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Abstract

Motivation: The genomic architecture of human complex diseases is thought to be attributable to

single markers, polygenic components and epistatic components. No study has examined the ability

of tree-based methods to detect epistasis in the presence of a polygenic signal. We sought to apply

decision tree-based methods, C5.0 and logic regression, to detect epistasis under several simulated

conditions, varying strength of interaction and linkage disequilibrium (LD) structure. We then applied

the same methods to the phenotype of educational attainment in a large population cohort.

Results: LD pruning improved the power and reduced the type I error. C5.0 had a conservative type

I error rate whereas logic regression had a type I error rate that exceeded 5%. Despite the more

conservative type I error, C5.0 was observed to have higher power than logic regression across

several conditions. In the presence of a polygenic signal, power was generally reduced. Applying

both methods on educational attainment in a large population cohort yielded numerous interacting

SNPs; notably a SNP in RCAN3 which is associated with reading and spelling and a SNP in NPAS3,

a neurodevelopmental gene.

Availability and implementation: All methods used are implemented and freely available in R.
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1 Introduction

Historically, genomic association studies have focused almost exclu-

sively on single-loci and/or polygenic risk score (PGRS) associations.

These methods have been very successful; however, frequently they

do not explain the total genetic variance of a trait estimated by twin

studies. Therefore, it is also important to consider non-additive gen-

etic effects such as epistasis in the complex genetic architecture of

human traits. Epistasis has been described as one genetic locus

masking or modifying alleles of other loci (Bateson and Mendel,

1909) or a deviation from additivity of two genetic variants on a

phenotypic trait (Fisher, 1919). Epistasis, in the sense of ‘deviation

from additivity’ can be defined as either antagonistic (a model where

the interaction decreases or blocks the effect of each individual al-

lele) or synergistic (where a combination of alleles exacerbates the

effect of each allele individually). Many—if not most—complex

traits might have different components of genomic architecture of

varying importance—e.g. strongly associated single SNPs, a poly-

genic component and an epistatic component. The evaluation of

statistical learning methodologies for the detection of these different

components, to our knowledge, has not been performed.

Even though epistasis has been observed and is well documented

in multiple non-human organisms (Brockmann et al., 2000; Cheng

et al., 2011; Grice et al., 2015; He et al., 2016; Huang et al., 2012;

Mackay, 2014), whether or not epistasis exists and plays a vital role

in human traits remains an open debate (Hill et al., 2008; Huang and

Mackay, 2016; Mackay and Moore, 2014; Sackton and Hartl, 2016;

Webber, 2017). According to the ‘omnigenic’ model, in complex traits

the disease-related genetic signal tends to be spread across the genome,

resulting in genes without direct statistical association to the trait.

Therefore, the ‘omnigenic’ model states that, due to a large intercon-

nection between gene regulatory networks, most heritability can be

explained by the surrounding genes outside the core disease-related

genes, which likely includes epistasis (Boyle et al., 2017). In general,

human epistatic studies have shown limited success, partially due to

the use of restrictive methods such as searching within subsets of loci

or for specific SNP interaction sizes (e.g. hypothesis-driven analysis) in

order to lower the number of tests that need to be performed and thus

the resulting statistical correction that has to be applied.

Recently, increasing efforts have been placed on addressing the

statistical and computational problems related to the detection of epis-

tasis in large datasets. Machine learning (ML) algorithms are increas-

ingly used to ascertain classifiers for either data reduction or feature

selection. These include tree-based methods like random forest (RF),

classification and regression trees (CART) (Chen et al., 2011; Garcı́a-

Magari~nos et al., 2009; Stephan et al., 2015) and likelihood ratio

Mann-Whitney tests (Lu et al., 2012). Garcı́a-Magari~nos et al. (2009)

simulated genotype data containing interacting SNPs under multiple

scenarios (sample size, missing data, minor allele frequencies and sev-

eral penetrance models). This study found that CART and RF were

equally good in detecting interacting SNPs. Even though the study

simulated 99 different scenarios with 100 replicates each, the simu-

lated datasets are very small (two ‘causal’ SNPs plus 98 null SNPs)

and do not reflect the scale or complexity of modern genomic studies.

We sought to apply greedy non-parametric decision tree-based

methods—C5.0 and logic regression—for the detection of epistasis

in large-scale studies, as these methods explicitly model interactions.

