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Substantial interest and investment in clinical artificial intelligence (AI) research has not resulted in widespread translation to
deployed AI solutions. Current attention has focused on bias and explainability in AI algorithm development, external validity and
model generalisability, and lack of equity and representation in existing data. While of great importance, these considerations also
reflect a model-centric approach seen in published clinical AI research, which focuses on optimising architecture and performance
of an AI model on best available datasets. However, even robustly built models using state-of-the-art algorithms may fail once
tested in realistic environments due to unpredictability of real-world conditions, out-of-dataset scenarios, characteristics of
deployment infrastructure, and lack of added value to clinical workflows relative to cost and potential clinical risks. In this
perspective, we define a vertically integrated approach to AI development that incorporates early, cross-disciplinary, consideration
of impact evaluation, data lifecycles, and AI production, and explore its implementation in two contrasting AI development
pipelines: a scalable “AI factory” (Mayo Clinic, Rochester, United States), and an end-to-end cervical cancer screening platform for
resource poor settings (Paps AI, Mbarara, Uganda). We provide practical recommendations for implementers, and discuss future
challenges and novel approaches (including a decentralised federated architecture being developed in the NHS (AI4VBH, London,
UK)). Growth in global clinical AI research continues unabated, and introduction of vertically integrated teams and development
practices can increase the translational potential of future clinical AI projects.
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INTRODUCTION
Multiple indicators over the past five years demonstrate accel-
erating interest in the application of artificial intelligence (AI) to
human health, including exponentially increasing published
research since 20161, increasing healthcare provider interest in
AI solutions2,3, soaring investment into AI startups4,5, and year-on-
year increases in regulatory approvals6,7. In contrast, widespread
translation of AI research into implementation remains conspicu-
ously absent, particularly when considering AI for clinical decision-
making, diagnosis, or prediction8. For example, while high-profile
studies demonstrate superiority of AI-assisted cancer detection
compared to clinicians9, there has been failure to replicate
accuracy in larger studies, with limited prospective, real-world
validation and poor potential for clinical utility10.
Most clinical AI research is conducted on existing, retro-

spective datasets11–13, where focus is on improving algorithm
performance for given internal and external datasets, referred to
as a ‘model-centric’ approach14. Research waste, in the form of
algorithms that will never see clinical utilisation, continues to
increase15–17. Unrepresentative data and model bias contribute
to these failings18,19, and the push for equitable data accumula-
tion and incremental architectural gains are important for
progressing AI as a whole20. However, less consideration is
given to real-world factors that maintain importance throughout
any AI development pathway, including the real-time data
lifecycles that support predictions, heterogeneous software and

hardware infrastructure that host AI models, and quantification
of impact on patients and clinical workflows. Significance of
these factors can be seen in failures of previous real-world
evaluations of state-of-the-art algorithms, that have been unable
to achieve anticipated performance due to infrastructural and
data problems21, or lack of added value within everyday
workflows22,23.
In contrast, the use of AI in non-healthcare enterprises has

achieved greater success, demonstrating clear return-on-
investment24,25. Clearly, intricacies and risks inherent to patient
data are not comparable to non-healthcare sectors, but lessons
can be taken from differing approaches to AI, focussing on value
generation, cross-disciplinary collaboration, and a holistic
approach to practicalities external to algorithm design26.
In this article, we identify practical features of AI development,

