, with 
the two most involved regions being the somatomotor net-
work and the default mode network.

Although advanced brain age in CSVD was noted globally 
and in 89 brain regions, only seven cortical and subcortical re-
gions were associated with CSVD-related cognitive functions. 
Our results suggest that region-specific brain age estimations 
might provide more information than the global brain age 
as a measure of brain integrity. These regions might be stra-
tegic advanced brain age in cognitive impairment, e.g. acceler-
ating aging involving specific sites that are critical for cognitive 
functions. Among these strategic regions, the left thalamus sig-
nificantly mediated the effect of CSVD according to global 
cognitive performance (MMSE). Thalamus is an important 
node in several networks that connect with many remote cor-
tical, subcortical and cerebellar regions.51-53 It integrates neur-
al networks involving cognitive functions including processes 

of attention, speed of information processing and working 
memory.53 Strategically involved thalamus has also been 
noted in age-related cognitive impairment and post-stroke de-
mentia.53,54 Functional mapping studies have shown func-
tional involvement of the thalamus with several networks 
including somatomotor, default mode, dorsal attention, and 
visual and frontoparietal networks.51-53 Whether and how ac-
celerating brain age in the thalamus mediates CSVD-related 
cognitive impairment through these brain networks requires 
further investigation.

Another brain region showing advanced aging and associ-
ation with global cognitive function in CSVD is the left 
hippocampus. Hippocampus is in responsible for learning 
and memory; and its structural or functional impairments 
are involved early in several neurodegenerative diseases.55

Recent literatures have revealed that blood–brain barrier 
(BBB) breakdown might be the earliest neurovascular dys-
function involved in the aging and neurodegenerative 
brains.56-58 These studies consistently indicate BBB dysfunc-
tion in the hippocampus an early event and contributing to 
cognitive impairment in the aging and neurodegenerative 
processes. We have found advanced aging in the left hippo-
campus in early stage of CSVD. Furthermore, left hippocam-
pus regional BAG showed significant mediation effect 
between CSVD and global cognitive function. The present 
findings have provided additional evidences supporting 
hippocampus a critical region where neurovascular dysfunc-
tion (CSVD) and neurodegeneration intertwine and lead to 
cognitive impairments in the elderly.

Supporting the global involvement of CSVD revealed by 
brain structural and network studies, a recent systemic re-
view also demonstrated that CSVD may affect all kinds of 
cognitive domains in both asymptomatic and stroke or de-
mented populations.59 Several studies have also revealed 
heterogeneous cognitive profiles among individuals with 
similar degrees of CSVD on MRI.5,59 The present study 
showed that increased BAG in seven regions was signifi-
cantly mediating cognitive impairment of respective do-
mains in CSVD. These results suggest that advanced brain 
age in these specific regions may have distinct cognitive ef-
fects in CSVD. We postulated that the different involvement 
or extent of accelerating brain age in these strategic regions 
may explain, at least in part, the variability in cognitive 
symptoms among individuals with CSVD. BAG in these re-
gions may be a suitable clinical biomarker for predicting 
cognitive outcomes in patients with CSVD. Further valid-
ation in other cohorts with longitudinal follow-ups is 
warranted.

The following methodological considerations should be 
considered when interpreting the current results. Using a 
relatively large sample size to achieve a higher prediction per-
formance of the brain-age prediction model, one potential 
limitation is the source variability of the training data sets. 
As the inclusion criteria were different for each data set, 
the constructed prediction model may suffer from some po-
tential bias. However, we not only visually examined all 
MRI scans but also screened these individuals based on 
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various criteria to ensure that they were free of neuropsychi-
atric diseases, history of head trauma or other major medic-
al issues. Furthermore, the present model of brain-age 
prediction only used GM features (especially GMV) from 
T1w MRI. Future research with other brain features from 
modalities such as white matter microstructural integrity 
from diffusion tensor imaging and network or/and hemo-
dynamic profiles from resting-state functional MRI 
(rs-fMRI) would improve our understanding of the effects 
of CSVD on brain aging. Regarding the study population, 
our CSVD participants were community-based non-stroke 
and non-demented middle-to-old adults with a relatively 
milder degree of CSVD lesions. This setting aimed to deter-
mine the early pathophysiology of CSVD. However, it may 
also limit the generalizability of our findings to more severe 
CSVD. In the cognitive assessments, we included several 
neuropsychological tests since CSVD has been shown af-
fecting all major cognitive domains.59 However, the num-
ber of tests used to indicate one cognitive domain might 
not be optimal. Additionally, the present study did not con-
sider the hereditary CSVD, such as cerebral autosomal 
dominant arteriopathy with subcortical infarcts and leu-
koencephalopathy and other rare aetiologies of CSVD in 
our population. In the exploratory analyses about the medi-
ating effects of regional BAGs in CSVD-associated cogni-
tive domains, we set the statistical significance P < 0.05 
uncorrected in 89 mediation models. More analyses would 
be needed to validate these results due to the potential type I 
error. The present study defined CSVD as as the ≥ 50th per-
centile of WMH volume ratio with the presence of lacunes 
or CMBs and analyzed using a dichotomous variable, e.g. 
CSVD and non-CSVD groups. This method setting could 
provide clearer clinical implications. However, other meth-
ods which use continuous neuroimaging variables to re-
present CSVD60 might more accurately capture degrees of 
CSVD burden and offer greater statistical power. It would 
be a research priority to investigate the most optimal way 
to define and analyze CSVD in future. Finally, the present 
study analyzed the spatial characteristics but not the tem-
poral relationship of brain age in CSVD and its related cog-
nitive impairments. Longitudinal studies or other specific 
computational analyses are needed to elucidate the regional 
order of abnormal brain aging and their causal relation-
ships in CSVD.

In conclusion, our study revealed evidence of acceler-
ated brain aging in asymptomatic CSVD. The spatial dis-
tributions of advanced brain age in CSVD were mainly in 
the fronto-temporal cortices alongside the Sylvian fissure, 
the posterior cingulate cortex, bilateral thalamus, and 
left hippocampus, in which all networks were involved. 
We also showed the interactive effects between CSVD 
and accelerated brain age and found region-specific medi-
ation effects of BAG in the relationship between CSVD 
and related cognitive impairments. Our results may con-
tribute insights into the mechanisms underlying the effects 
of CSVD on brain aging and the associated cognitive 
impairment.
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