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Programmed cell death (PCD) in animals mainly refers to lytic and non-lytic forms. Disruption
and integrity of the plasmamembrane are considered as hallmarks of lytic and apoptotic cell
death, respectively. These lytic cell death programs can prevent the hosts from microbial
pathogens. The key to our understanding of these cases is pattern recognition receptors,
such as TLRs in animals and LRR-RLKs in plants, and nod-like receptors (NLRs). Herein, we
emphatically discuss the biochemical and structural studies that have clarified the anti-
apoptotic and pro-apoptotic functions of Bcl-2 family proteins during intrinsic apoptosis and
how caspase-8 among apoptosis, necroptosis, and pyroptosis sets the switchable
threshold and integrates innate immune signaling, and that have compared the similarity
and distinctness of the apoptosome, necroptosome, and inflammasome. We recapitulate
that the necroptotic MLKL pore, pyroptotic gasdermin pore, HR-inducing resistosome, and
mitochondrial Bcl-2 family all can form ion channels, which all directly boost membrane
disruption. Comparing the conservation and unique aspects of PCD including ferrroptosis
among bacteria, animals, and plants, the commonly shared immune domains including TIR-
like, gasdermin-like, caspase-like, and MLKL/CC-like domains act as arsenal modules to
restructure the diverse architecture to commit PCD suicide upon stresses/stimuli for host
community.
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INTRODUCTION

Programmed cell death (PCD) is clearly characterized in animals and contains several types. Of
PCDs, apoptosis is required for tissue development, maintenance of the homeostasis of
proliferating cells, and multicellular morphogenesis in plants and animals. The conceptual
proposal of apoptosis started from 1965 (Kerr, 1965). Australian scientists discovered that
some scattered dead cells from the liver parenchyma were present when observed under an
electron microscope after ligation of the rat portal vein. The lysosomes from these cells seemed not
to be damaged and were kept in an intact situation. These cells, featured by morphological
shrinkage and chromatin aggregations, fall off from their surrounding tissues and were ultimately
engulfed. Kerr and other three scientists formally put forward the concept of apoptosis in
1972 (Kerr et al., 1972). The molecular progresses on apoptosis per se began with a good
model organism Caenorhabditis elegans. Sydney Brenner first determined the C. elegans cell
development lineage (Brenner, 1973). John Sulston discovered the specific cell division and
differentiation during the nematode developmental process and identified that nematode
apoptosis is dictated by alternate gene expressions. Robert Horvitz found more than 20 genes
regulating apoptosis (Lettre and Hengartner, 2006; Ellis and Horvitz, 1986). These come in (at least)
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two distinct flavors, containing either ones responsible for
initiating or executing cell death or others involved in inhibition
of cell death. The four genes that regulate all somatic cell deaths in
C. elegans are CED-3, CED-4, CED-9, and EGL-1 genes. CED-9 is
an anti-apoptotic Bcl-2 homolog with four Bcl-2 homology (BH)
domains, whereas EGL-1 acts as a pro-apoptotic BH3-only domain
protein (Hengartner et al., 1992) (Figure 1A); CED-3 and CED-4
are pro-apoptotic (Lettre and Hengartner, 2006). CED-3 is
homologous to mammalian caspases (cysteinyl aspartic
acid–specific proteases) formerly known as interleukin-
1B–converting enzyme in animals (Yuan et al., 1993), and
CED-4 is an adaptor protein that is orthologous to mammalian
apoptotic protease–activating factor-1 (Apaf-1) being the main
scaffold protein of apoptosome for caspase-9 activation in the
intrinsic pathway (Lettre and Hengartner, 2006) (Figure 1A).
Although the three conserved gene-encoding proteins regulate
apoptosis in animals, no corresponding orthologous proteins
have been found in plants.

Mammalian Apoptosis Mediated by
Caspases
During the process of apoptosis, the central hub is the
activation of caspases. Human caspases have 11 members
and are categorized into 3 subclasses (Figures 1A,B).
Different clades largely correspond to distinct physiological
functions. Not all caspases are involved in apoptotic
regulation, albeit caspases dictate the destiny of apoptotic
cells. Caspase-2, -8, -9, and -10 are involved in the initiation
of apoptosis (as initiators). Upon dimerization, procaspase-2
becomes active and can process cytosolic Bid to trigger the
release of Cyt c (Baliga et al., 2004; Guo et al., 2002); caspase-8
and caspase-9 individually initiate the extrinsic and intrinsic
mammalian apoptosis (Chai and Shi, 2014), or caspase-8 has
an N-terminal tandem death effector domain (DED) and is
coordinated with the death receptor TNFR for perception of
extracellular death signals. Hence, recruitment of caspase-8
forms a death-inducing signaling complex (DISC) and then
activates caspase-8 (Schleich et al., 2013). The Apaf-1
apoptosome assembles into a heptameric wheel-like
complex with cytochrome c (Cyt c) and caspase-9 having
the N-terminal caspase recruitment domain (CARD) (Li
et al., 1998). The dome of apoptosome was identified to be
the oligomer of CARDs from Apaf-1 and caspase-9 (7:3-4
stoichiometry); then, procaspase-9 undergoes conversion
into caspase-9 (Figure 2A). However, the DARK-DRONC
apoptosome (8:8 stoichiometry) complex found in flies and
the C. elegans octameric CED-4 apoptosome interacting with
CED-3 (8:2 stoichiometry) does not require cytochrome c to
assemble, as it does in humans. This activating ligand Cyt c
for Apaf-1 can be released from the perforated mitochondria
by pro-death Bad/Bax, which is being initiated via activation
of Bid by caspase-8 (Li et al., 1998; Antignani and Youle,
2006). The plasma membrane of apoptotic cells keeps
basically intact; however, the perforated mitochondrial
outer membrane by Bax/Bak alternates the mitochondrial
outer membrane permeabilization (MOMP) during intrinsic
apoptosis. Then, endonuclease G (Endo G) is released from
the disrupted mitochondria and enters the nucleus, resulting
in DNA cleavage to form DNA ladders, which can also be
contributed by DNase c (Li et al., 2001; Shiokawa et al., 2002).
Additionally, the active caspase-8 sequentially activates
effector caspase(s) (Stennicke et al., 1998). The activated
caspase-3 and -7 have similar cleavage profiles of
substrates. The degradations of poly (ADP-ribose)
polymerase (PARP) and DNA fragmentation factor-45
(DFF-45) by caspase-3 and caspase-7 give rise to failures
in DNA repair and initiation of DNA degradation (Jänicke
et al., 1998; Tang and Kidd, 1998; Wride et al., 1999). The
lamin A critical for nuclear architecture acts as the substrate
of activated caspase-6 (Ruchaud et al., 2002). Degraded lamin
A and other cellular skeletal proteins lead to cellular
shrinkages and chromatin condensations. However, the
cytokines cannot leak out from apoptotic cells to the
bystander cells due to the integrity of the plasma
membrane during apoptosis genesis. Therefore, apoptosis

