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Rates and drivers of aboveground carbon
accumulation in global monoculture plantation
forests
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Restoring forest cover is a key action for mitigating climate change. Although monoculture

plantations dominate existing commitments to restore forest cover, we lack a synthetic view

of how carbon accumulates in these systems. Here, we assemble a global database of 4756

field-plot measurements from monoculture plantations across all forested continents. With

these data, we model carbon accumulation in aboveground live tree biomass and examine the

biological, environmental, and human drivers that influence this growth. Our results identify

four-fold variation in carbon accumulation rates across tree genera, plant functional types,

and biomes, as well as the key mediators (e.g., genus of tree, endemism of species, prior land

use) of variation in these rates. Our nonlinear growth models advance our understanding of

carbon accumulation in forests relative to mean annual rates, particularly during the next few

decades that are critical for mitigating climate change.
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A ll pathways to limiting global warming to 1.5 °C by 2100
involve substantial removals of atmospheric CO2, high-
lighting the importance of enhancing carbon capture and

storage by forests1. Although a range of options exist for suc-
cessfully restoring forest cover to landscapes, actors across the
public, private and non-profit sectors have commonly interpreted
this as a need to plant trees2,3. For example, two thirds of high-
level commitments for tropical forest restoration involve planting
and almost half involve the establishment of monoculture
plantations4. Despite plantations’ dominance as a forest restora-
tion strategy, we lack a robust understanding of how much car-
bon can be captured within monoculture plantations.

Tree planting is controversial because it can negatively impact
ecosystems when poorly implemented5. In native grasslands, for
example, planting trees can reduce endemic biodiversity richness
and negatively impact grassland ecosystem functioning6. Else-
where, plantations—especially exotic monocultures—may have
limited or adverse biodiversity impacts depending on the species
planted and the prior land cover type7,8. However, tree planting
can be an effective action to mitigate climate change by seques-
tering atmospheric carbon when done appropriately9 and
monoculture plantations may also be the most viable option to
restore forest cover in areas where economic returns are para-
mount. Further, we need rapid and near-term removals of
atmospheric carbon to minimize near-term climate change and
plantation forests may sequester carbon slightly more rapidly
than naturally regenerating forests, particularly during early
phases of establishment1,10.

Plantation forestry is a well-established practice for growing
trees that has existed for centuries5. Plantation forest managers
have adopted practices from the agricultural sector as well as
developed silvicultural methods to improve the growth, form, and
yields of trees11–13. As such, plantation managers face myriad
decisions in the establishment and management of plantations14.
Not only are managers tasked with locating plantation forests, but
they must also make decisions on what species to plant as well as
how to manage the trees over short and long-term timeframes. At
local scales with relatively constrained conditions (e.g., Pinus
taeda plantations in the southern United States), these decisions

are well understood. However, there is widespread desire to invest
internationally in forests for their climate benefits and the con-
sequences of management decisions on climate outcomes at
global scales are poorly understood15. Specifically, we lack even a
systematic understanding of the magnitude and rate of carbon
accumulation in monoculture plantations, and how that varies by
drivers such as species, location, or management type.

Here, we systematically reviewed the literature and extracted,
from 424 publications, empirical measurements of carbon in
aboveground biomass of monoculture plantations. We then
analyzed a suite of potential biological, environmental, and
human drivers that may explain variation in aboveground carbon
accumulation, parameterized growth functions to predict carbon
stocks as a function of time, and derived default carbon accu-
mulation rates. Assessing the full climate mitigation potential of
plantations requires accounting for the fate of carbon stored in
biomass. Although many plantations produce long-lived har-
vested wood products that can stock large quantities of carbon in
the built environment, others produce short-lived harvested wood
products (e.g., paper) with limited potential for climate change
mitigation. Accurately accounting for the climate impacts of
harvested wood products requires context-dependent information
that is not yet available for global studies such as ours. Our
objective was therefore to improve understanding of a funda-
mental building block—the rates and drivers of carbon accu-
mulation in monoculture plantation forests—for assessing the
climate mitigation potential of these systems. In doing so, our
findings facilitate improved understanding of the important and
controversial4 role that monoculture plantations, a dominant
global reforestation strategy, may play in mitigating climate
change.

Results & discussion
Database representativeness of global monoculture planta-
tions. Our database includes 4756 measurements of carbon in
aboveground live tree biomass in monoculture plantations, col-
lected from 829 distinct sites across the globe (Fig. 1). These sites
were primarily in Asia (59%), Europe (16%), North America
(15%), and South America (4%), with the remainder located in

Fig. 1 Distribution of sites within the database. We identified a total of 4756 observations of aboveground biomass in plantations, spread across
829 sites. Forested biomes are displayed in light green whereas grassland, savannas, and shrubland biomes are displayed in pale yellow. We distinguish
forested and savanna biomes separately since trees in savannas can have strongly negative consequences.
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Oceania and Africa (~5%). The dataset included 240 species from
96 distinct genera of tree; however, 33 genera were poorly
represented (n < 3). Across all observations, mean stand age was
21.3 years (median of 18 years, range of 1–98 years) and mean
aboveground carbon stock was 47.0 MgCha−1 (median of 36.4
Mg Cha−1, range of 1.0–284.6 MgCha−1).