C5.0 constructs rule-based decision trees using solely the Boolean

operator OR (Fig. 1A) whereas logic regression allows for Boolean

operators AND, OR and NOT (Fig. 1B). Note that logic regression

is a regression framework therefore allowing for the construction of

multiple trees (e.g. multiple trees acting as predictors in a regression

model), whereas C5.0 constructs multiple rulesets and is not

embedded in a regression framework. To date, C5.0 has never been

applied to genetic data in the search for interactions, whereas logic

regression has been shown to be effective in detecting main effects

and interactions in genetic data and could be used as a comparison

method (Chen et al., 2011; Kooperberg et al., 2001; Ruczinski et al.,

2003, 2004; Schwender and Ickstadt, 2008).

We sought a complex, but well studied trait to test these

approaches. Educational attainment (EA) is a highly heritable com-

plex trait (Calvin et al., 2012; Krapohl et al., 2014) and is highly influ-

enced by social and other environmental factors; however, SNP-based

heritability estimates that genetic factors contribute to around 20% of

variation across individuals, while average twin-based heritability is

around 40% (Rietveld et al., 2013). The largest GWAS to date investi-

gating years of education as a proxy of EA observed 74 statistically

significant SNPs (Okbay et al., 2016) of which 72 were replicated in

the same study using the large UK Biobank cohort. PGRS derived

from the same GWAS explained 3.9% of the variance in years of edu-

cation in an independent sample. This large gap of missing heritability

(Dh2
twin–h2

SNP) is in similar to that found in other complex traits, how-

ever the moderate correlation with traits showing evidence of epistatic

contribution e.g. personality traits (Jang et al., 1996; Loehlin et al.,

2003; de Moor et al., 2012; Power and Pluess, 2015; Vukasovi�c and

Bratko, 2015) hints towards an epistatic contribution.

In this study, we applied C5.0 and logic regression on simulated

epistatic data under multiple scenarios to show their capability of

detecting interacting loci in a large genetic study. We sought to as-

sess the performance of C5.0 and logic regression to detect epistatic

components alone, plus in the presence of a polygenic signal in order

to inform about the methodological development of models that in-

clude effects of single SNPs, additive or polygenic components as

well as epistasis. To our knowledge, this will be the first simulation

study to date to examine the detection of epistasis in the presence of

a strong polygenic signal. We applied both methods on the genome-

wide SNP data from the Generation Scotland: the Scottish Family

health Study (GS: SFHS) cohort to investigate whether there is evi-

dence for an epistatic contribution to years of education as a meas-

urement of educational attainment.

2 Materials and methods

2.1 Statistical methodology
2.1.1 Classification and regression trees (CART)

CARTs are decision tree-based methods that can be interpreted as a

set of decisions leading along a path to a final prediction. CART

Fig. 1. Visual representation of a C5.0 and logic tree. (A) C5.0 decision tree;

(B) logic tree
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methods utilize classifiers (measurements) to ‘split’ the data into par-

titions. CART methods solely use the Boolean operator OR to split

a classifier (e.g. male OR female). CART methods grow a tree by

including classifiers (recursive partitioning), calculating for every

split the ‘impurity’ or misclassification rate, and define a split with

the lowest impurity. Commonly-used impurity measurements are

the Gini index for classification-based methods and sum of squared

residuals for regression-based methods. CART methods keep recur-

sively partitioning the dataset until no split that decreases impurity

can be made or when the size of the terminal nodes (e.g. subjects in

node) is less than some user-defined value or is 1. This most often

leads to a large tree where some terminal nodes only contain a small

number of individuals. The complexity of a tree can be decreased by

pruning sections of the tree that provide little power to classify

observations.

2.1.2 C5.0 and logic regression

C5.0 is a modified version of Quinlan’s non-parametric C4.5 classi-

fication algorithm (Quinlan, 1992). C5.0 builds decision trees, per-

forms rule-based models and evaluation of variable importance

(Kuhn and Johnson, 2013; Wu et al., 2008). C5.0 decision trees are

built by using information entropy (1).

infos
before ¼ �

Xm

i¼1

pilogpi (1)

where pi is the probability of a given class i as the outcome for each

of m possible classes and S is the split.

To build a tree containing optimal splits, C5.0 assesses, for each

node, the normalized information gain which acts as the purity cri-

terion. For each node C5.0 calculates the information entropy be-

fore (1) and after (2) a split.

infos
after ¼ �

Xk

i¼1

infoi
ni

n
(2)

where S is the split; K is the number of partitions; ni is the number of

samples i assigned to partition K; n is the total number of samples

and infoi is the sum of the information entropy in the ith resulting

partition.