that have crucial importance for translation, and define their
vertical integration within an AI ‘supply chain’. We demonstrate
how vertically integrated approaches can work in practice,
through the lens of two successful, contrasting, real-world
pipelines: a major, scalable, AI platform in a high-resource setting
(Mayo Clinic, Rochester, United States), and a focused, embedded AI
system for cervical cancer screening in a low-resource setting
(Paps AI, Mbarara, Uganda). We discuss challenges and provide
recommendations that can help future AI projects cross the gap
from pages of medical journals to patient bedsides.
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OUTSIDE OF THE ALGORITHM
Increasing attention is being paid to translational aspects of
clinical AI27. Recent frameworks28 and maturity classifications in
literature reviews1,29 adopt a high-level view of where an
algorithm sits in its development roadmap. These supplement
checklists for risk of bias and reporting that are internal to
algorithm training and evaluation, for prediction30 and diagnostic
accuracy31, which focus on model-building32 and generalisabil-
ity33. However, where AI development is intended to lead to
clinical deployment, success also depends on practical considera-
tions34 outside of model-building (Fig. 1), including impact
evaluation, data lifecycles, and production. In the following
sections, we describe the contribution of each stage.

Impact evaluation
AI usage in non-healthcare industries is predicated on creation of
‘value’, measured as tangible return-on-investment. Medical AI is
less mature, and most research focuses on accuracy in experi-
mental datasets. Evidence for comparative performance against
an existing non-AI gold standard (e.g., AI vs radiologist, or
AI+ radiologist vs radiologist) is sparser, while evidence of
tangible impact on patients or cost-effectiveness is severely
lacking. Implementation should aim to generate value for end-
users and patients. This could derive from AI-assisted insights with
no real-world equivalent (such as associations in complex data), or
from augmenting existing skilled clinicians. The latter is particu-
larly relevant for low-income, low-resource environments, or high-
resource areas where workstreams are bottlenecked by particular
tasks. Impact evaluation therefore includes establishing and
estimating clear end-user or patient-centred outcome targets
before building a model, as well as planning and monitoring for
unintended, post-deployment effects such as over-investigation
and over-treatment, or costs from safety-netting high-risk
decisions35. Involvement of end-users from implementation
environments is vital to evaluate real-world impacts, above and
beyond a traditional focus on model accuracy36.

Data lifecycles
A healthcare data lifecycle describes generation, curation and
aggregation, and maintenance of patient data that is used by
consumers (such as clinicians and researchers) and patients
themselves37. Practical examples can be seen in Learning
Healthcare Systems, where analysis is built into daily practice38. A
lifecycle view emphasises data flows, where data is constantly
produced during routine care, and where use and utility of data is
often time-constrained. In contrast, model-building is traditionally
performed on static datasets that have passed through often
unreproducible, proprietary, processing steps. More data, and
external data, is not necessarily useful, as additional features may
only be available in research settings or through manual collection.
While the importance of representative training data is well
recognised, other factors can impede successful deployment.
These include: (1) differences in how data is acquired and
processed, between curated datasets and live implementation
environments39 (for example – heterogeneous imaging protocols40,
input and coding of electronic data41–43, quality of acquisition
device21); (2) software and hardware requirements to stream data
to a model, which may vary from simple DICOM ingestion to
integrating multi-modal data from multiple devices; and (3) a more
comprehensive scope of raw data and signals in a live environment,
that are not considered by a model, but provide additional insights
to a diagnostician (thus reducing relative AI performance).

AI in production
Production describes the process of bringing an AI model to active
deployment. Technical requirements in this stage (including back-
end/frontend development and product delivery, or “DevOps”),
usually call on the expertise of deployment engineers and software
developers. As a result, once a promising algorithm has been
evaluated by researchers, it will require additional expertise to insert
it into the midst of competing software and hardware infrastructure.
Successful production enables data ingestion by a model, provides
computational power, presents an interface to observe the model

