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A decrease in cortical excitability tends to be easily followed by an increase induced

by external stimuli via a mechanism aimed at restoring it; this phenomenon is called

“homeostatic plasticity.” In recent years, although intervention methods aimed at

promoting motor learning using this phenomenon have been studied, an optimal

intervention method has not been established. In the present study, we examined

whether subsequent motor learning can be promoted further by a repetitive passive

movement, which reduces the excitability of the primary motor cortex (M1) before motor

learning tasks. We also examined the relationship between motor learning and the

brain-derived neurotrophic factor. Forty healthy subjects (Val/Val genotype, 17 subjects;

Met carrier genotype, 23 subjects) participated. Subjects were divided into two groups

of 20 individuals each. The first group was assigned to perform the motor learning task

after an intervention consisting in the passive adduction–abductionmovement of the right

index finger at 5Hz for 10min (RPM condition), while the second group was assigned to

perform the task without the passive movement (control condition). The motor learning

task consisted in the visual tracking of the right index finger. The results showed that the

corticospinal excitability was transiently reduced after the passive movement in the RPM

condition, whereas it was increased to the level detected in the control condition after the

motor learning task. Furthermore, the motor learning ability was decreased immediately

after the passive movement; however, the motor performance finally improved to the

level observed in the control condition. In individuals carrying the Val/Val genotype,

higher motor learning was also found to be related to the more remarkable changes

in corticospinal excitability caused by the RPM condition. This study revealed that the

implementation of a passive movement before a motor learning tasks did not affect

M1 excitatory changes and motor learning efficiency; in contrast, in subjects carrying

the Val/Val polymorphism, the more significant excitatory changes in the M1 induced by
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the passive movement and motor learning task led to the improvement of motor learning

efficiency. Our results also suggest that homeostatic plasticity occurring in the M1 is

involved in this improvement.

Keywords: repetitive passive movement, motor learning, visual tracking task, transcranial magnetic stimulation,

motor evoked potential, primary motor cortex, homeostatic plasticity, brain-derived neurotrophic factor

INTRODUCTION

Neuroplasticity, the supposed mechanism underlying memory
and learning, is an important neurophysiological phenomenon
that is also related to motor learning and functional recovery
in patients with stroke (Hosp and Luft, 2011). When the
excitability of the neuronal population is reduced, neurons
can easily increase it by external stimuli via a mechanism
aimed at recovering their excitability; this process is called
“homeostatic plasticity” (Turrigiano, 2011). It has been reported
that the improvement of neuroplasticity and motor skills can
be promoted using homeostatic plasticity (Ziemann et al., 2004;
Ziemann and Siebner, 2008; Jung and Ziemann, 2009). Repetitive
transcranial magnetic stimulation (rTMS) and transcranial direct
current stimulation (tDCS) are non-invasive brain stimulation
methods that can be used to improve motor learning ability
(Muellbacher et al., 2002; Nitsche et al., 2003). rTMS increases
the excitability of the primary motor cortex (M1) at a frequency
≥5Hz, while it decreases this parameter at a frequency ≤1Hz
(Pascual-Leone et al., 1994; Chen et al., 1997). Moreover, the
excitability of the M1 can be increased by anodal-tDCS to the
M1, whereas it can be decreased by cathodal-tDCS (Nitsche
and Paulus, 2000, 2001). A previous study that combined these
two intervention methods reported that M1 excitability was
increased by rTMS at 5Hz after the cathodal-tDCS intervention,
whereas it was decreased by rTMS at 5Hz after the anodal-tDCS
intervention (Lang et al., 2004). Therefore, this phenomenon
seems to be related to homeostatic plasticity, because the effect
of rTMS intervention on the M1 depends on the excitability of
this brain structure before the intervention.