The typology and spatial distribution of global plantation
forests are poorly characterized due to (a) proprietary holdings of
plantation forest data, and (b) difficulties in differentiating
planted from natural forests. However, the 2020 Global Forest
Resources Assessment (GFRA) of the United Nations Food and
Agriculture Organization (FAO)16 suggest that China (84.7 Mha;
29%), the USA (27.5 Mha; 9%), Russia (18.8 Mha; 6%), Canada
(18.2 Mha; 6%), Sweden (13.9 Mha; 5%) and India (13.2 Mha;
5%) hold the largest extents of global planted forests. Data from
these countries were represented well within our database, with
observations primarily within China (32%), the USA (12%),
Russia (11%), Canada (2%), Sweden (1%), and India (3%). Data
from Brazil (4%), the United Kingdom (5%), and Japan (5%) also
accounted for significant portions of our database.

Our database captures the genera of tree crop species that
dominate plantations globally. Comprehensive data on plantation
species by location and percent of global plantation forests is
difficult to obtain, but 2006 FAO data suggest that Pinus,
Cunninghamia, Eucalyptus, Populus, Acacia, Larix, Picea, Tec-
tona, Castanea and Quercus species account for approximately
70% of global planted area17. These same ten genera accounted
for 81% of our observations and we parameterized nonlinear
growth functions for seven of these genera with greater than 100
observations in our database.

Drivers of aboveground carbon accumulation rates. To explain
variation in biomass accumulation, we tested major biological
(genus, endemism, and plant traits), human (prior land use and
management practices), and environmental (biome) drivers that
may control growth (Supplementary Table 1). Almost all drivers
explained significant variation in aboveground carbon accumu-
lation rates (Table 1). The effects of individual genera on growth
were highly variable, with an almost three-fold difference between

the slowest growing (Robinia, t=−3.43, P= < 0.001) and fastest
growing (Eucalyptus, t= 3.09, P= < 0.001) genus. Note that
although Robinia is often considered a fast-growing species18, our
Robinia observations derived from dryland forest areas of China.
Aboveground carbon accumulation rates were 127% higher in
plantations with exotic rather than endemic species (t= 7.26,
P= < 0.001). Of the five plant traits tested (leaf type, leaf com-
poundness, leaf phenology, nitrogen fixation capacity, and wood
density), leaf type, nitrogen fixation capacity, and wood density
all significantly explained variation in carbon accumulation rates.
Prior land use significantly affected the rate of aboveground
carbon accumulation, with rates on formerly harvested land
(t=−3.95, P= < 0.001) and pasture (t=−4.16, P= < 0.001)
roughly 75 and 66% of rates on former croplands, respectively.
Fertilizer use resulted in a relatively minor increase (4%) in the
rate of aboveground carbon accumulation (t= 1.0, P= 0.3)
relative to unfertilized stands, whereas thinning decreased the rate
of carbon accumulation by 24% (t=−8.11, P= < 0.001). Finally,
the effect of individual biomes on carbon accumulation was
variable but ranged less than two-fold.

Next, to examine the relative importance of the drivers, we ran
three “full models” on subsets of the data. Data on management
practices were highly limiting, so we ran models with and without
subsets of management practices. These models identified stand
age, genus, prior land use, and ordinated plant trait data as
statistically significant effects across all three models (Table 2).
Ordinating the plant trait data produced two axes that explained
approximately 53% of the trait data variance. The first axis
primarily accounted for the leaf type, leaf phenology, and
nitrogen fixation data, whereas the second axis primarily
represented the wood density data (Table 2 and Supplementary
Fig. 4). For the model that excluded management practices (Full
Model 1, Table 2), we identified large positive effects for planting
of exotic tree species as well as for most of the biomes (relative to
boreal conifer forests). Conversely, we found strong negative
effects on the rate of carbon accumulation for the coniferous
genera (e.g., Picea and Cryptomeria relative to Acacia) as well as
prior land uses/disturbances of fire, harvest, and pasture (relative
to cropland). Unexpectedly, we found a non-significant effect for

Table 1 Results of linear mixed effects regression analysis of potential drivers on aboveground carbon accumulation in
plantations.

Variable Model Form No. Obs. Significance of Effect (F-values)

Driver Interaction

Genus AGC ~ Stand Age a Genus 4349 13.7c 18.4c

Endemism AGC ~ Stand Age a Endemism 4705 0.3 52.8c

Plant Traits
Leaf Type AGC ~ Stand Age a Leaf Type 4753 17.2c 0.8
Leaf Compoundness AGC ~ Stand Age a Leaf Compoundness 4753 3.5 2.7
Leaf Phenology AGC ~ Stand Age a Leaf Phenology 4753 2.2 0.6
Nitrogen Fixation AGC ~ Stand Age a Nitrogen Fixation 4753 9.1b 0.1
Wood Density AGC ~ Stand Age a Wood Density 4713 1.3 4.4a

Prior Land Use AGC ~ Stand Age a Prior Land Use 1615 13.3c 10.0c

Management
Planting Density AGC ~ Stand Age a Planting Density 1298 9.0b 8.4b

Fertilizer AGC ~ Stand Age a Fertilized 977 5.7b 1.0
Irrigation AGC ~ Stand Age a Irrigation 329 0.7 2.9
Weeding AGC ~ Stand Age a Weeding 703 2.6 2.5
Thinning AGC ~ Stand Age a Thinning 895 21.5c 65.8c