Fig. 1 Vertical integration across an artificial intelligence supply chain. All supply chain components are essential for deployment and must
work synergistically to support continued AI use. A focus on establishing a supply chain, has benefits over an isolated focus on producing an
accurate model.
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working, and returns insights to users. In practice, no two production
environments look the same. For example, a model can be
embedded into a software application with its own codebase,
internal data lifecycle, and user interface. Many imaging algorithms
deploy into commonly used radiology workflow software (as seen
with segmentation algorithms6). Similarly, a model can integrate into
physical devices with their own computational power and interface
(for example, arrhythmia detecting smartwatches44,45). Embedding
models takes advantage of discrete workflows and simpler data
lifecycles but are ‘locked-in’ to specific uses. A model can instead be
served as a module within a larger system, communicating with
other modules via interoperable data formats. This approach is
scalable, and maintains control over compute, heterogeneous data
input/output, flexibility in technology, and resilience in upgrading.
However, this comes with high set-up costs and complex
development, typically requiring whole organisational buy-in. For
models requiring rich data from multimodal sources, this may be the
only viable route. Other production considerations include ability to
monitor for software bugs and hardware failures, and observe
changes in real-world circumstances and data distributions that may
cause model performance to deteriorate (‘model drift’) with
potential for harm. Models brought to production can encounter
difficulties in data interoperability and hardware compatibility,
particularly in complex clinical software environments.

Summary
By the time an AI model, robust to external dataset validation,
enters the deployment stage, it may be too late to address
challenges related to insufficient clinical impact, inadequate data,
and difficulties in production that were not considered in a model-
centric approach. These challenges are as important as model-
building, with respect to potential for implementation.

VERTICALLY INTEGRATING AN AI ‘SUPPLY CHAIN’
Vertical integration is a concept from industry that has existed
since the 19th century46, recognising that supply chain compo-
nents are co-dependent, and that flow of requirements and
information is not unidirectional47. Vertical integration synchro-
nises each stage, lowering transaction time and cost to move
between them, and renders the entire chain less vulnerable to
failure from not anticipating the needs of any individual stage.
We can conceptualise AI development as a vertically integrated

supply chain, where model-building is analogous to product
construction and testing (Fig. 1). As with traditional product
supply chains, this stage does not exist in a vacuum. Rather,
operationalisation is entirely dependent on well-functioning
components across the chain. Additionally, components must
continue to work synergistically to support a deployed model (for
example: on-going evaluation of clinical pathway impact, data
lifecycles for observation/re-validation, and production environ-
ments responsive to safety issues and end-user feedback).
We therefore summarise vertically integrated AI as a holistic

approach to AI development, where a focus across the entire supply
chain can lead to ready-to-implement models, that are less vulnerable
to component failures. In practice, this calls for three actions:

(1) To work across all supply chain components in parallel from
the planning stage, by aligning to requirements of the final
product.

(2) To move beyond academically focused groups to cross-
disciplinary teams, where end-users, developers and deploy-
ment engineers, and implementation experts, play as
significant a role as clinician scientists and data scientists.

(3) Developing a strategy within research groups, provider
organisations, or technology companies, that can facilitate
these processes.

For teams looking to create a clinically deployable model, these
translate to key considerations in Fig. 2. In the following sections
we discuss how this approach is implemented in two AI pipelines
with extreme divergence in setting and use-case.

THE MAYO CLINIC AI FACTORY – A ‘WHOLE SYSTEMS’
VERTICALLY INTEGRATED APPROACH
One strategy for vertical integration is to build an entire
organisation-wide infrastructure around AI development. The
Mayo Clinic AI factory hosts cross-disciplinary expertise and a
development platform, that minimises distance from concept to
implementation48. Platform architecture is illustrated in Fig. 3. In
summary, an interoperable data middle layer (“Gather”) utilises
multiple Fast Healthcare Interoperability Resource (FHIR) applica-
tion programming interfaces (APIs) to receive EHR and device/
wearables data, with additional APIs integrating imaging and
signal (e.g. electrocardiogram) data. Data is hosted in the cloud
(Google Cloud Services, Mountain View, USA), where reproducible
harmonization and quality assurance enables data consistency.
Model-builders can access data through the “Discover” compo-
nent, which provides a development environment with compute
infrastructure and software tools. Trained models are passed to
“Validate”, which facilitates silent evaluation on prospective data
streams, and automates assessment of model bias by evaluating
across population subgroups, and in benchmark datasets for
sociodemographic characteristics. “Validate” reports performance
across a range of scenarios, including calibration and potential for
bias in marginalized populations.
Integration of software and computational hardware onto a