Post-exercise depression (PED) consists in the decrease
in corticospinal excitability after low-load repetitive voluntary
movements (Brasil-Neto et al., 1994; Teo et al., 2012a; Miyaguchi
et al., 2016). PED occurs after repetitive passive movement
(RPM), as well as after voluntary movements (Miyaguchi et al.,
2013; Sasaki et al., 2017; Onishi, 2018) Moreover, M1 excitability
has been transiently decreased via an RPM intervention for
10min (Miyaguchi et al., 2013; Sasaki et al., 2017; Onishi,
2018). PED is supposed to be a phenomenon occurring within
the M1 because the F wave, which is an index of spinal cord
excitability, does not change after passive movement (Sasaki
et al., 2017; Onishi, 2018), whereas short interval intracortical
inhibition (SICI), which is an index of the excitability of the

Abbreviations: ANOVA, Analysis of variance; BDNF, Brain-derived neurotrophic

factor; FDI, First dorsal interosseous; MEP, Motor evoked potential; MRI,

Magnetic resonance imaging; M1, Primary motor cortex; PAS, Paired association

stimulation; PED, Post-exercise depression; RPM, Repetitive passive movement;

SE, Standard error; SICI, Short interval intracortical inhibition; SRTT, Sequence

reaction time task; TMS, Transcranial magnetic stimulation.

GABAergic inhibitory circuits within the M1, increases after
passive movement (Sasaki et al., 2017; Onishi, 2018). Jung and
Ziemann (2009) also reported that increasedM1 excitability prior
to motor learning decreased subsequent motor learning ability
and vice versa (Jung and Ziemann, 2009). Thus, we hypothesized
that, when performing a motor learning task during the PED
caused by passive movement, homeostatic-plasticity-like plastic
changes also occur in the M1, thereby improving the motor
learning ability. Therefore, if passive movement, which is widely
used in clinical practice, can induce homeostatic-plasticity-like
changes and improve motor learning ability, it may be used as a
highly versatile motor program.

The brain-derived neurotrophic factor (BDNF), which is
a nerve growth factor, is a protein that plays an important
role in synaptic development and growth, as well as in
the regulation and plastic changes of GABAergic synaptic
transmission and glutamatergic neurotransmission (Wardle and
Poo, 2003; Jovanovic et al., 2004; Baldelli et al., 2005; Carvalho
et al., 2008). Previous studies have reported that BDNF is
related to plastic changes in the M1 (Kleim et al., 2006; Antal
et al., 2010; Lee et al., 2013) and to motor learning (Vaynman
et al., 2004; Fritsch et al., 2010; McHughen et al., 2010).
The mutant form of the BDNF, in which the 196th base is
changed from G to A, resulting in mutation of the 66th amino
acid of BDNF from valine (Val) to methionine (Met). It is
known that the secretory function of BDNF in the brain is
decreased by the change of Val to Met (Egan et al., 2003).
In recent years, it has become clear that differences in BDNF
polymorphisms affect neural plasticity, and thus the recovery
of stroke patients and its mechanisms are also affected by
BDNF polymorphisms (Di Pino et al., 2016). Moreover, it has
recently been reported that BDNF polymorphisms are related
with homeostatic plasticity, a phenomenon that is unlikely to
occur in carriers of mutant (Val/Met and Met/Met) vs. wild-type
(Val/Val) genotypes (Cheeran et al., 2008).

Thus, the present study aimed to elucidate whether
corticospinal excitability and motor learning ability are
improved after the performance of motor learning tasks during
the PED caused by passive movement, and whether the BDNF
gene polymorphisms contribute to these effects.

METHODS

Subjects
The participants of the present study were 40 healthy adult
students [22 males; age (mean ± standard deviation (range)),
21.9 ± 1.8 (20–32) years; Val/Val genotype: 17 subjects; Met
carriers, 23 subjects] at Niigata University of Health andWelfare.
The subjects were randomly assigned to one of two groups
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(20 subjects in each group). The first group was subjected to the
5Hz repetitive passive movement intervention condition (RPM
condition; 10 males, aged 21.6 ± 0.9 (20–23) years; Val/Val
genotype: 9 subjects; Met carriers, 11 subjects), whereas the
second group was subjected to the control condition [Control
condition; 20 subjects (12 males), aged 22.3 ± 2.3 (21–32)
years; Val/Val genotype: 8 subjects; Met carriers, 12 subjects]. All
participants were right-handed, were not taking any medication,
and had no central nervous system disease, psychiatric disorder,
or orthopedic disease. The study followed the recommendations
of the ethics committee of Niigata University of Health and
Welfare, who approved the protocol, and was conducted in
accordance with the principles of the Declaration of Helsinki.
The recruitment of subjects was conducted in accordance with
the ethical rules of the Ethics Committee of Niigata University of
Health and Welfare. In addition, written informed consent was
obtained from all subjects.

