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Abstract

The rapidly spreading severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2)

Omicron variant contains more than 30 mutations that mediate escape from antibody

responses elicited by prior infection or current vaccines. Fortunately, T‐cell responses

are highly conserved in most individuals, but the impacts of mutations are not clear.

Here, we showed that the T‐cell responses of individuals who underwent booster

vaccination with CoronaVac were largely protective against the SARS‐CoV‐2 Omicron

spike protein. To specifically estimate the impact of Omicron mutations on vaccinated

participants, 16 peptides derived from the spike protein of the ancestral virus or

Omicron strain with mutations were used to stimulate peripheral blood mononuclear

cells (PBMCs) from the volunteers. Compared with the administration of two doses of

vaccine, booster vaccination substantially enhanced T‐cell activation in response to

both the ancestral and Omicron epitopes, although the enhancement was slightly

weakened by the Omicron mutations. Then, the peptides derived from these spike

proteins were used separately to stimulate PBMCs. Interestingly, compared with

the ancestral peptides, only the peptides with the G339D or N440K mutation were

detected to significantly destabilize the T‐cell response. Although more participants

need to be evaluated to confirm this conclusion, our study nonetheless estimates the

impacts of mutations on T‐cell responses to the SARS‐CoV‐2 Omicron variant.
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1 | INTRODUCTION

The emergence of the severe acute respiratory syndrome coronavirus 2

(SARS‐CoV‐2) variant of concern Omicron (B.1.1.529), which has more

than 30 mutations in the spike protein, has raised an alarm related to the

control of coronavirus disease 2019.1–5 Recent data have shown that

the induction of a neutralizing antibody response against the Omicron

variant by either vaccines or infection is drastically reduced,5–12 while

T‐cell responses are largely preserved.5,13–16 The T‐cell response to the

Omicron variant is based on dozens of peptide epitopes; several groups

have performed computational analyses and found that even for the

Omicron strain with more than 30 mutations, ~80% of the antigenic

peptides recognized by T cells are identical to those of original ancestral

strain.14,17–19 As most of the peptides in the overlapping peptide pools

previously used to stimulate immune cells are the same as those of

the ancestral strain, the impact of mutations on T cells might be

underestimated.13–16

There are three important reasons to interrogate whether the

mutant sites cause viral escape fromT cells. First, if some mutations lead

to epitope escape fromT cells, the observation that T‐cell responses are

largely preserved could be the result of the limited accumulation of

mutations. After enrichment with more mutations, new variants may

completely escape the immune system of vaccinated individuals. In this

case, vaccines focusing on the mutations of variants are needed. The

second reason is that if some mutations allow the virus to escape the

T‐cell response, a distinct proportion of individuals with certain Human

leukocyte antigen (HLA) types that tend to recognize viral peptides with

mutations may be more susceptible to the impact of the Omicron

variant. In fact, reduced T‐cell reactivity was recently reported in ~21%

of the participants.20 Third, identification of the mutations that can

reduce T‐cell responses induced by vaccines may provide clues to

estimate the spread and virulence of emerging Omicron variants, such

as the newly emerged variant Deltamicron.21 Thus, clarifying the effects

of Omicron mutations on the T‐cell response is important for both

addressing immunological questions and controlling the epidemic.

2 | MATERIALS AND METHODS

2.1 | Ethics statement

This study and some of the relevant experiments were approved by

the Beijing Youan Hospital Research Ethics Committee (No. 2021‐

031 and 2021‐079), and written informed consent was obtained from

each participant in accordance with the Declaration of Helsinki. The

clinical samples were collected for research use only. The methods

used conformed to approved guidelines and regulations.

2.2 | Study design

This study was a single‐center, open‐label, randomized controlled

clinical trial initiated at Beijing Youan Hospital, China, in April

2021, among health workers. Participants received two

doses of CoronaVac with a 28‐day interval approximately

6 months before the study and then voluntarily received a third

dose of the same vaccine (CoronaVac). Peripheral blood mono-

nuclear cells (PBMCs) were collected from 20 vaccinated

individuals (14 males and 6 females, 10 aged >40 years old

and 10 aged <40 years old) 6 months after the second vaccine

dose but before the third dose (week 0) and 2 (Week 2) and 4

weeks (Week 4) after the third (booster) dose of the inactivated

vaccine.