Biome AGC ~ Stand Age a Biome 4696 12.0c 14.2c

aIndicates significance at the 0.05 level,
bindicates significance at the 0.01 level, and
cindicates significance at the 0.001 level.
Aboveground carbon (AGC) and stand age are square root transformed in all models. Significance was determined using two-sided F-tests with Satterthwaite approximations of degrees of freedom.
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planting density in Full Model 2 (Table 2). We hypothesize that
the effect of planting density may be masked due to size-density
trade-offs, particularly for monoculture plantations in which
stocking is likely to be optimized for maximal production
(see Supplementary Discussion). Finally, for the model including
the use of fertilizer (Full Model 3, Table 2), we found a significant
positive effect of fertilizer use on growth (t= 3.3, P= 0.001). The
individual effect of planting exotic species was not significant in
this model (t= 0.4, P= 0.4), whereas planting exotics had a
strong positive effect on rate of carbon accumulation in the other
two models.

Nonlinear growth functions. We modeled aboveground carbon
accumulation using the Chapman-Richards growth function,
which is widely used and provides biologically meaningful growth
parameters19–21. Prior to fitting the function, we aggregated data
by plant functional type (e.g., tropical broadleaf species) and
genus. Relationships between aboveground carbon and stand age
varied across plant functional types and genera (Figs. 2–5). Of the
four plant functional types considered, tropical broadleaf forests
had the fastest growth rate (k= 0.24), which was roughly 2.5
times that of the next fastest growing plant functional type
(temperate broadleaf forests) (Fig. 2, 3). Compared to growth
rates, asymptotic growth limits varied less and ranged from 73.9
(boreal needleleaf) to 121.0 (tropical needleleaf) MgCha−1.
Growth rates across the nine genera of tree differed even more
than across plant functional types, with the fastest rate (Acacia,
k= 0.33) roughly 9-fold greater than the slowest rate (Picea,
k= 0.04) (Fig. 2, 3). Broadleaved genera commonly grown on
short rotations (Acacia, Eucalyptus, and Populus) had rapid
growth rates, roughly three times those of the coniferous genera
(Fig. 2, 4). Lastly, Picea had the highest asymptotic aboveground
carbon, which was three times that of Acacia, the genera with the
lowest asymptotic aboveground carbon.

The results of the model validation procedure suggest large
scatter in the data that is not fully captured by growth functions
based solely on age. Normalized RMSE values ranged from 0.74
(Acacia) to 2.58 (Picea), suggesting that model uncertainty ranged
from roughly 74% in the best case to 258% of mean aboveground
carbon in the worst case. Despite the high uncertainty, the
Chapman-Richards growth function is biologically appropriate
and is an improvement over commonly used linear growth rates,
which do not reflect how forests develop with time, and
logarithmic growth functions, which often start with biologically
impossible negative intercepts.

Annualized aboveground carbon accumulation rates. Although
the Chapman-Richards function best captures stand development
through time, practitioner and policy audiences frequently employ
annual linear rates to inform reforestation planning. We therefore
derived annualized aboveground carbon accumulation rates,
which varied by genus of tree, plant functional type, and biome
(Fig. 6). Broadleaved tropical genera (Eucalyptus and Acacia)
had the highest accumulation rates (7.78 ± 0.20MgCha−1yr−1 for
Eucalyptus) and drove the high mean growth rates for the tropical
broadleaf plant functional type and the tropical biomes (Fig. 6a).
All four coniferous genera had roughly similar carbon accumu-
lation rates, with the highest mean rate found for Cryptomeria
(2.76 ± 0.17MgCha−1yr−1). Across plant functional types, differ-
ences in aboveground carbon accumulation rates were less pro-
nounced with the exception of tropical broadleaf plantations
having the highest rate (6.25 ± 0.17MgCha−1yr−1; Fig. 6b).
Plantations in tropical & subtropical grasslands, savannas, &
shrublands had growth rates (8.18 ± 0.43MgCha−1 yr−1) roughly
four times those of the slowest growing biome (temperate con-
iferous forests; 1.62 ± 0.14MgCha−1yr−1) (Fig. 6c).

Comparing our accumulation rates against those of naturally
regenerating forests helps situate our findings but should be done
with the understanding that planted and naturally regenerating
forests are functionally different systems and carbon accumula-
tion rates are only one metric of comparison10. Requena-Suarez
and colleagues22 estimate carbon accumulation rates in younger
(<20 years) naturally regenerating secondary forests of approxi-
mately 1.1–3.6 MgCha−1yr−1. Similarly, Cook-Patton and col-
leagues found annualized mean aboveground carbon
accumulation rates to range from 0.1–6.0 Mg Cha−1yr−1 for
natural regeneration23. Using the same age classes and spatial
aggregations (i.e., the FAO Ecozones), we determined a range of
0.9–8.2 MgCha−1yr−1 for aboveground carbon accumulation in
young plantations. While the lower rates are similar, the high end
of the accumulation rates in plantation forests is roughly 1.4–2.3
times greater than those of naturally regenerating forests.

The IPCC also reports mean annual carbon accumulation rates
for plantations in Table 4.10 of the 2019 Refinement to the 2006
IPCC Guidelines for National Greenhouse Gas Inventories24.
However, data are limited (n= 86) and reported for only three
genera: Eucalyptus (n= 22; range: 1.4–11.8 MgCha−1yr−1), Pinus
(n= 17; range: 1.2–9.4 MgCha−1yr−1), and Tectona (n= 7;
range: 0.9–7.1 MgCha−1yr−1). Our carbon accumulation esti-
mates for these three genera align well with the IPCC data, and
our database greatly expands (by a factor of ~60) the scope and

Table 2 Results of comparative models across drivers.