FIGURE 1 | Structural features of caspases, Apaf-1, and the Bcl-2
family. (A) Master initiator caspases, caspase-2, caspase-8, and caspase-9,
are characterized by N-terminal domain(s) including DED or CARD. The
effector caspases have caspase-3, caspase-6, and caspase-7 for
apoptosis. Apaf-1 is a main scaffold protein for recruitment of Cyt c and
caspase-9. Bcl-2 itself plays anti-apoptotic roles whereas the Bax/Bak
members of the Bcl-2 family are pro-apoptotic. BH3-only protein is an intrinsic
apoptosis initiator. (B) Another clade contains inflammatory caspases,
including human caspase-1, -4, and -5 and mouse caspase-11, have the
N-terminal CARD domains.
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without the release of cytokines cannot sequentially induce
inflammation.

The Emerging Roles of Mammalian Bcl-2
Family Proteins in Apoptosis
The protein members of the B-cell lymphoma 2 (Bcl-2) family
residing at the outer mitochondrial membrane may be classified
into three functionally and structurally distinct subgroups, such

as BH3 (the Bcl-2 homology 3)-only proteins (which
communicate signals to initiate intrinsic apoptosis), the Bcl-2
itself as the pro-survival cell guardian, and the pro-apoptotic
effector proteins BAX (Bcl-2–associated X protein) and BAK
(Bcl-2 antagonist/killer) (Lindsten et al., 2000; Czabotar et al.,
2014; Ke et al., 2012; Naim and Kaufmann, 2020) (Figure 1A).
The anti- and pro-apoptotic ones both balance the
mitochondrial membrane potential, and their interplay sets
the apoptotic threshold in the mitochondrial outer

FIGURE 2 |Commonality of various PCDs among bacteria, animals, and plants. (A)Necroptosis is mediated by RIPK3-phosphorylatedMLKL. The oligomerization
of the 4-helice bundle in the N-terminal region of MLKL should form a cation channel in the plasmamembrane and lead to disruption of membrane integrity. Inflammatory
caspases were activated by canonical and/or non-canonical inflammosomes. The active inflammatory caspases can cleave gasdermins. The resulting N-gasdermins
insert the plasmamembrane and form amembrane porewith 18–21 nm in inner diameter. The gasdermin pore prefers the release of IL-1β and IL-18. Apoptosis is a
non-lytic cell death. In the instinct pathway, the initiator caspase-9 is activated by the apoptosome consisting of apaf-1, Cyt c, and caspase-9; caspase-8 is activated by
the death-inducing signaling complex (DISC) for extrinsic apoptosis. Caspase-8 is the molecular switch for apoptosis, for necroptosis, and pyroptosis. Ferroptosis is
required for iron and is mediated by LOXs and ROS and POR and Cyt b. The lipid peroxides and lipid radicals are capable of being sequestered by GPX4 and FSP1,
respectively. Upon infection, PANoptosis co-featured by pyroptosis, apoptosis, and necroptosis is present as well. (B) The bacterial gasdermins are conserved and
commit cell death via pore-forming as well. cGAMP as the elicitor activates the phospholipase, which perturb membrane integrity and result in cell death. gRAMP, the
giant repeat–associated mysterious protein from CRISPR-Cas type III effectors; TPR-CHAT, caspase HetF associated with the tetratricopeptide repeat. proteases (C)
Resistance (R) protein-mediated HR and ferroptosis-like in the plant cell. The R protein ZAR1 (CC-NBS-LRR) with RKS1 and PBL2 UMP ligands form the pentameric
complex. The funnel-like channel (∼0.5 nm in narrowest diameter) is a non-selective, Ca2+ influx, cation channel. Likewise, helper NLRs required for TLR (TIR-NB-LRR)-
mediated HR constitute a Ca2+ influx, cation channel. But the definitive 3D models of helper NLRs remain elusive; other CNL resistosomes may be cation channels, but
their 3D structures are not be determined. And, ferroptosis-like cell death was also observed in plant cells. (D) In total, GSDM and MLKL domains directly target the
plasmamembrane; the Bcl-2 family is responsible for mitochondrial membrane damages; and TIR-like sense andmonitor energy deficit to produce a secondmessenger
for downstream signaling.
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membrane. With respect to the BH3-only protein, there are
activator BH3-only proteins including BIM and the truncated
form of BID (tBID) that can directly bind and activate BAX or
BAK and sensitizer BH3-only proteins, such as BAD, which
indirectly activate BAX or BAK by neutralizing pro-survival
Bcl-2 family members (Czabotar et al., 2014). Overexpressed
BH3-only proteins, particularly those (BIM, tBID, and PUMA)
that target all pro-survival Bcl-2 family members, can trigger
apoptosis. Diverse cell types from Bax−/−Bak−/− mice are
completely resistant to multiple apoptotic stimuli, including
the enforced expression of BH3-only proteins (Wei et al., 2001;
Cheng et al., 2001; Zong et al., 2001) and are required for normal
tissue development (Rathmell et al., 2002; Mason et al., 2013).
Thus, the BH3-only proteins function upstream of BAX and
BAK (Czabotar et al., 2014) and cannot cause cell death unless
BAX or BAK is present. In transgenic mice, all of the pro-
survival Bcl-2 family members endow much cell type resistance
against diverse apoptotic stimuli. The apoptosis of autoreactive
BIM −/− B cells and T cells negatively regulated by Bcl-2 act as
one important checkpoint for preventing autoimmune kidney
disease that resembles human systemic lupus erythematosus.
BH3-only proteins or BH3-mimicking small molecules (BH3
mimetics) might promote apoptosis and improve the cancer
therapy effect. Accordingly, the Bcl-2 overexpression in B cells
of mice, loss of BIM, or loss of both BAX and BAK can provoke a
fatal autoimmune kidney disease and might improve the
treatment of diverse types of cancer (Adams and Cory, 2018).