For a given node with split S and K partitions, C5.0 calculates

the information entropy for each resulting partition. This is subse-

quently multiplied by the proportion of samples assigned to that

partition (ni/n). This adds a weight to each partition, which is

summed over all partitions resulting in the information entropy after

split S. A lower information entropy after the split implies an infor-

mation gain (positive difference) and therefore a decrease in uncer-

tainty. If entropy increases (negative difference) C5.0 stops adding

splits. The information gain is normalized to allow for the consider-

ation of each class. C5.0 then selects the class with the highest

normalized information gain. This process is repeated recursively

for smaller subsets.

Each top-to-bottom path in the final tree is collapsed into a so-

called rule. C5.0 evaluates each rule on independent conditional

statements, thereby assessing whether or not they can be generalized

by removing terms in the conditional statement. This process is

called rule-based pessimistic pruning and in short removes branches

that are not contributing to the improvement of the trees classifica-

tion. As a final step, C5.0 assigns each rule to a class by calling a

vote. The class with the highest vote is used. Results in a single

pruned tree where each possible combination from the top node to

bottom node in the tree is a so-called ruleset.

Logic regression is a non-parametric adaptive regression method

(Ruczinski et al., 2003). Logic regression is largely based on the

same principles as a CART, but in contrast to CART, logic regres-

sion constructs logic trees (L). Logic trees are Boolean combinations

(AND, OR and NOT) of binary predictors e.g. L1 ¼ SNP3 or [SNP1

and (not SNP4 and not SNP2)]. This increases the complexity com-

pared to CART which solely applies the Boolean operator OR. A

logic tree can be used as a predictor in a regression model (3). Due

to its adaptive nature, logic regression estimates the coefficients (bs)

and Boolean expressions (Ls) at the same time.

y ¼ b0 þ b1L1 þ b2L2 þ � � � þ bpLp (3)

By doing so, logic regression tries to minimize the scoring func-

tion associated with a model type (e.g. residual sum of squares for

quantitative outcomes). For the construction of logic trees, logic re-

gression starts at a random starting point and applies a greedy hill

climbing algorithm, which keeps adding predictors to the model as

long as the misclassification rate goes down and only stops when the

misclassification rate goes up.

2.2 Simulation and genetic methodology
2.2.1 Generation Scotland

Generation Scotland: the Scottish Family Health Study (GS: SFHS)

is a large, family-based cohort study sampled from the general popu-

lation in Scotland (www.generationscotland.org). The study design

has been widely documented (Smith et al., 2006, 2013). In short,

24 000 individuals were recruited in the study during a five-year

period (2006–2011). The individuals were deeply phenotyped for a

wide variety of traits such as lifestyle factors, family history and

health outcomes. DNA of 20 128 GS: SFHS individuals were

analyzed by means of high density genome wide bead array genotyp-

ing (Illumina OmniExpress 700K SNP GWAS and 250K exome

chip). DNA results of 134 individuals were excluded during quality

control leaving 19 994 genotyped individuals.

We removed single nucleotide polymorphisms (SNPs) and indi-

viduals >5% missing data and removed SNPs with a minor allele

frequency <1%. We used Genome-wide Complex Trait Analysis

(GCTA) (Yang et al., 2011) to extract a list of genetically-unrelated

individuals, giving a total of 7372 individuals (relatedness < 0.025,

corresponding to second degree cousins). For the simulation study,

we selected 5000 individuals at random from the unrelated set.

We selected the gene-rich chromosome 19 (10 756 SNPs) for

analysis. Using PLINK (Purcell et al., 2007) we performed linkage

disequilibrium (LD) pruning on chromosome 19 (window size ¼
50 kb, step size ¼ 5 kb and r2 threshold ¼ 0.1), leaving 1705 SNPs

in linkage equilibrium (LE). From the LD pruned dataset we desig-

nated the potential set of ‘causal’ SNPs in a minor allele frequency

range of 0.4–0.5 (584 SNPs). From this pool, high minor allele fre-

quency SNPs were selected to ensure equally high levels of statistical

power across all simulations. All analyses were performed twice:

once on the linkage disequilibrium pruned (1705 SNPs) and again

on the unpruned (10 756 SNPs) chromosome 19 datasets.

2.2.2 Simulation of phenotypes

We simulated phenotypes under the alternative hypothesis (H1) and

null hypothesis (H0) with 500 replicates per condition. All added

errors (E) were drawn from a standard normal distribution N (l¼0,

r2 ¼ 1). To ensure unbiased simulation, bias calculations were per-

formed to assess possible over/under estimations of coefficients.

Coverage was calculated to assess the probability that the sum of the
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estimated coefficients fell in the 95% confidence interval using a re-

gression model.