Driver Full Model 1 (n= 1406) Full Model 2 (n= 1,096) Full Model 3 (n= 640)

Num. DF F-Value Num. DF F-Value Num. DF F-Value

Stand age 1 1760.9c 1 1493.0c 1 650.3c

Genus 9 7.8c 9 8.3c 9 6.7c

Endemism 2 3.1a 2 3.3a 1 0.2
Prior land use 3 8.8c 3 24.3c 3 18.1c

Biome 10 2.2a 9 1.2 9 3.1b

Leaf type, phenology, & N Fixation 1 21.7c 1 20.3c 1 7.3b

Wood density 1 0.8 1 1.2 1 5.7a

Planting density – – 1 0.2 – –
Use of fertilizer – – – – 1 10.8b

aIndicates significance at the 0.05 level,
bindicates significance at the 0.01 level, and
cindicates significance at the 0.001 level.
Full Models 1–3 testing the relative effects across different types of potential drivers. Significance was determined using two-sided F-tests with Satterthwaite approximations of degrees of freedom. For
each model, square root transformed aboveground carbon is modeled as a linear combination of the listed drivers with site ID included as a random intercept. Stand age was square root transformed to
linearize its relationship with aboveground carbon.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31380-7

4 NATURE COMMUNICATIONS |         (2022) 13:4206 | https://doi.org/10.1038/s41467-022-31380-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


breadth of carbon accumulation observations in global mono-
culture plantations.

Key predictors of above carbon accumulation. Genus, prior
land use, and plant traits explained variation in aboveground
carbon accumulation rates. The significance of genus and plant
traits suggests that biological drivers primarily explain variation
in plantation carbon accumulation at global scales. However,
species choice can also be considered a key management decision
(i.e., a human factor). Endemism of tree species, another
decision-point in species selection, was found to be highly sig-
nificant until we accounted for fertilizer use. This suggests that if
nutrient limitations within plantations are lifted, endemic species
may perform as well as exotic species; however, additional work is
needed on this topic.

Prior land use, which may be a proxy for site productivity, was
also a significant predictor of carbon accumulation. Plantations
established on former croplands had higher carbon accumulation
rates relative to former pastures, clear-cuts (of both prior
rotations and native vegetation), or areas that had burned. This
finding parallels the results of others, which show secondary
forest growth to be higher on former croplands than pasture, and
negative growth effects associated with frequency of fire25. While
our data do not elucidate a mechanism for this result,
hypothesized factors may include soil fertility and/or competition
from native vegetation. Our findings further indicate that
monoculture plantations established on former crop or pasture
lands may accumulate carbon faster than areas that were formerly
forested but clear-cut. This finding has key implications for siting

of future plantations, suggesting that clear-cutting of intact forests
will not only adversely impact biodiversity, but may also result in
lower growth rates than establishing plantations on former
croplands or pastures.

Although our results suggest that management practices are
important for explaining variation in growth, data limitations
constrained our ability to examine the relative effects of
management practices. Our interpretation is that while manage-
ment practices are important for understanding variation in
carbon accumulation in plantations, they are difficult to general-
ize and may therefore have limited utility in predicting carbon
accumulation across broad scales.

Nonlinear accumulation of aboveground carbon in plantation
forests. Our use of nonlinear growth functions provided biolo-
gically meaningful understanding of aboveground carbon accu-
mulation in monoculture plantations. For example, we estimated
rapid carbon accumulation rates for genera commonly grown on
short rotations for pulpwood (e.g., Eucalyptus, Acacia, Populus)
versus slower carbon accumulation rates for coniferous species
that are commonly grown for timber (e.g., Picea, Cunninghamia,
Pseudotsuga). Although this is an expected result, our para-
meterized growth functions are valuable for multiple reasons
(Supplementary Tables 2, 3). First, they are significant improve-
ments over annualized mean aboveground carbon accumulation
rates, which do not account for how carbon accumulation varies
with time. This distinction is critical for accurately assessing time-
dependent carbon accumulation within the forest sector. For
example, the delayed carbon accumulation rates that occur during

Fig. 2 Variation in aboveground carbon accumulation across global monoculture plantations. Variation in growth rates (a, b) and asymptotic growth
limits (c, d) of global timber and wood fiber plantations. The locations of timber and wood fiber plantations are taken from the Spatial Database of Planted
Trees63. Genus level growth rates and limits are shown preferentially over those for plant functional type. Plantations with unknown species or plant
functional type composition are colored dark grey. Countries in light grey did not have information on spatial location of plantations due to a lack of data
collection or the absence of plantations. The points in b and d are the estimated model parameter values, and the standard errors of the model parameters
are shown as error bars. The number of observations associated with the model parameters and standard errors vary by plant functional type and genus
and are given in Figs. 2 and 3.
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stand initiation (e.g., ~5 years) represent half of the time window
under which many public and private-sector programs have
committed to reduce emissions (e.g., by 2030). Assumption of
immediate and sustained rates of carbon accumulation within
forestry projects may systematically overestimate climate benefits
at decadal scales.