2.3 | Peptides and stimulations

Peptides spanning the SARS‐CoV‐2 spike protein sequences of

the ancestral strain and Omicron variant1,22–24 were synthesized

for use in antigen‐specific T‐cell assays. All peptides were reconstituted

in dimethyl sulfoxide at a concentration of 1mg/ml. Cells were

stimulated for approximately 24 h. For the experiment shown in

Figure 1A, all the peptides were used at a final concentration of

0.2 µg/ml each. For the work shown in Figure 1B–E, 16 peptides were

mixed and used at a final concentration of 10µg/ml each. For the work

shown in Figure 2, one peptide was used at a final concentration of

10µg/ml. Peptide sequence details are shown in Supporting Information:

Table S1.

2.4 | Ex vivo interferon‐γ enzyme‐linked
immunospot assays

Enzyme‐linked immunospot (ELISpot) assays were performed

with PBMCs collected after the administration of two or three

vaccine doses as previously described.22 The assays were

performed using Human IFN‐γ ELISpotPRO (ALP) plates

(Mabtech 3420‐2AST‐10) following the manufacturer's instruc-

tions. In brief, after five washes with phosphate‐buffered saline

(PBS) and blocking with cell culture medium for 30 min,

approximately 2 × 105 PBMCs were added to each well. After

an hour, mixed peptides or one peptide (Supporting Information:

Table S1) were added. PBS was added to the negative control

wells. The cells were incubated for 24 h at 37°C with 5% CO2. The

supernatants were carefully collected. The plates were then

washed four times with PBS, followed by the addition of an anti‐

IFN‐γ detection antibody (7‐B6‐ALP) in PBS containing 0.5% fetal

bovine serum (FBS) to each well. After a 2‐h incubation, the

plates were washed again and detected with BCIP/NBT‐plus,

which was included in the kit.

ELISpot plates were counted with an automated ELISpot counter

(AID) using the same suggested system settings for all plates. The

mean response of the unstimulated (negative control) wells was

subtracted. The results were corrected according to the number of

cells added and are expressed as a spot‐forming unit (SFU)/106

PBMCs.

LI ET AL. | 3999



2.5 | Activation‐induced marker assays

Freshly isolated PBMCs (1–2 × 106) were thawed quickly and

resuspended in 500 µl of Roswell Park Memorial Institute 1640

medium in 24‐well U‐bottom plates and supplemented with 40 U/ml

interleukin‐2 (IL‐2). The PBMCs were stimulated with each of the 16

peptides spanning the SARS‐CoV‐2 spike protein sequence of the

ancestral strain or Omicron variant at a concentration of 10 µg/ml.

After a 24‐h incubation at 37°C with 5% CO2, the cells were

collected by centrifugation (450g, 5 min).

Cells were stained with fluorophore‐labeled antibodies (APC anti‐

human CD14, 325608; BioLegend; APC anti‐human CD16, 302012;

BioLegend; APC anti‐human CD19, 302212; BioLegend; PE anti‐

human CD3, 300308; BioLegend; Brilliant Violet 421™ anti‐human

CD137, 309820; BioLegend; Brilliant Violet 605™ anti‐human CD69,

310938; BioLegend; APC/Cy7 anti‐human CD45RA, 304128, FITC

anti‐human CD45RO, 304242). In brief, cells were resuspended in PBS

with 2% FBS at a density of 1 × 107 cells/ml. The cells were blocked

with Human TruStain FcX™ for 10min and then incubated with

antibodies for 30min on ice in the dark. For every 100 μl of cell

solution, 5 μl of TruStain FcX™ or antibody was used. Activated cells

were sorted on a CytoFlex cytometer (Beckman).

2.6 | Multiplex cytokine profiling

The cytokine responses in the culture supernatants of PBMCs

stimulated as described above were measured. Supernatants were

subpackage and stored at −80°C until use. Cytokine responses were

analyzed using the LEGENDplex™ HU Th Cytokine Panel (12‐plex)

w/VbP V02 Kit according to the manufacturer's instructions.