Polygenic phenotype

We selected 200 SNPs from the potentially causal SNP pool

to form a polygenic phenotype. In this model each SNP explains

the same amount of variation (R2 ¼ 1.5�10�3) with a total R2

of 0.3 (30%) (4). Simulations were performed using the

Linkage-Disequilibrium Adjusted Kinships (LDAK) software (Speed

et al., 2012). Bias was observed at 0.18 and coverage was 96%. The

bias calculation in the polygenic phenotype is larger compared to

other phenotypes.

y ¼ b1SNP1 þ b2SNP2 þ b3SNP3 . . .þ b200SNP200 þ e (4)

2-SNP interacting phenotypes

Two SNPs not used for simulating the polygenic phenotype

were selected at random from the potentially causal SNP

pool. We simulated 2-SNP interacting phenotypes assuming each

individual SNP has a small but present main effect (b1 6¼ 0 and

b2 6¼ 0) (5).

y ¼ b1SNP1 þ b2SNP2 þ b3SNP1 � SNP2 þ e (5)

We simulated three levels of 2-SNP interactions (weak, intermedi-

ate and strong) each explaining a different amount of variation

(Table 1). The weak interaction phenotype strength was simulated to

represent an interaction that would not be detected by a regression

model after adjusting for multiple testing by means of a Bonferroni

correction (mean P-value ¼ 3.1�10�2; median P-value ¼
1.8�10�3). The strong interaction phenotypes had a mean P-value ¼
1.3�10�10 and median P-value ¼ 3.5�10�17 to assess whether C5.0

and logic regression were capable of detecting a strong signal; this

phenotype was used as a proof of principle. Intermediate phenotypes

(mean P-value ¼ 3.6�10�4; median P-value ¼ 2.0� 10�7) were

simulated to fall between the two extremes (Table 1). Bias calculations

were all close to 0 (strong ¼ 4.0�10�3, intermediate ¼ 6.7�10�4

and weak ¼ �5.0�10�3) and coverage was 96% for the strong

phenotype and 94% for both the intermediate and weak phenotypes.

3-SNP interacting phenotypes

Three SNPs not previously used for simulating the polygenic

phenotype were selected at random from the potentially causal SNP

pool. We analyzed these phenotypes independently. Three levels

(weak, strong and pure) of 3-SNP interactions were simulated

including all possible 2-SNP interactions (6).

y ¼ b1SNP1 þ b2SNP2 þ b3SNP3 þ b4SNP1 � SNP2 þ b5SNP1

� SNP3 þ b6SNP2 � SNP3 þ b7SNP1 � SNP2 � SNP3 þ e (6)

We simulated a weak and strong 3-SNP interacting phenotype

explaining a different amount of variation; we set the bs of the strong

interaction to be twice as large as the weak ones. (Table 2). Also, we

simulated a pure 3-SNP interaction where in Equation 6 b1 to b6 are

all set to 0. Bias calculations were again all close to 0 (pure ¼

�7.41�10�4, strong ¼ 2.26�10�4 and weak ¼ �5.87�10�4) and

coverage was 97% for the pure phenotype and 93% for both the

intermediate and weak phenotypes.

Combined polygenic and interacting phenotypes

To assess the capability of C5.0 and logic regression to detect gene-

gene interactions even in the presence of an additive or polygenic com-

ponent we simulated an interaction in the data used for the polygenic

simulations, using SNPs not included in the polygenic component.

Null phenotype

To assess the type I error, we modelled a phenotype under H0

where all bs are set to 0; therefore, y ¼ E. Bias was observed as

1.2�10�3 with a coverage of 94%.

Main effect

To rule out the possibility that the power was driven by the

larger bs of the main effects within the interaction phenotypes, we

simulated 500 replicates that only included the main effect of the

strong phenotype; y¼b1SNP1 þ b2SNP2 þ e (where b1 and b2 ¼
0.2). As this interaction has the largest coefficients we chose this set-

ting as a proof of principle for all other phenotypes with smaller

coefficients. Bias was observed as 9.0�10�3 and coverage of

96.4%. The strong two-SNP main effect signal was then combined

with the 200-SNP polygenic signal.

2.2.3 Data pre-processing and parameter settings

Genotype data were converted to ordered vectors. Logic regression

only allows for binary predictors; therefore, we dichotomised the

genotype data into dominant and recessive predictors, i.e. genotype

{0, 1, 2} becomes dominant {0, 1, 1} and recessive {0, 0, 1}. Missing

genotypes were imputed by means of median imputation before

analysis.