single platform simplifies production, as implementation can be
enabled by switching on a “Deliver” component. Model outputs
are translated into insights via pre-defined rules, sent to end-users
using the existing messaging APIs interfacing with EHR and
devices. End-users may be presented with flags, personalized care
plans, or access to relevant guidance. Finally, outcome indicators
belong to the same data lifecycle and are used to estimate
potential impact, or measure intended and unintended post-
deployment impacts. The entire platform is supported by a cross-
disciplinary team who work with end-users to identify areas of
maximal impact, and to vet feasibility with respect to data and
production requirements.
A major challenge in implementing a ‘whole systems’ platform

is patient privacy. In addition to removing known identifying
elements from multimodal data, the platform employs best-on-
class de-identification protocols for EHR data (nference, Cambridge,
USA)49. A “data behind glass” approach places authorized sub-
tenants in encrypted containers (under Mayo control) but does
not allow data to leave containers, preventing merging data with
external sources for re-identification.
Launch of the platform in 2020 has resulted in a rich

development pipeline50. A case-study can be made of ECG-
guided screening for asymptomatic left ventricular systolic
dysfunction which was taken from conception, through one of
the largest randomized control trials of an AI device to date
(EAGLE)51, and is now undergoing pilot implementation and
validation under Food and Drug Administration breakthrough
designation. Development is summarised in Table 1, but in short,
key contributors to success include: (1) a cross-disciplinary
feasibility and planning process; (2) development and deployment
supported by interoperable data flows; (3) existing infrastructure
that supports regulatory conformity for the whole product lifecycle.
Other use-cases evaluated on the platform include portable ECG

assessment52, prediction of post-surgical mortality53, and real-time
monitoring of COVID-19 interventions54. More than 200 additional
models are in different stages of development maturity55, while
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the platform additionally hosts and accelerates start-ups to market
readiness56. Vertical integration of data, modelling and validation,
production, and clinical impact evaluation into a single platform
bridges the gap between algorithms and implementation.

PAPSAI - VERTICAL INTEGRATION IN RESPONSE TO RESOURCE
SCARCITY
In an opposing, resource-poor scenario, a vertically integrated
approach means prioritising infrastructure, and planning for
challenging environments where there may not be easy paths
to translating model outputs into actions. In such settings, a focus
on model-building may produce an algorithm with excellent
performance across multiple datasets, but will not address
implementation barriers (Fig. 4).
Uganda has high cervical cancer incidence and mortality, with

lack of screening resources (included trained cytopathologists)
contributing to late diagnosis57. Existing algorithms are trained on
datasets for high-resource economies with different demographic
and data quality characteristics (including cleaner slide prepara-
tion) and are designed to integrate with Western cytopathological
workflows and expensive devices58. Despite a clear use-case for AI,
development must contend with a lack of infrastructure. The

locally developed approach taken by William et al.59 has involved
parallel development of hardware and software to support local
data lifecycles, with portable training, validation, and production
environments, and a health record for outcomes data (Fig. 5),
resulting in a ‘ready-to-deploy’ system.
In summary, cytopathological images are acquired through 3D-

printed components integrating a microscope slide scanner,
networked to an image storage system with labelling/training
environment. With parallels to the Mayo Clinic platform (although
at a much smaller scale), the same locally applicable data flows are
used for model validation. Models are calibrated to local images,
include artefact handling, with ability to run on low-end hardware.
The production environment sits alongside training software on
mobile, low-power devices, and integrates the same data flows.
Outputs are added to an electronic record that can be viewed by
patients or clinicians and linked to treatment and outcomes.
Finally, acquired images can be manually assessed to re-validate
the model and enrich the dataset.
There is a paucity of AI research in low to low-middle income

countries (LLMIC)1, where there is also significant lack of
diagnostic resource. Vertical integration promotes local infra-
structure – a pre-requisite for representative data and implemen-
tation environments. With care, LLMIC AI development can

Fig. 2 Important considerations across a development supply chain, showing cross-disciplinary involvement across components, that
should be addressed early in a vertically integrated approach. With particular relevance to academic circles, broadening of involvement to
include users traditionally involved in MLOps (e.g., engineers, developers) can increase translational potential.
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achieve substantially over par return-on-investment, when com-
pared to sums invested into AI for well-functioning clinical
pathways in high-resource areas.