Briefly, supernatants were mixed with beads coated with capture

antibodies specific for IL‐2, IL‐4, IL‐5, IL‐6, IL‐9, IL‐10, IL‐13, IFN‐γ,

tumor necrosis factor α (TNF‐α), IL‐17a, IL‐17F, or IL‐22 and then

incubated in a 96‐well V‐bottom plate with shaking at 650 rpm for

3 h. After centrifugation, the beads were washed and incubated with

F IGURE 1 Vaccine‐induced memory and T‐cell responses to the ancestral virus and Omicron variant. Each dot represents a single
participant. The notation Week 0 denotes the time 6 months after when the participants were vaccinated with the second dose but before
receiving the third booster dose. The notations Week 2 and Week 4 denote the length of time after the third booster dose in the same group of
participants (2 and 4 weeks, respectively). (A) Grouped scatter and box plot of the comparative IFN‐γ ELISpot spot‐forming units (SFUs) per 106

peripheral blood mononuclear cells (PBMCs) from individuals given two or three vaccine doses; the PBMCs were stimulated with peptides
spanning the spike protein of the ancestral virus (blue) or Omicron variant (red). (B,C) Grouped scatter and box plot of the fold changes in
activated T cells (CD69+CD137+) or activated memory T cells (CD69+CD137+CD45RO+CD45RA–) after stimulation of PBMCs with peptides
derived from the spike protein of the ancestral virus or Omicron variant with one or several mutations at three timepoints. Fold changes were
calculated relative to the average percentage of activated T cells stimulated by the ancestral peptides at theWeek 0 timepoint. (D,E) Comparison
of two groups of participants according to the age of 40. The horizontal lines and error bars represent the mean value ± 1.5 SE in (A–E); N = 15
for (A), N = 20 for (B,C), and N = 10 for (D,E). (B,C) Significance was analyzed by a paired parametric t‐test. Significance was analyzed by an
unpaired two‐sample parametric t‐test with Welch's correlation in (A,D,E). ELISpot, enzyme‐linked immunosorbent spot; IFN‐γ, interferon γ; NS,
not significant. ***p < 0.0005, **p < 0.01, *p < 0.05.
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biotinylated detection antibodies for 1.5 h, followed by a final

incubation with streptavidin‐PE for 45min without washing. All

incubation procedures were performed at 27°C. The beads were

analyzed by flow cytometry using a CytoFlex cytometer (Beckman).

Analysis was performed using the online analysis software LEGEN-

Dplex, which distinguishes between the 12 different analytes on the

basis of bead size and internal dye.

2.7 | Data analysis and statistics

Flow cytometry data were analyzed using CytExpert (2.3.0.84). ELISpot

plates were counted using an ELISpot Reader (AID) using the same

suggested system settings for all plates. The concentrations of cytokines

were analyzed with the online analysis software LEGENDplex. Statistical

analyses were performed using Prism version 6 (GraphPad). Significance

was analyzed by a paired parametric t‐test or an unpaired two‐sample

parametric t‐test with Welch's correlation.

3 | RESULTS

We collected PBMCs from 20 healthy vaccinated individuals

(14 males and 6 females, 10 aged >40 years old and 10 aged <40

years old) 6 months after their second vaccine dose but before

the third dose (Week 0) and 2 (Week 2) and 4 weeks (Week 4)