2.2.4 Calculating type I error and power

We defined the type I error for C5.0 as the percentage of trees con-

structed under H0. Power was defined as the percentage of con-

structed sets of rulesets under H1 containing all of the simulated

interacting SNPs.

For logic regression, we assessed the presence of a signal under

H0 and H1 by performing a randomisation test. Each replicate was

permuted 100 times; the number of instances the original model had

a lower score (residual sum of squares) than 95% of permuted mod-

els (a¼0.05) was derived. For type I error, we counted the number

of times that the replicate passed the randomisation test when no

signal was present and divided by 500. For power, we considered

only those replicates that passed the randomisation test, and similar-

ly for the calculation for type I error (Fig. 2A). Then we assessed if

the logic trees contained all the simulated interacting SNPs. If the

replicate (a) passed the randomisation test and (b) the simulated

interacting SNPs were present, this was considered as a ‘true posi-

tive’ and we summed the number of these replicates and divided by

500 to obtain power (Fig. 2B).

Table 1. Two-SNP interaction models, R2 and P-values

Model b1,b2 b3 R2
2SNP interaction

(%)

R2
full model

(%)

Mean

pinteraction

Median

pinteraction

Strong 0.2 0.24 1.6 35.6 1.3� 10�10 3.5� 10�17

Intermediate 0.125 0.15 0.82 17.8 3.6� 10�4 2.0� 10�7

Weak 0.07 0.09 0.35 6.8 3.1� 10�2 1.8� 10�3
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3 Results

3.1 Type I error
We observed that C5.0 has a type I error of 0% when using the LD

pruned data and 0.6% when using the LD unpruned data. Using the

randomisation test we observed that logic regression has a 5.8%

type I error using LD pruned data, rising to 6.4% when using LD

unpruned data.

3.2 Power
3.2.1 LD-pruned data

Power results for pruned and unpruned data for both methods can

be found in Table 3. C5.0 detected rulesets in 11.4% polygenic rep-

licates with the LD pruned dataset. Of these, 79% were based on a

single SNP, 19% on two SNPs and 2% on four SNPs. All observed

SNPs in the rulesets were from the 200 SNPs used to create the poly-

genic phenotypes, with no un-associated SNPs in any rulesets. C5.0

detected the two interacting SNPs in 100% of the strong replicates.

This number decreased to 99.2% in the intermediate and 8.6% in

the weak replicates (Supplementary Table S1). No rulesets were cre-

ated that included other non-interacting SNPs; in other words, no

false-positive SNPs were included in any of the rulesets generated

for the interaction simulation replicates. Furthermore, in 35% of the

weak replicates no ruleset was created; the remainder contained just

one of the two interacting SNPs. In the combined polygenic and

2-SNP interaction phenotype analysis, C5.0 shows that it is capable

of distinguishing additivity from interactions by detecting the two

interacting SNPs in 100% of strong and 23% of intermediate repli-

cates (Supplementary Table S1). In the combined polygenic and

weak interaction analyses C5.0 did not detect a single ruleset in

98.8% of the replicates. In the remaining 1.2%, C5.0 was not able

to detect both interacting SNPs (Supplementary Table S1). Higher

order interactions, i.e. 3-SNP interaction, were also detected using

C5.0. We observed a power of 100, 100 and 90.4% of all three

interacting SNPs in the pure, strong and weak 3-SNP interaction

phenotypes (Supplementary Table S2). When combining these phe-

notypes with a polygenic signal, the interaction power remained

100% for the pure and strong phenotypes and dropped to 11.2%

for the weak phenotype (Supplementary Table S2). For replicates

that only contained two SNPs with main effects and no interaction,

we observed that C5.0 detected 62.6% rulesets containing solely

one of the two main effect SNPs, in 35.2% both SNPs and in 2.2%

no rulesets. When combined with a polygenic signal this dropped to

0.4% for both SNPs and one of the main effect SNPs in 16% while

it did not detect any ruleset in the remaining 84%.

Randomisation test-based analyses showed the power of logic re-

gression using the LD pruned data ranged between 89.6% (com-

bined polygenic and weak 3-SNP interaction) and 100% (Table 4)

for phenotypes containing interactions and 99.6% for the

polygenic-only phenotype. For each of the 500 polygenic replicates

logic regression created a model containing eight SNPs. These mod-

els contained either 2 (1%), 3 (2.6%), 4 (11%), 5 (24.7%),

6 (31.1%), 7(22.9%) or 8 (6.6%) polygenic SNPs. This means that,

in all replicates minus the 6.6% containing 8 polygenic SNPs, logic

regression includes several SNPs that can be defined as false-

positives when a polygenic signal is present because these SNPs have

been LD-pruned; thus, their presence is not due to correlation with a

polygenic SNP.