Second, plantation forestry is an attractive mitigation strategy
for climate change given the economic benefits that can accrue to
landowners, which may help incentivize restoration of forest
cover26. Accounting for temporal variation in growth is
important for accurately modeling economic returns from
plantation forests. For example, forest management decision-
making such as identifying optimal rotation lengths (including
for joint management of timber and carbon) employs nonlinear
modeling of stand growth27. Although a range of growth models
exist (e.g., see the FORMODELs database), they tend to be
developed for site to regional level scales. Our dataset and growth
functions complement these models by providing an open-source
and freely available framework for modeling carbon

accumulation in the dominant monoculture plantation types
seen across the globe.

Caveats and potential limitations. Several important caveats and
limitations to our analyses exist, which we discuss here to facil-
itate appropriate use of our results. First, we lack clear under-
standing of the global distribution and type of monoculture
plantations, making it challenging to assess whether our dataset
represents the full range of variation in carbon accumulation seen
across the globe. However, comparing our dataset to the most
comprehensive overview of monocultures (i.e., the 2020 Global
Forest Resources Assessment) suggests that most of our data are
from those countries and regions that dominate global plantation
forestry. Furthermore, grouping the data by biome, genus, and
age class and examining the number of observations per site
shows balance within the dataset (mean number of observations
per site= 2, median= 1, max= 15, or less than 0.5% of all data;
see Supplementary Information). To the best of our knowledge,
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our dataset is the most comprehensive compilation of carbon
accumulation in monoculture plantations in the public domain.

Our asymptotic growth limit estimates (particularly the A
parameter) should be interpreted with caution. The data we
compiled are primarily from plantations managed on economic-
ally driven rotation ages and do not represent the maximum
carbon stocks that could be achieved if these plantations were left
to grow in perpetuity. Rather, the asymptotic values we present
are fixed effects estimates for the population-level mean above-
ground carbon stocks across all sites. Differences in site class are
captured within our random effects estimates. For example, when
accounting for these site level effects, the maximum predicted
aboveground carbon value of our Pinus model was 164
MgAGCha−1, roughly double that of our population level Pinus

asymptote (see Supplementary Information). However, these
random effects cannot be estimated for sites in which we have no
training data, and fixed effects estimates of the population-level
parameters are most appropriate for approximating aboveground
carbon accumulation at new sites. Further, the potential risks of
biased asymptotic growth limits can be mitigated by restricting
use of our parameters to near decadal scales (e.g., ~ 20–30 years).
Thus, our growth parameters are perhaps most relevant for the
next few climate-critical decades.

The Chapman-Richards growth function is one of many within
the literature and our parameter estimates may be sensitive to the
selection of this function. A key criticism of the Chapman-
Richards function is instability in the model parameters19.
However, others have examined the risk of parameter instability
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Fig. 4 Growth functions by genus. Parameterized Chapman-Richards growth functions, with the shaded areas around curves denoting 95% confidence
interval of predictions based on fixed effects only. The grey curves (for visual comparison of species level trends) are logarithmic relationships between
stand age and aboveground carbon for individual species with greater than 40 observations in the database.
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when applying Chapman-Richards growth functions to aggre-
gated datasets and have shown that, for the relatively constrained
system of even-aged monoculture plantations, the Chapman-
Richards growth function performs well28. Rather, parameter
instability in the asymptotic growth limit estimate is a greater
issue for multi-species and multi-aged natural forests, as well as
using the parameterized functions to model growth beyond the
age range of the data. Further, others have concluded that the
biological basis of growth functions have been overstated and
users should focus instead on plausible growth functions that best
meet their needs, as well as parameter estimation strategies29.
Here, we elected to use a theoretical growth function that is
among the most widely used within forestry and empirically
derived parameter estimates using a global dataset. By making our
dataset publicly available, we anticipate that others will investigate

the effects of alternative functional forms on the parameter
estimates.

Lastly, we did not incorporate changes in belowground
biomass and soil organic carbon into our analyses, but discussion
of carbon flows to and from these pools is warranted. For
belowground biomass, we excluded this pool given little data and
constraints associated with synthesizing across studies with highly
variable sampling protocols30. Instead, we recommend using
root:shoot ratios, which are available for particular forest types
and regions31, as well as through spatially explicit maps at global
scales32. These ratios allow carbon stocks in belowground
biomass to be modeled as a function of the aboveground carbon
values obtained from our models. Soil organic carbon, often the
largest carbon pool in forested ecosystems, is impacted by forest
management practices in varied ways33. Generally speaking, only
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the forest floor and the upper soil horizons (e.g., O and A
horizons) are expected to be impacted, with recent reviews
estimating that <10% of total soil organic carbon stocks might be
impacted33. The magnitude of impact will depend upon the type
and intensity of management practice (in particular, harvesting
and site preparation), with more intense soil disturbance inducing
greater soil losses.

Future assessments of the climate change mitigation potential
of monoculture plantations would do well to incorporate these
belowground carbon pools. Moreover, additional empirical data is
needed to improve the representativeness and balance of the
dataset we have compiled here. Specifically, we recommend that
future studies focus on i) notably data-poor regions (e.g., Africa),
ii) repeatedly measured plots, iii) better data sharing, and iv)
standardized metrics (e.g., age, biomass, site index) to facilitate
synthetic understand of carbon accumulation in plantations34. In
doing so, we can improve our understanding of how carbon
accumulates in plantation forests across the globe and facilitate
assessments of the full climate impacts of plantation forests
(including both short-lived and long-lived harvested wood
products). Lastly, although we did not directly account for
mortality here, it will be important to consider how shifts in
climate regimes and disturbance patterns present new risks to
these systems, particularly for slow-growing plantation species
that are investments over approximately century-scale time
frames.