CHALLENGES AND SOLUTIONS IN VERTICAL INTEGRATION
Artificial intelligence has captured the imagination of clinicians
and researchers, funders, and commercial investors; but without
widespread translation to clinical impact, we risk disillusionment
and a collapse in willingness to invest resources.
Vertical integration describes a holistic approach to AI, which

engages with all supply components of a planned product at
conception, employs teams with cross-disciplinary expertise, and
adopts a strategic recognition that model-building in isolation,
while often a substantial academic achievement, is not always a
practical one.
Practically, approaches will vary across settings. The distance

between model-building and other components is a spectrum
that differs across data types and clinical environments. The
described cases represent two extremes: a large-scale transforma-
tion across an organisation, and a planned approach to maximise
potential for operationalization in a resource-poor setting. In many
other cases, substantial infrastructural changes are unnecessary, as
deployment requirements are lower. For example, the dominance
of radiomics in development maturity1 and devices8, may reflect
lower implementation requirements from standardized data
(DICOM) and pre-existing assisted reporting environments. In
addition, the components we describe are not in themselves
novel. For companies producing AI software-as-medical-devices, a
focus on elements such as software-embedding and value
demonstration is necessitated by commercial and regulatory
drivers. However, a common feature of the clinical AI research
translational gap remains separation of dataset experimentation
with ability to operationalise models, as seen in lack of candidates

for clinical translation amongst hundreds of COVID-19 models
with high reported accuracy60,61.
Addressing additional, specific challenges can also help trans-

form current approaches. First, priority for AI funding should be
given to proposals with integrated roadmaps to implementation.
Statistical methodology could be supplemented by understanding
of informatics infrastructure, involvement of deployment experts,
and assessment or estimation of longer-term impact. This can be
seen in practice, where NHS Transformation in the UK funds
projects that fulfil urgent care priorities, and demonstrate
feasibility of workflow deployment62.
Second, transition to an entirely vertically integrated platform

like Mayo Clinic requires whole organisation buy-in. While this can
produce ground-breaking results, the required organisational
transformation and investment may be unfeasible. Centralisation
may be an alternative in regional healthcare networks, accumulat-
ing cross-disciplinary expertise from multiple centres, while
creating population-level data flows, often through the use of
the commercial platform providers63. A diametrically opposite
approach is decentralisation using federated architectures to
manage data environments across multiple organisations, each
hosting local cross-disciplinary teams, as being developed by the
London Medical Imaging & AI Centre for Value Based Healthcare
(AI4BH)64,65. While centralisation provides economies of scale for
technical specialisation, decentralisation aims to harness synergies
through proximity to domain experts and data sources for local
requirements.
Finally, medical device regulation and safety monitoring

requires reconsideration. Proposed regulation in the USA and UK
for a ‘product lifecycle approach’ will consider data flows and
production practices (alongside experimental performance
metrics)66,67. Vertical integration actively supports meeting these
regulatory requirements but may also benefit from guidance to
address challenging issues such as model and dataset drift, and

Fig. 3 The Mayo Clinic Platform AI factory is a multi-component AI platform that vertically integrates all parts of the AI supply chain into
a single infrastructure. This includes components for data curation (“Gather”), data access and analytics (“Discover”), model validation
(“Validate”) and an on platform production environment (“Deliver”). This approach, whilst costly, greatly reduces distance from concept to
deployment. Cross-disciplinary working is a vital component external to the illustrated architecture.