Electromyography (EMG) Measurement
The EMG measurements targeted the right first dorsal
interosseous (FDI) muscle, which was monitored using
disposable Ag/AgCl electrodes in a belly-tendon montage. The
earth electrode was wrapped around the right forearm. The EMG
signals were amplified by an amplifier (A-DL-720140, 4 Assist,
Tokyo, Japan), processed by an A/D converter (Power Lab, AD
Instruments, Colorado, USA) at a sampling frequency of 4 kHz,
and then stored on a computer. For EMG analysis, a 20Hz high-
pass filter was employed together with a biological signal analysis
software (Lab Chart 7; AD Instruments, Sydney, Australia).

Transcranial Magnetic Stimulation
Transcranial magnetic stimulation (TMS) was delivered through
a figure eight coil (diameter, 9.5 cm) that was connected to a
Magstim 200 stimulator (Magstim, Dyfed, UK). The coil was
held tangentially to the skull over the left primary motor cortex
(M1) with the handle pointing posterolaterally at 45◦ to the
sagittal plane in the position producing the largest motor evoked
potential (MEP) from the right FDI muscle. The position and
orientation of the coil were marked by magnetic resonance
imaging (MRI) using the Visor2 TMS neuronavigation system
(eemagine Medical Imaging Solutions GmbH, Berlin, Germany),
and held in place. T1-weighted images were obtained using a
1.5 T MRI scanner (SIGNA HD, GE Healthcare, Milwaukee, WI,
USA) before initiating the experiment. The TMS intensity was set
to evoke an MEP of ∼1mV in the right FDI muscle. Consistent
with previous studies (Miyaguchi et al., 2017; Rawji et al., 2018),
TMS was delivered at a rate of 0.2Hz during data collection,
which was performed 15 times at rest (Vaseghi et al., 2015; Tsuiki
et al., 2019).

Repetitive Passive Movement (RPM) Task
The preconditioning task administered before themotor learning
task used repetitive abduction–adduction of the right index finger
(Figure 1). We employed a custom RPM control device (Takei
Kiki Kogyo, Niigata, Japan) to control the speed and angle of
movement, as described previously (Sasaki et al., 2017; Tsuiki
et al., 2019). We set the intervention time to 10min. The passive

movement was repeated continuously with an angular velocity of
40◦/s and a movement frequency of 5Hz in the RPM condition.
We set the range of movement of the index finger from 0◦ to
20◦ for the abduction of the metacarpophalangeal (MP) joint,
and the position of 0◦ at the midpoint of the MP joint. In a
similar position as that used for the RPM condition, the control
condition fixed the index finger to the RPM control device, to
maintain the resting sitting position for 10 min.

Motor Performance Task
The present study used a visual tracking task as the motor
learning task (Figure 2). A force gauge was fixated to the
subject’s right index finger. The participant then performed the
isometric abductionmovements so that themarker, whichmoved
up and down depending on the abduction force of the index
finger produced by the subject, was accurately aligned with the
waveforms, which were displayed on a laptop screen as flowing
from the right to the left. The width of the waveforms was set to
2,500, 2,222, 2,083, 1,694, and 1,492ms (Miyaguchi et al., 2018).
The movement intensity was set to five levels, ranging from 0
to 15% (5, 8, 10, 12, and 15%) of the subject’s maximum index
finger abduction force (Miyaguchi et al., 2018). Each block was
presented randomly in a total of 50 waveforms and took 50 s.

Experimental Procedure
The experimental design is shown in Figure 3. First, each subject
determined the site and intensity of TMS stimulation, for MEP
measurement and the visual tracking task (Pre). Subsequently,
each condition was subjected to an intervention (RPM condition
or Control condition). We performed the MEP measurement
(Post0) and 5 blocks of the visual tracking task immediately
after the intervention (each Block 1-1, 1-2, 1-3, 1-4, and 1-5).
The visual tracking task was performed with a 10 s interval
between each block to avoid muscle fatigue. Subsequently, MEP
was measured again (Post1). We also performed the 5-block
visual tracking tasks on the next day (24 h later), to evaluate the
retention of motor performance (each Block 2-1, 2-2, 2-3, 2-4,
and 2-5).