MLKL-Mediated Necroptosis in Mammalian
Cells
As known, non-lytic apoptosis is a non-inflammatory form of
cell death. On the contrary, necroptosis and pyroptosis belong
to lytic PCDs along with inflammatory exudates but differ for
distinguishably lytic phenotypes. The necroptotic feature
corresponds to cellular explosion, and pyroptosis is
characterized by osmotic swelling/balloon-like protrusions.
Necroptotic stimuli (including Z-DNA, Z-DNA binding
protein 1 (ZBP1), and TNF-α) initiate a supramolecular
organizing center (SMOC), called the necrosome RIPK1-
RIPK3 core, as a hetero-amyloid signaling complex to
perform autophosphorylations (Zhang, et al., 2009; Sun
et al., 2012; Sun and Wang, 2014) (Figure 2A). The
activated RIPK3 phosphorylates the necroptosis effector, as
a pseudokinase—mixed lineage kinase domain-like (MLKL).
And, the phosphorylated MLKLs undergo conformational
alternation and initiatively bind with IP6 and recognize the
anionic phospholipids (such as phosphatidylinositol-4-
phosphate (PtIns4P)) of the inner leaflet of the plasma
membrane, finally oligomerize and perforate the plasma
membrane to form a non-selective cation channel (Huang
et al., 2017; Su et al., 2014; Wang et al., 2014) (Figure 2A).
Necroptosis would occur upon death of stimuli when caspase-
8 is inactive after genetic depletion or chemical inhibition by
the Z-VAD-FMK inhibitor (He, et al., 2009) (Figure 2A). In
the more complex necroptotic pathway, tumor necrosis factor
receptor 1 (TNFR1), toll-like receptor 3 (TLR3)–TRIF, and

TLR4–TRIF signal via RIPK1 to activate NF-κB, but RIPK1 is
not required for the TRIF-type I IFN response (Fitzgerald and
Kagan, 2020).

Gasdermin-Mediated Pyroptosis in Animals
and Bacterial Cells
Like apoptosomes and necroptosomes, pyroptotic
inflammasomes are responsible for the activation of
inflammatory caspase-1 (Ding and Shao, 2017). How are the
other inflammatory caspase-4/5/11 activated upon bacterial
infections? Shao Lab identified that caspase-4/5/11 can directly
recognize the cytosolic lipopolysaccharides (LPS) to aggregate
into non-canonical inflammasomes and commit self-cleavage to
form active caspases (Shi et al., 2014). Once activated, caspase-1,
4/5/11 are capable of cleaving gasdermin D (GSDMD), being a
bipartite protein whose amino-terminal and carboxy-terminal
domains are connected by a linker and the free N-terminal
fragment of GSDMD to induce 31∼34-fold symmetry
gasdermin pore forming and pyroptosis (Shi et al., 2015; Ding
et al., 2016; Ding and Shao, 2017; Ruan et al., 2018; Xia et al.,
2021) (Figure 2A). The mature forms of pro–interleukin-1β (IL-
1β) and pro–IL-18 processed by caspase-1 are feasible to outflow
through the GSDMD pore (∼21 nm in internal diameter), while
large amounts of sodium and water enter, and increasing
expansion of pores finally lead to osmotic swelling and cell
death (Xia et al., 2021) (Figure 2A).

The gasdermin subfamily has six members GSDMA-
GASDME and GSDMF (DFNB59, also called PJVK) in
humans. GSDMF is highly similar to GSDME, and its
mutation is associated with autosomal recessive deafness (Broz
et al., 2020). Different gasdermin members are activated by
different protease(s) including caspase(s) or other proteases.
The activation of GSDME was licensed to caspase-3, and
activated gasdermin E assemblies (pore rings) have 26∼28-fold
symmetry and may drive chemotherapy-induced pyroptosis
(Wang et al., 2017; Broz et al., 2020; Zhang et al., 2020; Xia
et al., 2021). And, gasdermin B can also be functionally cleaved by
granzyme(s) from lymphocytes and NK cells for activation (Zhou
et al., 2020). Apart from targeting the plasma membrane, active
gasdermin B prefers to bind bacterial phospholipids and has
strong bactericidal activities rather than cellular toxicity for NK
cells (Hansen et al., 2021).

Importantly, oligomerization of the released N-lobe of
gasdermins is a requisite for pyroptotic cell death. Pyroptosis
is defined as gasdermin-mediated programmed necrotic cell
death (Broz et al., 2020). As known, pyroptosis accompanies
mitochondrial damages. And, the mitochondrial tricarboxylic
acid (TCA) cycle metabolites (namely, fumarate and its
derivatives) can modify a reactive cysteine of GSDMD by
succination, which results in significantly decreased cleavage
and pore formation (Humphries et al., 2020). Nevertheless,
GSDMD cleavage by proteases appears to be not equivalent to
pore formation. Recent studies identified that the lysosome-
locating Ragulator-Rag complex involved in the mTORC1
pathway maintaining metabolic homeostasis may control the
pore formation of gasdermins in the plasma membrane and/or
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serve as a scaffold for the activation of the
FADD–RIPK1–caspase-8 complex to induce pyroptosis
(Evavold et al., 2021; Zheng et al., 2021) (Figure 2A). The
mTORC1 sensitize and control mitochondrial dysfunction and
promote mitochondrial ROS generation, which boost gasdermin
oligomerization in vivo (Evavold et al., 2021). The Rag-Ragulator
complex surveils both metabolism and infection to act as a
molecular hub dictating the living or death fate of infected
cells (Zheng et al., 2021).