Potential applications of our findings. Monoculture plantations
are only one pathway of many (e.g., natural regeneration, assisted
natural regeneration, agroforestry, diverse plantations) for
restoring forest cover2,35. However, they represent the dominant
approach underlying restoration commitments and thus merit
careful consideration4. When managed sustainably and integrated
into a broader landscape, plantation forestry can help reduce
pressures on mixed-use forests (e.g., concessions) and meet
demand for harvested wood products efficiently5. Substitution of
sustainably produced timber for carbon intensive products such
as concrete or steel can also reduce embodied carbon and expand
carbon stocks beyond what exists on the landscape36,37. However,
emissions from harvesting activities, decomposing harvest resi-
dues, and short-lived wood products may reduce or negate these
benefits38. To accurately assess the climate benefits of plantations,
enthusiasm for the high early growth rates we quantified here
must be tempered by careful life cycle accounting. Furthermore,
accounting for potential changes in the belowground biomass and
soil carbon stocks will give a more holistic picture of the climate
change mitigation potential of plantations.

Our results also have important implications for species choice.
Exotic monocultures generally have poor biodiversity outcomes
compared to other forest types39. Concerning declines in
biodiversity40 coupled with global momentum to conserve
biodiversity (e.g., the UN Decade on Ecosystem Restoration)
encourage interventions to the biodiversity and climate crises in
tandem. Using endemic species in monocultures instead of
exotics could improve biodiversity outcomes, and the higher
carbon accumulation rates that we observed in exotic mono-
cultures disappeared after accounting for fertilizer use. This
suggests that careful nutrient management in endemic planta-
tions could help to optimize both climate and biodiversity
benefits. However, further research on the trade-off between
fertilizer use versus exotic species would be of high value, since
fertilizer can negatively impact the local environment5 and result
in additional climate emissions41.

We also identified traits linked to higher carbon accumulation
rates, which can be used to select additional species not

commonly used within plantation forestry. A handful of species
and genera dominated our dataset and these were generally not
endemic to the places where they were grown. Identifying
additional endemic species to use in lieu of exotic species would
improve the site-level biodiversity value of plantation forests42,
and investing in plantation polycultures would help to resist
trends towards global biotic homogenization43. Biodiverse forests
are also likely to be more resilient to disturbances such as pests or
natural disasters, which is key for the durability of carbon
sequestered in natural ecosystems, particularly under a changing
climate44. Moreover, species-rich forests may store more carbon
than species-poor forests due to complementary resource use
(niche complementarity)45,46; however, competitive and mutua-
listic interactions among species may vary47,48. Additional work
is urgently needed to better understand how diversifying
plantations could improve climate and biodiversity outcomes.

Methods
Dataset compilation & standardization. We systematically reviewed the literature
to identify studies reporting data on biomass and carbon stocks in monoculture
plantations. The search was part of a larger effort to quantify biomass accumulation
associated with re-establishing tree cover more generally23. We describe the dataset
compilation and standardization process here, with additional details in the Sup-
plementary Methods and Cook-Patton et al.23.

The literature search considered over 11,000 articles, which we filtered to
640 studies quantifying biomass (or carbon) stocks in monoculture forest
plantations. We then further winnowed these to include studies that reported (i)
empirical measurements of biomass or carbon in the aboveground pool; (ii) age of
the plantation at the time of field measurements; and (iii) a latitude and longitude
pair or sufficient geographic detail from which geographic coordinates could be
obtained. We only collected data on aboveground stocks given that belowground
biomass and soil organic carbon data were sparse, and variation in field sampling
methods make synthesizing belowground biomass and soil organic carbon stocks
across studies difficult23,30,49. We omitted understory biomass given that
understory vegetation in monocultures is a small proportion of total biomass10.
Lastly, we only considered live biomass. We did not consider dead wood which is
likely removed from many systems via precommercial thinning and was a relatively
small proportion of total aboveground carbon stocks.

For each included study (n= 424), we collected information on biomass (or
carbon) stocks, age, geolocation, tree crop species, prior land use/disturbance, and
management practices such as planting density, rotation length, site preparation,
fertilization, irrigation, vegetation control, and thinning. To account for spatial
structures in the data, we grouped measurements by site. When studies empirically
determined the percent biomass that was carbon, we retained their values; however,
when studies used a default factor (e.g., 0.5) to convert biomass to carbon, we
adjusted these values using the Intergovernmental Panel on Climate Change’s
recommended factor of 0.4724.

Potential drivers of variation in aboveground carbon accumulation. To explain
variation in aboveground carbon accumulation across plantation types, we sought
to account for the major biological (genus, endemism, and plant traits), human
(prior land use and management practices), and environmental (biome) drivers
that may control growth. We describe the collection of these data below and
summarize key characteristics of each of the potential drivers in Supplementary
Table 1.

Tree crops are commonly selected from a limited number of genera for
characteristics such as growth rate and suitability for wood products. We collected
data on the planted tree species from all studies; however, we collapsed the species
data to genus (including both hybrids and clones) to reduce the feature space of the
dataset. Additionally, to test for the effect of planting exotic species on growth, we
coded all species as being either endemic or exotic to the locale in which they were
planted.