For all 2-SNP interaction analyses logic regression created trees

containing eight SNPs with the exception of ten trees (0.15%) con-

taining 1 (1 tree), 3 (1 tree), 4 (2 trees), 5 (2 trees), 6 (1 tree) or 7 (3

trees) SNPs. For the strong and intermediate 2-SNP phenotypes,

logic regression created in 99.8 and 98.8% replicates logic trees con-

taining both interacting SNPs (Supplementary Table S3). Several of

the remaining SNPs in these trees were false positives, not due to

LD. This dropped to 77% in the weak 2-SNP phenotype, with 1%

containing no interacting SNPs. When combining the polygenic and

epistatic phenotypes the trees contained the interacting SNPS in the

strong (98.8%), intermediate (82.8%) and weak (9.6%) phenotypes

(Supplementary Table S3). Furthermore, 45.3% of the created com-

bined polygenic-weak trees contained no interacting SNPs. The ma-

jority of trees in the higher order 3-SNP interaction analyses

contained the interacting SNPs (pure 99.6%, strong 99.6% and

weak 89%; Supplementary Table S4a). This number decreased

when adding the polygenic component (pure 98.4%, strong 95.2%

and weak 53.6%; Supplementary Table S4b). No trees were

observed containing solely non-interacting SNPs.

3.2.2 Unpruned data

C5.0 detection of rulesets in the polygenic model increased to

53.4% when not LD pruned (Supplementary Table S5). Seventy-six

point eight percent of observed SNPs in the rulesets were used to cre-

ate the 200 SNP polygenic phenotypes or were in LD with a

Table 2. Three-SNP interaction models, R2 and P-values

Model b1,b2,b3 b4, b5,b6 b7 R2
2SNP interaction (%) R2

3SNP interaction (%) R2
full model (%) Mean pinteraction Median pinteraction

Pure 0 0 0.4 0.04 1.86 30.1 1.0� 10�14 1.1� 10�22

Strong 0.05 0.1 0.2 0.19 0.41 39.9 4.5� 10�4 6.6� 10�7

Weak 0.025 0.05 0.1 0.15 0.1 14.3 7.7� 10�2 1.3� 10�2

Fig. 2. Flow chart for logic regression analyses
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polygenic SNP (r2 > 0.25). Compared to the pruned set analyses,

the percentage accurately detecting 2-SNP interactions by C5.0

remained 100% for the strong phenotype but decreased to 98.2% in

the intermediate phenotype. The percentage accurately detected

2-SNP interactions increased to 19.8% in the weak phenotype

(Supplementary Table S6). However, it has to be noted that C5.0

detected in 3.2% (16 rulesets) non-interacting random SNPs of

which 12 contained SNPs in LD with the true signal (r2 > 0.25; this

threshold was set to be consistent with the value for LD pruning). In

the combined polygenic and interaction phenotype analysis, the

power remained unchanged for the strong phenotype. The power

was again higher in the intermediate (41.6%) and weak (0.6%)

phenotype, but 10.6 and 6.6%, of replicates respectively, contained

at least one false positive SNP (Supplementary Table S6), which

could be linked to LD structure. We observed no change in C5.0

interaction power in the pure and strong three 3-SNP interaction

phenotypes (100%) and an increase to 91% in the weak phenotype

(Supplementary Table S7). Only the weak interaction phenotype

showed a higher power compared to the pruned analysis of 24%

(Supplementary Table S7).

Randomisation test-based analyses using the non-LD pruned

data showed six interaction phenotypes having a lower power when

using non-LD pruned data compared to LD pruned data. Power

dropped to 94.4% for the polygenic phenotype. The largest differen-

ces were observed with the combined polygenic and 3-SNP inter-

action phenotype (35.6%) and weak 2-SNP phenotype (32.8%)

(Table 3). When analyzing the polygenic phenotype we observed

that logic regression created 15.4% trees containing no polygenic

SNPs. This dropped to 1.4% when taking LD structure into account

(r2 > 0.25). The rest of the trees contained either 1 (33.4%), 2

(29.6%), 3 (14.6%), 4 (5.6%), 5 (1%) or 6 (0.4%) polygenic SNPS

and in 89.3% in combination with numerous SNPs in LD with the

polygenic SNPs. The power of logic regression for the two interact-

ing SNP phenotypes was 52.8% in the strong, 17.6% in the inter-

mediate and 0.3% in the weak phenotype (Supplementary Table

S8). This dropped further in the combined analysis to 23.4% in the

strong, 2.2% in the intermediate and 0% in the weak phenotype

(Supplementary Table S8).