During the last stage of pyroptotic cell death, the plasma
membrane rupture (PMR) usually occurs in dying cells. PMR
previously is considered as a passive process following pore
formation. But Kayagaki et al. (2021) recently identified that
PMR may be a positive event mediated by the protein NINJ1,
which is a 16-kDa protein with two transmembrane motifs and
juxtaposed to the plasma membrane with both termini outside
the cytoplasm. In addition to pyroptosis, other programmed lytic
cell deaths all undergo PMR as well. Therefore, NINJ1 may act
downstream of the formations of the GSDMD pore or MLML
channel to elicit PMR.

Apart from mammalian gasdermins, the only CsGSDME
from aquatic teleost Cynoglossus semilaevis can be cleaved by
Cscaspase-1, -3, and -7 to elicit pyroptosis (Jiang et al., 2019).
Additionally, the GSDME homolog also exists in the marine
invertebrate coral Orbicella faveolata, and Ofcaspase-3 is
capable of cleaving OfGSDME to induce pyroptosis upon
the infection by the bacterial pathogen Vibrio coralliilyticus
(Jiang S et al., 2020). These important findings of GSDME-
mediated pyroptosis in aquatic animals shed light on the
activation mode of gasdermin during pyroptosis and
broaden the evolutionary insights into pyroptosis-related
immunological stresses upon bacterial invasions. In contrast
to animals’ gasdermins, the uncharacterized proteins with
predicted homology to gasdermin domains were identified
after bioinformatical analyses of bacterial anti-phage
defense islands. The majority are encoded adjacent to one
or more genes with a predicted protease domain through
examining the genomic neighborhood of bacterial
gasdermin-likes (Johnson et al., 2022). Some of the GSDM-
associated proteases are fused to repeat domains including
leucine-rich repeats, tetratricopeptide repeats, WD40 repeats,
or NACHT domains frequently involved in prokaryotic
samples. In addition, the gRAMP CRISPR-Cas effector is an
RNA endonuclease complex with a caspase-like peptidase (van
Beljouw et al., 2021), regardless of the structure and substrate
specificity of bacterial caspase-like proteases temporarily
named ‘‘orthocaspases’’ (Minina et al., 2020). While
breaking of viral RNAs is inadequate to escape infections,
bacteria would switch on suicide as a consequence of activation
of caspase-likes by sensing viral RNAs. Another recent report
claimed that the activated Runella gasdermin-likes after
removal of the short C-terminal region (about 20 AAs) by
the associated caspase-like protease (or a certain orthocaspase)
has the capability to form mesh-like membrane pores (average
28 nm in inner diameter) and displays bactericidal activity via
non-selective leakage (Johnson et al., 2022) (Figure 2B),
although how caspase-like protease becomes active was not

documented. Collectively, it uncovered that the conserved
gasdermin-like pore is an ancient conduit for the cellular
content efflux in prokaryotes and eukaryotes.

The Switch of Apoptosis, Necroptosis, and
Pyroptosis by Caspase-8
In response to influenza A virus (IAV) infection, the induced pro-
death complex encompasses a plethora of proteins: RIPK1,
apoptosis-associated speck-like protein containing a caspase
recruitment domain (ASC), nucleotide-binding oligomerization
domain NOD-like receptor pyrin domain-containing 3 (NLRP3),
and caspase-8, RIPK3, ZBP1, and caspase-1 (Samir et al., 2020).
In addition, the AIM2 sensitizing dsDNA sense double-stranded
DNA (dsDNA) forms the inflammasome being an important
sentinel of the innate immune defense and has essential roles in
development of infectious diseases. However, AIM2 beyond its
canonical role in inflammasome formation and observed
pyroptosis cannot explain the outcome resulted from the
AIM2 inflammasome. During infections by dsDNA herpes
simplex virus 1 (HSV1) and the Gram-negative bacterium
Francisella novicida, AIM2, pyrin, and ZBP1 were constituents
of a large multiplex complex concomitant with ASC,caspase-1,
caspase-8, RIPK3, RIPK1, and FADD, that led to PANoptosis, an
inflammatory cell death pluralized by apoptosis, pyroptosis, and
necroptosis (Lee et al., 2021) (Figure 2A). The confluence of
critical molecules for apoptosis, pyroptosis, and necroptosis could
explain why the different types of cell death can exchange under
certain conditions (Schwarzer et al., 2020). Caspase-8 is the
initiator caspase of extrinsic apoptosis and cleaves RIPK1/3 to
restrict necroptosis (Frank and Vince, 2019). Therefore, caspase-
8 deficiency in mice causes embryonic lethality which can be
rescued by deletion of either RIPK3 or MLKL (Fritsch et al., 2019;
Newton et al., 2019). MLKL deficiency rescues the cardiovascular
defect phenotype but unexpectedly causes necroptosis-
independent death. When necroptosis is blocked, the
expression of non-catalytic caspase-8 triggered the formation
of ASC-associated inflammasomes and resulted in pyroptosis
in mice. Genetic analyses confirmed that caspase-8 serves as the
molecular switch for hierarchical activation of apoptotic,
necroptotic, and pyroptotic signaling pathways (Orning et al.,
2018; Fritsch et al., 2019; Newton et al., 2019) (Figure 2A).

Animal and Plant Bcl-2–Associated
Athanogene Proteins in Cell Death
Regulation and Stress Responses
The extrinsic apoptosis pathway and other types of PCD are
orchestrated by caspase-8, whereas MOMP during intrinsic
apoptosis is positively and negatively regulated by Bcl-2 family
proteins. To identify Bcl-2 partner(s), the Bcl-2–associated
athanogene (BAG) family genes were initially found via a
yeast two-hybrid screening (Kabbage and Dickman, 2008).
The BAG1 gene was shown to enhance the anti-apoptotic
activity of Bcl-2, which seemed to be indicative of its
involvement in the apoptotic pathway(s) (Takayama et al.,
1995; Brive et al., 2001; Takayama and Reed, 2001). The BAG
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family is a phylogenetically conserved group of proteins with
orthologues widely across organisms from plants to metazoans
including humans. The C-terminal BAG domain (BD) from all
BAG proteins directly interact with the heat shock protein 70
(HSP70) chaperone (Takayama and Reed, 2001). The BAG
proteins serve as co-chaperones that function as molecular
switches associating with HSP70 and other substrates and
maintain protein homeostasis and modulate cell death. In fact,
BAG1 itself functions as a substrate of E3 ligase (i.e., the C
terminus of HSC70-interacting protein (CHIP)), and the
formation of the BAG1-CHIP ternary complex targets proteins
for degradation (Kabbage et al., 2017). Reversely, BAG2
associating with CHIP inhibits the E3 ligase activity. BAG3
has roles in protein quality control to sustain cell survival and
was indicative of the antagonistic effect against chemotherapy
(Behl 2016). BAG4 has been considered to act as a negative
regulator of the TNF superfamily. BAG5 has been relevant to
neurodegeneration (such as Parkinson’s disease) and was
discovered to suppress both parkin E3 ligase and HSP70
chaperone activities (Kalia et al., 2004). BAG6 ablation might
contribute to increased lethality and severe developmental
abnormality in various organs (Kabbage et al., 2017).