Although genus can serve as a proxy for suites of plant traits, we further
examined the effect of species-level plant traits given that trait data may vary within
genera. To create an initial list of candidate traits, we used the TRY Plant Trait
Database to assemble trait data for as many of the planted species in our database
as possible50. Although we identified 12 candidate traits, we ultimately excluded
eight traits that did not have sufficient variation across species. For example, all
species were classified as “woody” for the “plant woodiness” trait. For the traits we
included (leaf compoundness, leaf phenology, leaf type, and nitrogen fixation
capacity), we then used species descriptions compiled by Botanic Gardens
Conservation International (e.g., the Global Biodiversity Information Facility) to
manually fill data gaps for species not found in TRY. Additionally, we extracted
species-specific wood density data from the Global Wood Density Database51. We
averaged wood density values for species with more than one wood density
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observation in the database, whereas we used genus level averages for species not
found in the database.

Prior land use can control subsequent vegetation growth depending on both the
type and intensity of land use52. Studies commonly reported prior land use type,
which we coded into our database. However, we were unable to include intensity of
land use as it was rarely reported. We generally found four types of land use/
disturbance to be well-represented within the literature: clear-cut harvest,
croplands (inclusive of shifting cultivation), pasture, and fire. When studies
reported multiple prior land use types, we recorded the most recent type.

Plantations often receive active management to optimize growth. We examined
the effect of management practices on carbon accumulation to the degree that
studies allowed. Studies did not consistently report management practices at the
same level of detail, but many provided information on planting density, site
preparation, fertilization, irrigation, management of competing vegetation, or
thinning. We qualitatively recorded all management practices that were reported in
the studies, which we then coded into a presence vs. absence variable for statistical
analyses. Although substantial variation in the use of a given management practice
may exist (e.g., different types or quantities of fertilizer), a presence/absence
variable for each type of management practice was an optimal compromise
between accounting for the use of management practices and obtaining
management data for as many studies as possible.

Finally, biomass accumulation in plantations is expected to vary across climates,
which can be proxied by biome type. To examine the effect of climate on plantation
biomass, we spatially intersected the locations of all sites with maps of major
ecological zones. Namely, we used both a map of global biomes as well as the
United Nations Food and Agriculture Organizations classification of ecozones53–55.
We refer to the first as “biomes” whereas we refer to the second dataset as “FAO
Ecozones.” Plantations are not common across all global biomes and we therefore
omitted biomes for which data were sparse (e.g., flooded grasslands and savannas,
mangroves, and montane grasslands and shrublands). Further, plantations in non-
forest biomes are often not successful and can cause severely negative biodiversity
impacts6.

Statistical analyses of variation in aboveground carbon accumulation. For each
of the potential drivers of aboveground carbon accumulation in plantations, we
tested for their effect on plantation carbon using linear mixed effects models56. We
square root transformed both aboveground carbon and stand age prior to fitting
the models to improve linear relationships (Supplementary Fig. 1). We then
modeled aboveground carbon as a function of stand age, the driver under con-
sideration, and the interaction of stand age and the driver (all fixed effects). We
included random intercepts for site in all models to account for spatial
autocorrelation57. Since data on drivers were missing for some observations, we
subsetted the data to each driver of interest before fitting the models. When testing
genus of tree crop, we filtered the subsetted dataset to only genera with 20 or more
observations to reduce the levels of the driver and potential effects of sparse data.
Lastly, when testing the categorical management drivers (e.g., use of fertilizer), we
filtered the subsetted dataset to only genera with observations across all levels of the
driver (e.g., both fertilized and unfertilized) to improve balance across the data.

We tested for the statistical significance of the potential drivers and their
interaction with stand age (i.e., a separate model for each driver; see Table 1) using
F-tests with Satterthwaite approximations of degrees of freedom and restricted
maximum likelihood, as implemented in the {lmerTest} package of Program R58,59.
Similarly, we examined the significance of individual levels of the drivers using t-
tests (and again, Satterthwaite approximations of the degrees of freedom) to obtain
p-values. These approaches reduce the likelihood of a Type I error, particularly for
models with large numbers of observations such as ours58.

Next, to examine the relative effects of the drivers, we ran three “full models”
using only those observations that had complete data across three subsets of
drivers. Data on management practices were highly limiting and we therefore
considered only two management practices—planting density and fertilizer use—
each of which was included in a separate model. Our first full model (Full Model 1)
included all drivers except those related to management (i.e., genus, endemism,
plant traits, prior land use, and biome), whereas our second and third models
included all these drivers plus each of planting density (Full Model 2) and fertilizer
use (Full Model 3). We had to consider these management practices in separate
models given that observations primarily reported only one of the practices, but not
both. Additionally, the trait data were categorical in nature, repeated across species,
and likely exhibited correlation across traits. We therefore ordinated the trait data
prior to their inclusion using Factor Analysis of Mixed Data (FAMD), a principal
component method for datasets of both continuous and categorical variables.
Similar to our models of individual drivers, we filtered the subsetted data to genera
with at least 20 observations and included random intercepts by site to account for
spatial autocorrelation. We determined significance of the driver fixed effects using
the same approach as our individual driver models (i.e., F-tests using the
Satterthwaite approach). Given data limitations, we did not include interactions in
the model but specified each driver as an additive effect. All models were fit using
the {nlme} package in Program R60.