after the third (booster) dose of the inactivated CoronaVac

vaccine. To briefly assess the total (CD4+ and CD8+) effector

T‐cell response, we performed an ELISpot assay to detect IFN‐γ‐

secreting cells following stimulation with pooled peptides

F IGURE 2 Impacts of mutations on T‐cell responses. Each dot represents a single participant. The meanings of Week 0 and Week 4 are
described in the legend of Figure 1. (A) Grouped scatter and box plot of the comparative IFN‐γ SFUs per 106 PBMCs from individuals given two
or three vaccine doses; the PBMCs were stimulated with one peptide derived from the spike protein of the ancestral virus (blue) or Omicron
variant (red) with one or several mutations. The mutated site in each peptide is shown below the figure. (B, C) Concentrations of IL‐6 and TNF‐α
in the supernatant of PBMCs stimulated with G339D or N440K mutant peptides at two timepoints (Week 0 and Week 4). The horizontal lines
and error bars represent the mean values ± 1.5 SE in (A) and mean values ± SE in (B,C); N = 14–16. Significance was analyzed by a paired
parametric t‐test. IFN‐γ, interferon γ; IL‐6, interleukin‐6; NS, not significant; PBMC, peripheral blood mononuclear cell; SFU, spot‐forming
unit; TNF‐α, tumor necrosis factor α. **p < 0.01, *p < 0.05.
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(Supporting Information: Table S1) spanning the full length of the

wild‐type or Omicron spike protein. Consistent with previous

reports,13–16 the T‐cell responses in vaccinated participants could

cross‐recognize the SARS‐CoV‐2 Omicron spike protein, and the

responses were enhanced by the booster dose. The number of

SFUs significantly increased from Week 0 to Week 4 in both the

ancestral strain peptide (p = 0.0038)‐ and Omicron peptide

(p = 0.0448)‐stimulated groups, while no significant differences

were detected by intragroup comparison at either of the two

timepoints (Figure 1A).

To specifically estimate the impact of the Omicron mutations on

vaccinated participants, cells were stimulated in parallel with 16

peptides derived from the spike protein of the ancestral strain and 16

peptides derived from that of the Omicron variant with the same

sequence but also including one or several mutations (Supporting

Information: Table S1). Activation‐induced marker (AIM) assays were

used to evaluate spike‐specific T‐cell responses via the evaluation of

the upregulation of CD69 and CD137 (4‐1BB).25 For activated T

cells (CD69+CD137+), the percentage of memory cells (CD45RO+C-

D45RA‐) was further analyzed. The fold change was calculated

relative to the average percentage of activated T cells stimulated by

ancestral peptides at the Week 0 timepoint.

The overall magnitude of the SARS‐CoV‐2 spike‐specific T‐cell

response showed an increase after the third vaccine dose (Figure 1B),

while no significant differences were detected by intragroup

comparisons at the Week 0 and Week 2 timepoints. Four weeks

after the third vaccine dose, the percentage of activated T cells in

stimulated PBMCs was significantly greater than that in the same

participants measured before receiving the booster dose, as analyzed

by a paired t‐test. The results were consistent between the ancestral

strain peptide (p = 0.0008)‐ and Omicron peptide (p = 0.0106)‐

stimulated groups (Figure 1B). At the Week 4 timepoint following

booster dose administration, the percentage of activated cells

stimulated by the peptides was significantly reduced by the Omicron

mutations (p = 0.0015, paired t‐test). Changes in the percentage of

activated memory T cells were seldom observed. No significant

differences in the percentages of activated memory T cells were

detected through intergroup comparisons of SARS‐CoV‐2 spike‐

specific T‐cell responses at different timepoints. During Week 0 and

Week 2, the percentage of activated memory T cells was not

significantly different between the Omicron‐ and ancestral strain

peptide‐stimulated groups (Figure 1C). Nevertheless, at the Week 4

timepoint, a statistically significant decrease was measured in the

Omicron‐stimulated group compared with the ancestral strain

peptide‐stimulated group (p = 0.0356, paired t‐test). When we

divided the participants by the age of 40 and compared the groups,

the differences for both activated T cells and activated memory T

cells remained nonsignificant (Figure 1D,E). Overall, the frequency of

AIM+ spike‐specific T cells was clearly enhanced for both the

Omicron and ancestral strains after the third vaccine dose, but the

Omicron mutations did weaken this enhancement.