Arabidopsis BAG proteins may be categorized into two sub-
groups according to their featured domain: AtBAG1–4 having a
UBL motif similar to human BAG1 besides the BD, and
AtBAG5–7 containing a calmodulin (CaM)–binding motif
nearby the BD. The AtBAG1–3 keeps functionally unknown.
BAG4 binds to HSP70 chaperones and is related to cell death
inhibition upon abiotic stress. AtBAG5 constitutes a complex
with CaM/HSC70 and is involved in plant senescence (Kabbage
et al., 2017). AtBAG6 is functionally activated through aspartyl
protease processing and coordinates with chitin perception to
inducible autophagy (Kang et al., 2006). The ER-locating
AtBAG7, as an essential component of the unfolded protein
response, recognizes the molecular chaperone BIP2. Upon ER
stresses, AtBAG7 can translocate to the nucleus, where it
interplays with the transcription factor WRKY29 related to
stress response and/or immunity (Li et al., 2017). Due to
BAGs’ association with HSP70 partially and their multiplex
targets, the conservation of BAG molecular regulations and
contributive properties in immunity-associated cell death was
discovered in plants and animals.

Ferroptosis in Animal and Plant Cells
Along with the discovery of apoptosis, necroptosis, pyroptosis,
and immune cell death, ferroptosis dependent of iron was
proposed in 2012 (Dixon et al., 2012). Ferroptosis is
characterized by the peroxidation of polyunsaturated fatty
acids (PUFAs) from membrane lipids by lipoxygenases (LOXs)
being non-heme iron oxidases and reactive oxygen species (ROS)
from the Fe2+-directed Fenton reaction (Yang et al., 2016).
Recently, lipid peroxidation during ferroptosis may be mainly
catalyzed by oxidoreductases POR and cytochrome b5 reductase
1 (CYB5R1) other than LOXs (Yan et al., 2021). Importantly,
ferroptosis can be hindered by glutathione peroxidase GPX4 for
depletion of lipid peroxide and coenzyme Q oxidoreductase FSP1
and mitochondrial dihydrooratic acid dehydrogenase (DHODH)

for neutralization of the lipid peroxide free radical (Bersuker et al.,
2019; Mao et al., 2021) (Figure 2A). Hence, lipoperoxides cannot
be excessively aggregated to disrupt the integrity of the plasma
membrane. Due to the prevalence of the conserved cytochromes,
LOXs, and other popular oxidoreductases and dehydrogenases in
plants, the induced ferroptosis-like cell death may contribute to
immune responses in plants upon biotic stresses (Figure 2C)
(Distéfano et al., 2017; Dangol et al., 2019; Distéfano et al., 2021).
Also, it has been reported that iron-dependent death regulates
conidiospore development of pathogen fungi ——Magnaporthe
grisea (Shen et al., 2020). The mechanistic insights into inhibition
of ferroptosis in plants remain to be further elucidated by
biochemical and genetic analyses.

CNL Resistosome and Helper Nod-Like
Receptors Mediate Ca2+ Influx Required for
Programmed Cell Death in Plant Cells
The LRR-NBS domains from R proteins are largely similar to
the LRR-NACHT domain in the inflammatory NOD-like
receptor protein 3 (NLRP3) for caspase-1 activation. The
N-terminal domains of R proteins can be divided into three
categories: TIR-NBS-LRR (TNLs), CC-NBS-LRR (CNLs), and
CCR-NB-LRR (RNLs). The three subfamilies are collectively
referred to as Nod-like receptors (NLRs). NLRs evolved from a
common primordial prokaryotic adenosine triphosphatase
(ATPase), which is classified into two distinct derivatives:
NACHT and NB-ARC type NBDs. The NB-ARC type is
found in plant NLRs and NACHT in animal NLRs (Jones
et al., 2016). Animal NLRs with cognate ligands can
oligomerize into wheel-like complexes as inflammasomes
upon stimuli (Hu et al., 2015). Similarly, the Arabidopsis
ZAR1 protein (a CNL) initially confers resistance to P.
syringae carrying the effector protein HopZ1a and sensitizes
the alteration of the host sensory protein PBS1-LIKE 2 (PBL2)
upon Xanthomonas campestris pv. campestris (Xcc) effector
AvrAC (Bi and Zhou, 2021). The cryo-EM structures of the
ZAR1 resistosome in resting and activated states were
reported. ZAR1 interacts with the plant protein
pseudokinase RKS1 (a receptor-like cytoplasmic kinase
(RLCK), belonging to the RLCK-XII subfamily) and
remained at the resting state. Upon infection, AvrAC
uridylates PBS1-like protein 2 (a member of RLCK-VII
subfamily) to generate PBL2UMP, which is recruited to the
ZAR1-RKS1 complex to form the ZA1-RKS1- PBL2UMP

complex in a primed state lacking ATP or dATP (Wang
et al., 2019a; Wang et al., 2019b). PBL2UMP binding
activates the nucleotide exchange factor activity of RKS1.
Once activated, RKS1 facilitates ADP release from ZAR1 by
inducing conformation changes in the NBD domain of ZAR,
which enables ZAR1 to go through the fold switch of its CC
domain and leads to the formation of a pentameric ZA1-RKS1-
PBL2UMP structure (Wang et al., 2019a) (Figure 2C). The
funnel-shaped architecture constituted by the N-terminal
alpha-helices of ZAR1 in the resistosome promotes ZAR1
integration into the plasma membrane. It may perturb the
membrane integrity or ionic homeostasis. Subsequent studies
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showed that this funnel-like structure of helices in the
N-terminal region is featured by a Ca2+ channel, being
responsible for the Ca2+ influx, which is required for
resistance (Bi et al., 2021). It is reminiscent that the
activation of the inflammasome NLRP3 requires the serine/
threonine kinase NEK7, and NLRP3-NEK7 modules constitute
a disk-like structure (He et al., 2016; Sharif et al., 2019). This
indicated the convergence on activation strategies of diverse
varieties of NLRs. NLRs from animals and plants are all
capable of being activated by kinase(s), which may possess
nucleotide exchange activities and elicit the allosteric effect of
NLRs to oligomerize into active resistosomes (Wang et al.,
2019a).