J. Zhang et al.

5

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2022)   143 



Fig. 4 Pitfalls in implementing models specific to lower resource environments. AI models may be trained in high-resource academic labs,
and taken to low-resource environments where they fail for the reasons illustrated. A model-centric approach that does not consider real-
world supply chain components is unlikely to be successful.

Table 1. Pre-deployment and operationalization on Mayo platform of ECG AI-Guided Screening for Low Ejection Fraction (EAGLE).

Supply chain stage Development pipeline

Pre-deployment

Impact evaluation A problem is identified, and a proposed solution is evaluated by a cross-disciplinary team.
Prior to deployment, the proposed EAGLE model is judged on (1) potential clinical value, and (2) potential for impactful
operationalisation given existing infrastructure and clinical environment. In this case, discovering hidden diagnoses from
complex data would provide new diagnostic and screening capabilities that are currently unavailable in the given
environment.

Data lifecycles Availability of suitable datasets and data flows are identified.
The team ensures that data flows are available for training, for prospective validation, and for safe monitoring of outcomes. In
this case, interoperability between ECG devices and other clinical data within the platform (“Gather”) means that suitable
datasets can be curated, accessible in a training environment (“Discover”). Real-time data flows can be easily established for
prospective validation, production, and observation. Model output data can be messaged back to end-users at point-of-care.

Model-building Training a model on data directly curated from real-world pathways
Having considered the above, a model trained on the platform can emerge ‘production-ready’. Established data aggregation
and quality assurance pipelines on the Mayo platform means accurate and useful labels, allowing EAGLE to be benchmarked
in under-represented groups (“Validate”). A well-calibrated model can be taken to prospective validation on live data flows.
While in a research container, EAGLE performance can be silently observed against other gold standard diagnostic indicators
(such as echocardiography) in the same environment.

Production Infrastructure that is ready to receive a trained model
Positioning of devices and EHR, in parallel to data flows and the model-building environment, means the EAGLE model can
be moved directly into a production environment without significant reconfiguration (“Deliver”). Helped by early in-situ end-
user involvement, EAGLE outputs will appear directly at a suitable moment on a clinical pathway.

Operationalization

Impact evaluation +
Data lifecycles +
Model re-validation +
Production

Deployment supported by all components
With all components in place, a trained model can be operationalized in a live pathway. Components work symbiotically to
support the deployment:

1) Adjacency of analysis and production environment allows users to monitor real-time model outputs. Chosen outcome
measures can be observed during a clinical trial51.
2) Wider data flows monitored for intended and unintended clinical impacts, contributing to pre- and post-market quality

management and compliance with regulatory requirements across the product lifecycle66.
3) Containers are created for users to observe data and model output distributions. Early safety signals can trigger model

re-validation. Over time, new and manually validated data will enrich the original training dataset.
4) Adjacency of training and production environments, and use of established data flows, means re-validation cycles (and

future adaptive AI) are easy to implement.
5) In-situ end-user interactions in development, and once operationalized, allows for direct feedback into usability.

Production environment supports responsive updates.

This table describes processes supported by a ready-made vertically integrated infrastructure. The Mayo AI factory maintains close distance between all supply
chain components such that ideas can be proposed, evaluated, and operationalized with minimal friction between development stages. For platform
architecture, see Fig. 3.
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on-going quality and risk management systems. This dynamic
post-translational management stage has been termed ‘MLOps’
by non-healthcare industries68.

CONCLUSION
Even externally validated and accurate AI models cannot
compensate for practical problems that preclude deployment
into real-world workflows. Clinical AI development must vertically
integrate cross-disciplinary teams and supply chain components
that directly support model implementation. This broad approach
is adaptable to different settings and can help improve translation
of clinical AI research into clinical workflows.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Received: 10 March 2022; Accepted: 31 August 2022;
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