We observed that in the higher order phenotypes, the trees con-

tain three forms of the interacting SNPs is 50.2% (pure), 35.4%

(strong) and 14.7% (weak) (Supplementary Table S9a). In line with

previous observed results when adding the polygenic signal, the

numbers again lowered to 35.2% (pure), 21% (strong) and 2.2%

(weak) (Supplementary Table S9b). For all phenotypes a percentage

of trees were created containing non interacting SNPs; however,

the majority of these trees contained SNPs in LD (r2 > 0.25)

with the interacting SNPs (for a detailed outline see Supplementary

Table S10).

3.3 Application to educational attainment in GS: SFHS
Having assessed our methods by simulation, we wished to test the

approach on a large set of complex trait data. We extracted 7012

unrelated GS: SFHS individuals of which 6765 individuals had a

measure of years of education, measured by ordered categories (e.g.

0: 0 years, 1: 1–4 years, 2: 5–9 years). We performed a linear regres-

sion analysis between years of education controlling for sex and age,

and extracted the residuals to act as an adjusted years of education

measurement (Zhao et al., 2012). Finally, we applied C5.0 and logic

regression on the residual years of education outcome using 131 821

whole genome SNPs in LE (LD pruning settings; window size ¼
50 kb, step size ¼ 5 kb and r2 threshold ¼ 0.1). C5.0 detected 32

rulesets associated with educational attainment containing in total

30 SNPs (Supplementary Table S11). The logic regression model did

not pass the randomisation test (a¼0.05) so will not be discussed

further.

4 Conclusions and discussion

When using LD-pruned genetic data we observed that C5.0 is cap-

able of distinguishing additivity from interactions. C5.0 created

Table 3. Power of C5.0 and logic regression in pruned and unpruned data, with and without polygenic component

Condition C5.0:� polygenic LR:� polygenic C5.0þ polygenic LR þ polygenic

2-SNP, Pruned, Weak 8.6% 77.0% 0% 9.6%

2-SNP, Pruned, Intermediate 99.2% 98.8% 23% 82.8%

2-SNP, Pruned, Strong 100% 99.8% 100% 98.8%

2-SNP, Unpruned, Weak 19.8% 0.3% 0.6% 0%

2-SNP, Unpruned, Intermediate 98.2% 17.6% 41.6% 2.2%

2-SNP, Unpruned, Strong 100% 52.8% 100% 23.4%

3-SNP, Pruned, Weak 90.4% 89.0% 3.6% 53.6%

3-SNP, Pruned, Strong 100% 99.6% 100% 95.2%

3-SNP, Pruned, Pure 100% 99.6% 100% 98.4%

3-SNP, Unpruned, Weak 91.0% 14.7% 24.0% 2.2%

3-SNP, Unpruned, Strong 100% 35.4% 100% 21.0%

3-SNP, Unpruned, Pure 100% 50.2% 100% 35.2%

LR, Logic Regression.

Table 4. Power of logic regression based on randomization tests

Model Power:

Pruned

Power:

Unpruned

Weak 2-SNP interaction 97.4 64.6

Intermediate 2-SNP interaction 100 100

Strong 2-SNP interaction 100 100

30% Polygenic þWeak 2-SNP interaction 89.6 54

30% Polygenic þ Inter. 2-SNP interaction 100 89.6

30% Polygenic þ Strong 2-SNP interaction 100 100

Weak 3-SNP interaction 100 99.2

Strong 3-SNP interaction 100 100

Pure 3-SNP interaction 100 100

30% Polygenic þWeak 3-SNP interaction 100 92.6

Polygenic þ Strong 3-SNP interaction 100 100

Polygenic þ Pure 3-SNP interaction 100 100

Polygenic model 99.6 94.4
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rulesets based on a polygenic phenotype in 11.4% of the replicates;

however, the majority of these (78.9%) were based on one single

polygenic SNP. C5.0 correctly detected both interacting SNPs in

100 and 99.2% in the strong and intermediate phenotypes. Even

though the interaction strength was low, C5.0 was capable of detect-

ing the signal in 8.6% of the weak 2-SNP interaction replicates, of

which none would be significant using a standard regression model

after adjusting for multiple testing. For the 3-SNP (higher order)

interaction phenotype, C5.0 was able to detect all three SNPs in

100% of the pure and strong and in 90.4% of the weak phenotype.