TNLs RPP1 and roq1 recognize the bacterial effector ATR1
and Xanthomonas effector RPP1 of oomycetes, respectively. The
direct binding of ATR1/RPP1 to a C-terminal jelly roll/Ig-like
domain and LRR domain leads to induce the tetrameric assembly.
The two catalytic centers of NADase are composed of asymmetric
homodimers in tetrameric TIR domains, which define the
formation of active holoenzyme (Martin et al., 2020; Ma et al.,
2020). TNLs and CNLs directly or indirectly sensitize pathogen
effectors. But RNLs are not conferred to perceive microbial
avirulent factors but acts downstream of TNL-mediated

signaling. Therefore, it is called helper NLR, which contains
two types: NRG1 and ADR1. EDS1 and PAD4 are plant
effector proteins with lipase-like domains, which aggregate to
promote cell death. Additionally, NRG1 involves the downstream
cascade of TNL-mediated cell death. Structural data and
electrophysiological experiments also corroborated that the
self-activating mutant of NRG1 is a calcium-permeable but
non-selective cation channel. Arabidopsis NRG1 CCR was
structurally similar to pseudokinase MLKL as a cationic
channel causing cell necrosis in animals (Jacob et al., 2021)
(Figure 2C). Both self-activating mutants expressing NRG1
and ADR1 in tobacco and human cancer cells can give rise to
cell death. And, the death phenotype depends on plasma
membrane localization of helper NLRs and the Ca2+influx
(Jacob et al., 2021). Collectively, the activation of NLR in CNL
and TNL resistosomes both converge on the Ca2+

influx–mediated cation channels formed by NLRs. We have
not yet understood how to trigger plant cell death after
inducing the Ca2+ influx. According to previous reports, the
appearance of HR required the plasma membrane fusion with
a plant vacuole, in which cysteine proteases (including vacuolar
processing enzymes (VPEs), and/or RD19) are required for
cytolysis (Hatsugai et al., 2004; Bernoux et al., 2008).

FIGURE 3 |Mutual potentiation and regulation of TLR-mediated immunity and NLR-mediated immunity in plants and animals. (A) LRR-RLK (receptor-like kinase)
confer to pattern-triggered immunity, functionally similar to animal Toll-like on the cell surface. SARM1 has a mitochondria-targeting signal (MTS), AMR, SAM, and
C-terminal TIR domain, where there being conserved Asp/Glu residues, which endow the NADase activity. (B) Cytosolic CNL and TNL are composed of NBS and LRR
domains with a distinct N-terminal region (coiled coil or TIR domain). (C) The PAD4-EDS1 complex and ADR1 together locate the inner leaflet of the plasma
membrane and enhance PRR (LRR-RK)- and RLCK (BIK1)-dependent PTI. (D)Cytosolic toll and interleukin 1 receptor (TIR) of TLR4 can interplay with the TIR domain(s)
of four adaptor molecules MyD88, TIRAP, TRIF, and TRAM to transmit the cascade reaction and promote the secretion of inflammatory factors and interferons. The
capase-8 substrate, N4BP, act as a suppressor of cytokine responses. Asterisk (*) represents the catalytic activities of TIR domains.
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TIR as NADase for Producing Cyclic ADPR
Essential for TNL-Mediated Death Signal
Cascading and Activated Myd88-5 Inducing
Neuron Death
The plant TNLs RPP1 and ROQ1 recognize their respective cognate
effector ATR1. The complexes both individually oligomerize into
tetramers, and the tetrameric wheel-like resistosomes have
NADase holoenzyme activity through adjacent TIR–TIR close
contact. The oligomerization of the TIR-domain is essential for
its NAD+-catalyzing activity for variant cADPR (v-cADPR)
production (Wan et al., 2019). TIR domains unlike other
effector domains (such as Bcl-2, MLKL, and gasdermin)
directly target the plasma membrane and perceive and/or
amplify signals to trigger downstream immune responses
(Figure 2D). TIR domains from plant TNLs have NADase
activities versus TLR-containing TIR domains devoid of
catalytic activities and are paralogous to the TIR domain of
SARM1 protein, namelyMyD88-5 (Figures 3A,B). MyD88 is an
adaptor molecule involved in the signaling through the IL-1R
and TLR families and is essential for the response to IL-1, IL-18,
LPS, and many other bacterial cell-wall components. Otherwise,
SARM1/MyD88-5 is the critical mediator of axon degeneration
upon energy deficit (Jiang S et al., 2020).