To further investigate which mutation in the Omicron spike

protein evades the T‐cell response to SARS‐CoV‐2 epitopes, eight

peptides with 17 mutations were used to separately stimulate

PBMCs collected at Week 0 andWeek 4. Based on sample availability,

PBMCs from 14 or 16 participants were used in the ELISpot assay to

detect IFN‐γ‐secreting cells (Figure 2A). Interestingly, compared with

the ancestral peptides, only the peptides with the G339D or N440K

mutation were found to significantly change the number of IFN‐γ

SFUs (Figure 2A). The finding that most mutations did not change

T‐cell reactivity was consistent with the calculation that HLA binding

was well conserved for the majority of the epitopes with mutations.14

Surprisingly, even for the peptides with three or five mutations, no

significant difference in the number of SFUs was observed by paired

comparison with the ancestral peptides. Notably, the number of SFUs

stimulated by only a single peptide was very small, generally less than

100 per 106 PBMCs. T‐cell responses to a single type of peptide

are quite weak in most individuals, which may be the reason that

significant differences were seldom detected. The small number

of SFUs was suspected to be a consequence of HLA restriction.

Interestingly, the G339D mutation increased the number of SFUs,

while the N440K mutation decreased this number (Figure 2A).

To further assess the impacts of the G339D and N440K mutations

on T‐cell responses, cytokines in the supernatants of the wells assessed

in the ELISpot assay were detected. From Week 0 to Week 4, the

concentrations of IL‐6 (p = 0.0435 for G339D, p = 0.0428 for N440K,

Figure 2B) and TNF‐α (p = 0.0297 for G339D, p = 0.0135 for N440K,

Figure 2C) significantly increased in the ancestral peptide‐stimulated

groups, which again indicated the enhancement in the T‐cell response

induced by the booster vaccination. At the Week 4 timepoint, by paired

comparison, both the G339D and N440K mutations significantly

reduced the concentrations of IL‐6 (p = 0.033 for G339D, p = 0.041

for N440K, Figure 2B) and TNF‐α (p = 0.0109 for G339D, p = 0.0079

for N440K, Figure 2C). No statistically significant differences were

detected by comparing the IL‐6 and TNF‐α concentrations stimulated

by the Omicron peptides at theWeek 0 andWeek 4 timepoints. Overall,

the G339D and N440K mutations in the spike protein of the Omicron

variant destabilize T‐cell responses.

4 | DISCUSSION

Encouragingly, as the vast majority of T cell epitopes are fully

conserved, ancestral SARS‐CoV‐2‐specific T cells are expected to

cross‐recognize the Omicron variant, which has been shown by our

data and several recent works.13–16 Previous studies reported that a

third vaccine dose showed a satisfactory safety profile and induced a

stronger immune response to SARS‐CoV‐2 and variants of con-

cern.26–29 Our study provides further evidence that after two doses

of an inactivated vaccine, a third booster vaccination substantially

enhanced T‐cell responses to the spike proteins of both the ancestral

strain and the Omicron variant, although the enhancement was

slightly weakened by Omicron mutations, especially G339D and

N440K.

The prevalence of the mutation G339D is the highest among

those mutations in the receptor‐binding domain region, which is
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96.6% with a χ2 test value of 0.115.30 The single mutations G339D

and N440K allow escape from a subset of neutralizing antibodies,7

which indicates that G339D and N440K may also change the binding

affinity between T‐cell epitopes and the major histocompatibility

complex and consequently increase the transmissibility and infectiv-

ity of the Omicron variant. We computationally assessed the

predicted binding affinity of ancestral and Omicron peptides used

in ELISpot assays for 12 Chinese common HLA alleles31 using

NetMHCIIpan‐4.0.32 The predicted binding affinity and ELISpot

results were not consistent. More powerful tools, such as cryo‐

electron microscopy‐based structure analysis, may be needed to

further understand the impacts of mutations on the binding affinity

of T cell epitopes.

Our research focused on Chinese individuals vaccinated with

CoronaVac. As T‐cell responses are HLA restricted, the effects of

booster vaccination and mutations in the spike protein need to be

further investigated in people from different countries treated with

different vaccine formulations. To elaborate on the effects of

mutations on T‐cell responses, further investigation of the phenotype

and function of responding cells should also be performed. Moreover,

additional assays, such as single‐cell sequencing, intracellular cyto-

kine staining following peptide stimulation, and multimer staining,

could be performed to understand SARS‐CoV‐2‐specific immune

responses.33
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