When combining the polygenic and interaction phenotypes C5.0

was able to distinguish the interaction signal from the polygenic sig-

nal in 100 and 23% of the strong and intermediate 2-SNP pheno-

types. For the weak phenotype C5.0, was not able to detect any

ruleset in 98.8% of the replicates showing it to be protective against

spurious results when the interaction term is of low magnitude.

Similar results were observed in the 3-SNP combined analyses. As

no rulesets were observed under H0, we conclude that C5.0 had a

low type I error. We could not see any evidence that our previously

observed results were driven by main effects when analyzing strong

main effect data only. This indicates that C5.0 is detecting rulesets

based on conditional dependencies and not on large main effects.

We observed that LD structure has an impact on the performance of

C5.0. In all but four phenotypes that include an interaction compo-

nent the amount of accurately detected interactions decreased using

unpruned data (Table 4).

We observed that logic regression is capable of accurately detect-

ing all interacting SNPs in all but one phenotype either combined

with additivity and using LD pruned or unpruned data. Logic regres-

sion was not capable of detecting both interacting SNPs in the

2-SNP interaction including a polygenic signal in the LD unpruned

phenotype. However, we observed a slightly inflated type I error

(5.8 and 6.8%), which is in line with the developers’ statement that

logic regression is likely to overfit (Kooperberg et al., 2001). It

should be noted that logic regression has a high overall power when

performing a randomisation analysis, however when looking into

the SNPs used to create the initial model, logic regression-built trees

using random SNPs therefore the overall randomisation test-based

power is high but the frequency of inclusion of spurious SNPs in a

model is also high. Furthermore, as mentioned logic regression

applies a greedy hill climbing algorithm. Greedy hill climbing algo-

rithms stop when the last predictor included does not improve the

prediction rate. As logic regression applies a random starting point,

it risks creating a set of Boolean combinations of binary predictors

that may reflect a local optimum rather than the global optimum.

One solution to circumvent this issue is to apply a global optimum

search technique e.g. simulated annealing.

We observed 32 rulesets containing 30 putative epistatic SNPs

associated with educational attainment (EA) in Generation

Scotland. From the thirty SNPs, 18 could be mapped to genes, two

were in genes previously associated with mental health or cognitive

performance (rs196433, chr1, RCAN3 and rs17100828, chr14,

NPAS3). RCAN3 is associated with reading and spelling (Luciano

et al., 2013) while NPAS3 acts as a master regulator of neuropsychi-

atric risk genes (Michaelson et al., 2017). Of the remaining 16

genes, none showed a clear association with any phenotype. We

sought to investigate whether these SNPs have been previously

reported in the large EA GWAS study which observed 74 statistical-

ly significant SNPs (Okbay et al., 2016). None of the SNPs observed

in this study overlapped or could be considered a proxy SNP (r2 >

0.8) with the previously reported GWAS results. One explanation

for the lack of overlap might be because GWAS searches for single

SNPs associated with a phenotype while C5.0 searches for condi-

tional dependencies associated with the phenotype. Therefore, one

could say that both methods search for different pieces of the same

puzzle. The results strengthen the assumption that interacting SNPs

play an important role in educational attainment (Supplementary

Table S12).

The main strength of this study is that we assessed the capability

of both C5.0 and logic regression in detecting simulated genetic

interactions under a wide range of settings including a strong poly-

genic signal. We suggest that C5.0 rulesets might be used as predic-

tors within a regression model alongside single SNPs and additive or

polygenic components (Nicodemus et al., 2014). The same can be

done with logic trees. Limitations lie in the modest sample size

(N¼5000) and the use of only causal SNPs with a large MAF (0.4–

0.5). We did not simulate phenotypes containing multiple SNP inter-

actions (polygenic-epistatic phenotype) which is biologically

plausible.

In conclusion, we have shown that C5.0 and logic regression are

capable of detecting simulated genetic interactions in a wide range

of association levels and even in the presence of a strong polygenic

component. We showed that when applying both methods LD prun-

ing helps by improving the power and reducing the type I error.

Finally, using C5.0 we were able to detect 32 rulesets containing 30

SNPs not previously reported with EA in Generation Scotland;

RCAN3 has been previously observed in association with learning

and reading while NPAS3 is involved in neurodevelopment. These

methods are capable of detecting SNPs not directly associated to the

trait but rather in sets of SNPs that together affect the trait. These

methods are well-adapted to testing hypotheses regarding the

‘omnigenic’ model.
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