The cryo-EM structure of full-length human SARM1 revealed
that it bound NAD+ constitutes, an octamer in its inactive state,
which inhibit its TIR NADase activity under high NAD+ levels
(Bratkowski et al., 2020; Jiang Y et al., 2020; Sporny et al., 2020). The
human SARM1 with a nicotinamide mononucleotide (NMN)
octamer undergoes a conformational change disrupting
NAD+binding sites of the ARM domains to enable TIR–TIR
dimerization. NAD+deficit upon severe damages of the
mitochondria from axons may result in SARM1 TIR-TIR
associations and then produce cADPR to trigger axon death
(Jiang Y et al., 2020). The ectopic expression of the TIR domain
of human SARM1 in tobacco for cADPR generationmay trigger cell
death independent of EDS1 (Horsefield et al., 2019). The amount of
cADPR dramatically increases upon accumulation of the
senescence-related phytohormone ABA in plants and ultimately
elicits cell death (Wu et al., 1997). It should be presumed that
cADPR as a candidate common second messenger conveys death
signal to the cascading pathways in plants and animals. In bacteria,
cyclic oligonucleotide sensor(s) conjugated with effectors (such as
lipase or transmembrane protein or other effectors) triggers enough
bacterial cell disruption in response to phage invasion and results in
the abortive infection (Severin et al., 2018; Morehouse et al., 2020).
The infected bacterial cells commit suicide prior to the performance
of the phage replication cycle. This strategy eliminates infected cells
from the bacterial community and protects the bacterial population
from a phagic epidemic (Hampton et al., 2020). Some bacteria
exploit TIR-STING fusion protein to inhibit phage infections
(Cohen et al., 2019; Eaglesham et al., 2019). Bacterial STING
coupling cyclic dinucleotide recognition forms filaments to drive
TIR oligomerization for cADPR production (Morehouse et al.,
2020). This strategy is used to remove infected cells from the
bacterial community and protect the population from a phage
epidemic.

Plant Immune Response Coordinated by
PTI and ETI Versus TLR- and Nod-Like
Receptor-Mediated Immune Responses in
Animals
Upon pathogen infection, plants utilize cell-surface pattern-
recognition receptors (PRRs) to rapidly recognize pathogen/
damage-associated molecular patterns (PAMPs/DAMPs) and
then bind and phosphorylate co-receptors—receptor-like
cytoplasmic kinases (RLCKs) and phosphorylated RLCKs
sequentially activate MAPK cascade signaling, Ca2+-dependent
protein kinases (CDPKs), and reactive oxygen species (ROS)
burst (Tang et al., 2017; Liang and Zhou, 2018). For examples,
the NO burst was induced in Arabidopsis suspension cells in
response to bacterial LPS. LPS treatment not only induces the
expression of Arabidopsis NO synthase (AtNOS1) but also
activates the defense genes (Zeidler et al., 2004). Sequentially,
the Arabidopsis LPS receptor was identified to be lectin
S-domain-1 receptor–like kinase LORE (Ranf et al., 2015).
AtNOS1-deficient and LPS-insensitive LORE mutants are
hypersusceptible to the pathogen Pseudomonas syringae
(Zeidler et al., 2004; Ranf et al., 2015). Plant LysM domain
proteins have been widely implicated in the recognition of
GlcNAc-containing glycans. CERK1, a lysin-motif (LysM)
receptor kinase (LYK) can recognize fungal MAMP chitin
(Miya et al., 2007). LYK5 and LYK4 are also identified to be
components of a tripartite chitin receptor complex (Cao et al.,
2014; Xue et al., 2019). The glycosylphosphatidylinositol-
anchored LysM proteins (LYM1 and LYM3) sense PGNs
(Willmann et al., 2011). LRR-RK MIK2 recognizes multiple
plant endogenous peptides of SCOOP family members, leading
to a series of PTI responses, including the cytosolic Ca2+ influx,
ROS burst, MAPK activation, ethylene production, and defense-
related gene expression (Hou et al., 2021; Rhodes et al., 2021). The
LRR receptor kinase HPCA1(other name CARD1) as the
receptor(s) of DAMPs hydrogen peroxide and quinone
perceives H2O2 and host-derived quinone DMBQ to activate
the Ca2+ influx and MAPK pathway (Laohavisit et al., 2020; Wu
et al., 2020).

These responses are collectively called pattern-triggered
immunity (PTI), which can impede further invasion at the
pre-infection phase. But, successful pathogens exploit secreted
effectors dedicates to pathogen virulence to intervene with PTI;
this leads to effector-triggered susceptibility (ETS); then, the host
continuously evolves the novel NB-LRR protein(s) to specifically
recognize/sequester pathogen effector(s), inducing effector-
triggered immunity (ETI) (Jones and Dangl, 2006). R protein-
mediated ETI accelerates and amplifies immune responses,
leading to resistance against diseases, usually, a hypersensitive
cell death response (HR) at infection sites (Jones and Dangl,
2006). Certainly, ETI has two-branched responses: promotion of
the resistance-related gene expression and HR. Recent advances
confirmed that ETI also robustly boosted the expression of PTI-
involved genes; meanwhile, the sole activation of NLR-mediated
resistance in absence of PTI is insufficient to safeguard the host
against bacterial infections (Yuan et al., 2021). PTI can enhance
resistance from PTI. The PTI and ETI comprising the two-tiered
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plant immune system that monitors threats from pathogens are
not separable and collaboratively contribute to the reciprocal
enhancement of plant immunity (Ngou et al., 2021; Pruitt et al.,
2021; Yuan et al., 2021; Tian et al., 2021). HR as one canonical
type of PCD in plants is beneficial to the host likely by eliminating
the intracellular niche for proliferation of certain pathogens.
Furthermore, the resulting cellular debris coordinates a
systemic immune response to promote the resolution of
infection. As known, HR cannot represent the whole
resistance in plants. Reprogramming of immune genes
enforces resistance. The ADR1-EDS1-PAD4 module can be
polymerized with the complex formed by LRR-RP-SOBIR1
and PBL31 of the RLCK family to form a supramolecular
complex, which not only binds the inner leaflet of the plasma
membrane to mediate the response of PTI but ADR1 is
contributive to TNL-directed resistance signaling involved in
reprogrammed transcription of pathogenesis-responsive genes
(Pruitt et al., 2021) (Figure 3C).

Likewise, the Toll-like receptor (TLR) families in animals are
phylogenetically conserved mediators of innate immunity and are
responsible for microbial recognition on cellular surfaces. TLRs
consist of a large family with extracellular/ectodomain leucine-
rich repeats (LRRs) and a cytoplasmic Toll/interleukin (IL)-1
receptor (TIR) homology domain (Fitzgerald and Kagan, 2020).
TLRs occupy the plasma membranes and detect the
microbial conserved components present on the host cell
surface. TLRs sensitize peptidoglycan (TLR2), dsRNA (TLR3),
lipopolysaccharide (LPS) (TLR4), flagellin (TLR5), unmethylated
CpG DNAs (TLR9), and other PAMPs. In virtue of the unraveled
extracellular receptors for molecular patterns in plants, more
diverse motifs present in the extracellular space are used for
sensing various molecular patterns including MAMPs and/or
other stimuli. Moreover, the commonalities between receptors in
plants and animals are single-pass transmembrane proteins
which recruit cytosolic kinase(s) to activate phosphorylation-
cascading pathway(s) and induce the expression of stress-
related genes. In virtue of alien dsRNA or ssDNA being
conserved signatures, plant hosts should license PRRs to
perceive the immune signal, although the potent extracellular
dsDNA/RNA receptors located at the plant cell surface are yet
to be validated.