Data Analysis
TheMEP amplitude value was used as an index ofM1 excitability,
and the average peak-to-peak values of the MEP amplitude
of 15 waveforms measured at each time were calculated (Pre,
Post 0, and Post 1) (Rosenkranz et al., 2014; Vaseghi et al.,
2015). MEP amplitudes below 50 µV were excluded from the
mean values. Moreover, we calculated the MEP ratio before and
after the intervention (Post1/Pre) and the MEP ratio before
and after motor learning task (Post1/Post0) as the index of
the change in M1 excitability induced by the intervention and
motor learning task under each condition. As the index of
homeostatic plasticity of each intervention and motor learning
task, the value of the MEP ratio before and after motor learning
was divided by the MEP ratio before and after the intervention
[(Post1/Post0)/(Post0/Pre)] (Lang et al., 2004; Siebner et al.,
2004), according to the reports of Lang et al. (2004) and Siebner
et al. (2004).
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FIGURE 1 | Passive movement intervention. (A) Abduction of the metatarsophalangeal (MP) joint at 0◦. (B) Abduction of the metatarsophalangeal (MP) joint from 0 to

20◦. In the RPM condition, the right index finger was moved passively for 10min. The angular velocity was 40◦/s, the movement frequency was 5Hz, and the

movement range was 0–20◦ abduction of the metatarsophalangeal (MP) joint.

As the error value, we calculated the absolute value of the
difference between the abduction force of the finger and the
target waveform. We calculated the error value of each block
normalized by the average error value of all blocks as the task
error. In addition, as an index of motor learning efficiency,
we calculated the change rate of task error on the 1st day by
normalizing the task error of Block 1-5 with the task error of Pre.
Similarly, we calculated the change rate of task error on the 2nd
day by normalizing the task error of Block 2-5 with the task error
of Block 2-1.

Statistical Analysis
The normal distribution of the data was assessed using the
Shapiro–Wilk test. A mixed analysis of variance (ANOVA)
was used to compare the change in MEP amplitudes for
CONDITION (RPM and Control condition) and TIME (Pre,
Post0, and Post1). Task error was also analyzed using a mixed
ANOVA for CONDITION (RPM and Control condition) and
TIME (Pre, Block 1-1, Block 1-2, Block 1-3, Block 1-4, Block 1-
5, Block 2-1, Block 2-2, Block 2-3, Block 2-4, and Block 2-5).
Mauchly’s test of sphericity was used to analyze the sphericity
of the data obtained in each experiment. When Mauchly’s test
of sphericity could not be adopted, the Greenhouse–Geisser
correction statistic was used. When a significant main effect or
interaction was found, Tukey’s HSD test was used for post-hoc

comparisons. The correlation between MEP ratio and motor
learning efficiency was assessed using Spearman’s test. Statistical
significance was set at P < 0.05 for all tests.

RESULTS

MEP Amplitude
Figure 4 shows the MEP amplitudes before and after each
conditional intervention. Mixed ANOVA was used for
the CONDITION and TIME factors to compare the MEP
amplitudes. The results showed the main effects of the
CONDITION factor [F(1, 38) = 10.694, P < 0.001, η

2 =

0.220] and the TIME factor [F(1.336, 50.751) = 33.388, P < 0.001,
η
2 = 0.468]. A CONDITION × TIME interaction was also

observed [F(2,76) = 13.193, P < 0.001, η2 = 0.258]. The post-hoc
test results showed that there was no significant change of MEP
between Pre and Post0 under the Control condition (P = 0.693),
whereas a significant MEP increase was observed in Post1
(p = 0.003). Moreover, a significant MEP increase was observed
in Post1 compared with Post0 under the Control condition
(P = 0.030). Conversely, a significant MEP decrease at Post0
(P = 0.001) and a significant MEP increase at Post1 (P = 0.013)
were observed under the RPM condition. Furthermore, a
significant MEP increase was observed at Post1 compared with
Post0 under the RPM condition (P = 0.001).
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FIGURE 2 | (A) Visual Tracking Task. The tension gauge was fixed to the right index finger, and the abduction tension was measured. (B) Target waveform. The blue

circle indicates the manipulation markers that moved up and down according to the subject’s abduction tension. The blue line shows the target waveform. The target

waveform was set to 0–15% of the subject’s maximum abduction force and was presented as moving from right to left on the monitor. The subject adjusted the

abduction force of the indicated finger so that the manipulated marker accurately overlapped with the target waveform on the monitor.