Development and validation of growth functions. We also parameterized non-
linear growth functions of aboveground carbon stocks in plantations for all genera

and plant functional types with more than 100 observations in the database. Plant
functional types are a means of representing broad classes of plants that share
similar growth forms and life histories across biomes. For our purposes, plant
functional types are a convenient way of incorporating data from relatively less-
represented genera into growth functions, as well as producing models that are
generalizable across plantation species not included in our database. Here, we
combined climatic information from our biome dataset with leaf type (e.g., tropical
broadleaf species) to produce plant functional types for all species within our
database.

We considered four different types of growth function to be fit to the data:
logarithmic, linearized logistic, logistic, and the Chapman-Richards growth
function (Supplementary Fig. 2). After assessing the fit of each function to the data
(Supplementary Methods), we elected to fit the Chapman-Richards function using
Eq. (1), which is (i) based in theoretical growth of forest stands over time, (ii) more
flexible than other logistic functions, and (iii) widely employed within the forest
modeling literature19–21. The Chapman-Richards growth function is specified as:

yðtÞ ¼ A � ð1� b � eð�k�tÞÞð
1

1�mÞ ð1Þ
Where for our particular case, y(t) is aboveground carbon in Mg ha−1 at time t, t is
the age of the forest stand in years, and A, b, k, and m are parameters to be
statistically estimated from the data.

The Chapman-Richards growth function has theoretical foundations and its
parameters are biologically meaningful19,61. Specifically, A represents the
asymptotic limit of the response variable, b is a scaling parameter, k is the rate of
growth, and m is a shape parameter. When primarily concerned with flexible fits to
empirical data (i.e., the trademark of the Chapman-Richards growth function), it is
best to estimate b and m from the data. However, within explanatory analyses such
as ours, it is common to fix both b and m, allowing only the asymptotic limit (A)
and growth rate (k) to be statistically fit to the data19.

Given our objectives of comparing aboveground carbon accumulation across
plantation types, we followed this procedure and fixed b at 1 [effectively stating that
AGC (t=0) = 0] and fixed m at 0.67. Fixing m at 0.67 is a common practice within
the literature and produces the von Bertalanffy special case of the Chapman-
Richards function, which is the original function that Richards generalized19,29,61.
We therefore fixed m at 0.67; however, we also considered how alternative values of
m affected our parameter estimates (see Supplementary Information). After fixing
m at 0.67 and b at 1, we statistically estimated A and k for each plant functional
type and genus using non-linear mixed effects models, with site included as a
random effect. All growth models were parameterized using the {saemix} package
in Program R (version 4.0.4), which employs the Stochastic Approximation
Expectation Maximization algorithm to derive maximum likelihood estimates of
the parameters62.

We assessed the fit of the models using root-mean-square error (RMSE),
calculated via a cross-validation procedure with a 15 to 85% validation data to
training data split. Given that we used mixed effects models, we set aside data for
validation by randomly selecting all data from 15% of the sites rather than 15% of
observations across all sites. Although doing so ensures a true out-of-sample
validation, the unbalanced nature of our database caused the number of
observations included in the training versus validation datasets to vary. We
therefore bootstrapped this procedure a total of 25 times for each growth model,
retaining the RMSE values from each run and averaging across them to obtain our
final RMSE estimates. We report both the averaged RMSE values as well as RMSEs
that are normalized by mean aboveground carbon, which facilitates comparison
across models.

Calculation of annualized carbon accumulation rates. Finally, to improve the
utility of our analyses for broader policy and practitioner audiences, we also
generated annualized rates to use as default values of aboveground carbon accu-
mulation in monoculture plantations. We calculated plot-level carbon accumula-
tion rates by dividing stand-level aboveground carbon by stand age. To reduce the
effects of different species tending to be managed on different rotation lengths, we
first filtered all data to stands younger than 30 years in age. After calculating the
rates at the plot level, we subsequently summarized these values for the major i)
genera, ii) plant functional types, and iii) biomes in our database. Unless otherwise
stated, all values presented in the text are mean values ± the standard error of the
mean. Despite providing these annualized rates, we hope the policy and practi-
tioner audiences adopt our more biologically accurate nonlinear representations of
carbon accumulation in plantation forests.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The monoculture plantations aboveground carbon stock data compiled in this study are
published on Zenodo (https://doi.org/10.5281/zenodo.6555216). A publicly facing
version of the Spatial Database of Planted Trees is available through the World Resources
Institute (WRI), whereas the version used here may be requested through Global Forest
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Watch at WRI. The Global Wood Density Database is available through DataDryad
(https://doi.org/10.5061/dryad.234). The plant trait data were accessed through the TRY
Plant Trait Database (https://www.try-db.org/TryWeb/Home.php). The spatial
information on biomes of the globe were obtained through the RESOLVE Ecoregions
2017 database (https://ecoregions.appspot.com/). The Food and Agriculture
Organization of the United Nation’s Global Ecological Zones are available through the
FAO’s data center (https://data.review.fao.org/map/catalog/srv/search?keyword=FRA).
J.J.B welcomes discussions around potential collaborations in using and expanding the
data published here.

Code availability
All code for the models and driver analysis of this manuscript are available on GitHub
(https://github.com/jbukoski/GPFC) and have been archived on Zenodo (https://doi.org/
10.5281/zenodo.6588710).
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