Upon recognition of PAMPs, the cytoplasmic TIR domains of
dimerized TLRs located at the plasma membrane recruit TIR-
containing TIRAP and Myd88 to assembly Myddosome
containing TRAF6, which functions to stimulate TBK1 to
drive IKK- and MAPK-dependent transcription and cytokine
releases (Fitzgerald and Kagan, 2020). On endosomes, TLR4 and
TLR3 are capable of engaging a SMOC called the triffosome.
TRIF is present in this complex. TRIF encompasses a pLxIS motif
that increases the TBK1-regulated gene expression and an RHIM
domain to promote RIPK3-mediated necroptosis (He et al., 2011)
(Figure 3D). Under certain conditions, the TLR3 and TLR4 pair
activates caspase-8 through the adaptor TRIF, but generally
TLR3/4 signaling does elicit apoptosis. Caspase-8 cleaves
N4BP1, which inhibits cytokine responses and suppression of
the LPS-stimulated gene expression (Gitlin et al., 2020)
(Figure 3D). Functionally, TLRs from animals may be

regarded as the counterpart of LRR-RLKs involved in PTI in
plants. The cytoplasmic NOD-like receptors (NLRs) monitored
the intracellular environment for an alternative sign upon
pathogen infection and then fulfill the assembly of
inflammasomes. In parallel, plants have evolved intracellular R
proteins to intercept the activities of effector proteins that are
delivered inside the host cell and activate defenses,
complementing the ETI, which resembles inflammasome-
mediated innate immunity in animals. Despite many
breakthroughs on the understandings of PTI and ETI from
plants and the proposed conceptual resistosome in parallel
with the inflammasome, the direct executioners of HR in
plants need to be further investigated and explored by the
state-of-the-art and maneuverable technology.

Outlook
Mammalian intrinsic apoptosis is marked by the mitochondrial
membrane rupture, which resulted from Bax/Bak
oligomerization in mitochondrial membranes. The
mitochondria branches within alphaproteobacteria. And, the
pore-forming domains of bacterial toxins such as colicins A1
and E1 and diphtheria toxin structurally are similar to
mitochondrial Bcl-2 (Kelekar and Thompson, 1998). Like
bacterial toxins, Bcl-2, Bcl-xL, and Bax can insert into
synthetic lipid vesicles and planar lipid bilayers and form ion-
conducting channels (Schendel et al., 1997). This suggested that
the Bcl-2 family responsible for mitochondrial “suicide” might
have ancestral origins from bacteria. Why PCD in host cells
requires that semi-parasitic mitochondria commit self-death in
advance? Apoptosomes sense oxidation–reduction potential to
activate major initiator caspase-9 for intrinsic apoptosis. Indeed,
pyroptosis is also concomitant with damaged mitochondria. The
elevated mitochondrial ROS promote gasdermin pore formation
for pyroptosis.

Similarly, the plant NLRs activate downstream immune
responses, which escalate the expression level of crucial
immune proteins, such as BIK1 and NADPH oxidase
RBOHD. A plethora of heme-containing RBOHD located in
the plasma membrane boost ROS burst (Yuan et al., 2021). R
protein-mediated HR coincides with the coexistence of Fe2+ and
ROS, which both being requisite for ferroptosis. As
aforementioned, NLRs (CC- and CCR-types) in plants possess
similar structural features of inflammatory NLRs and necroptotic
MLKL in animals. These appeared to be indicative of HR in plants
as PCD was featured by the chimeric/promiscuous combination
of pyroptotic, necroptotic, and ferroptotic forms. According to
the above descriptions and comparisons, the PRRs (such as LRR-
RK) and R proteins (TNLs and CNLs with LRR motifs) from
plants structurally and evolutionarily correspond to TLRs and
NLRs (both comprising LRR motifs) in animals. Evidently, the
common superhelical conformation of distinct LRR motifs is
selected to recognize the diverse molecular patterns derived from
pathogens or hosts in plants and animals. Second, ROS act as
common inducers for PCD in plants and animals. Third, the
serious damage/disruption of biomembranes (the plasma
membrane and/or mitochondria/plastid membrane) is essential
for PCD in plants and animals. Considering the extreme diversity
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of bacteriophage species and their tremendous amounts, bacteria
hosts exert utmost efforts on the development of immune arsenal
including caspase-like,TIR-like, cGAS-like, STING-like, and
lipase-like domains shared by prokaryotes and eukaryotes
(Figure 2B). Based on the subsequent discoveries of the
primordial signature of bacterial immune proteins orthologous
to counterparts in animals, there are grounds to believe that plants
have uncharacterized immune effectors which might contribute to
conserved PCDs and which might be evolved from the common
ancestors/progenitors shared by bacteria and animals.

Relative to the clear mechanistic insights into animal PCDs, in
plant PCDs there are many important unsettled problems: 1) the
final executioner of plant HR death upon infections; 2) the exact
substrates of cysteine proteases or other proteases involved in
PCD; 3) the role of the Ca2+ influx. 4) the definite signalings
conjugated with the second messengers; 5) the linkage of various
types of plant PCDs upon infections; 6) the necessary roles of
lipase-like activities in plant HR. Additionally, plant cells have
rigid cell walls surrounding the plasma membrane. The question
as to whether or not the cell death of plant cells required the

degradation of cell wall components such as cellulose,
hemicellulose, and pectin remains unknown. We should
recapitulate the cellular states including transcriptional and
translational profiles through single-cell multi-omic analyses.
Collectively, these embodies that the uniform but diversity in
all organism PCDs involved in immunity.
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