FIGURE 3 | Experimental Protocol. First, we measured the MEP as a baseline value and evaluated the motor performance in the visual tracking task. The MEP was

then measured again after the intervention of either the RPM condition or the Control condition. Subsequently, five visual tracking tasks were performed as a motor

learning task. A total of 50 waveforms were presented randomly per block. One block lasted 50 s. A 10 s break was provided between each block, to avoid fatigue.

After the motor learning task, the MEP was measured again. On the following day (24 h later), five blocks of the visual tracking task were performed in the same way

as that used on the 1st day, to assess motor performance retention.
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FIGURE 4 | Changes in MEP amplitude in each condition. The red line indicates the average of the MEP amplitudes in the RPM condition. The blue line shows the

average of the MEP amplitudes in the Control condition. The error bars indicate the standard error (SE). After each intervention, the MEP amplitude was significantly

reduced in the RPM condition, whereas no change was observed in the Control condition. After the motor learning task, the MEP amplitude of the RPM condition

increased to the same level as that of the Control condition. *P < 0.05 (vs. Pre); **P < 0.01 (vs. Pre).
†
P < 0.05 (vs. Post0); ‡P < 0.01 (vs. Post0).

Motor Learning
Figure 5 depicts the task error changes under each condition.

MixedANOVAwas used for the CONDITION and TIME factors,

for comparison. The results showed a CONDITION × TIME

interaction [F(10,380) = 3.669, P < 0.001, η
2 = 0.089] and the

main effect of the TIME factor [F(3.068, 116.582) = 40.007, P <

0.001, η
2 = 0.513], but not a main effect of the CONDITION

factor [F(1,38) = 0.091, P = 0.765, η
2 = 0.002]. The results of

the post-hoc test showed that there was no significant decrease

in the task error from Block 1-1 to Block 2-5 under the Control
condition compared with the Pre-condition (Bock 1-1: P < 0.05;

Block 1-2 to Block 2-5: P < 0.01). Conversely, there was a

significant decrease in the task error from Block 1-3 to Block 2-
5 under the RPM condition compared with the Pre-condition
(Block 1-3 to Block 2-1: P < 0.05; Block 2-2 to Block 2-4:
P < 0.01), but no significant change in Block 1-1 and Block 1-
2 (all p > 0.05). These results showed that the RPM condition
induced a decrease in the motor learning ability immediately
after the intervention. On the following day, we observed no
significant change in the task error from Block 2-2 to Block 2-5
compared with Block 2-1 under both conditions (all P > 0.5).

The Correlation of MEP and Motor
Learning
Figure 6 depicts the correlation between the MEP ratio
(Post1/Post0) and the motor learning efficiency (Pre/Block 1-
5) on the 1st day and the BDNF gene polymorphism. The
RPM condition yielded a correlation between the MEP ratio
and the motor learning efficiency in Val/Val carriers before
and after exercise practice (r = 0.706, P = 0.019; Figure 6A),
but not in Met carriers (P = 0.125; Figure 6B). This result
showed that in carriers of the Val/Val genotype, MEP increased
as the task error was decreased by motor learning task. The
control condition showed no correlations in both groups, i.e.,
Val/Val and Met carriers (Val/Val: P = 0.651; Met carriers: P
= 0.624; Figures 6C,D). Similarly, after the motor learning task
from Pre under the RPM condition, there was a significant
positive correlation between the MEP ratio (Post1/Pre) and
the motor learning efficiency in Val/Val carriers (r = 0.735,
P = 0.043; Figure 7A), but not in Met carriers (P = 0.719;
Figure 7B). In addition, under the Control condition, there was
no correlation in both groups (Val/Val: P = 0.087; Met carriers:
P = 0.871; Figures 7C,D).
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FIGURE 5 | Change in the task error in each condition. The red line shows the average task error under RPM conditions. The blue line indicates the average task error

of the control condition. The error bars indicate the standard error (SE). *P < 0.05 (vs. Pre); **P < 0.01 (vs. Pre).

Correlation Between Homeostatic
Plasticity and Motor Learning
Figure 8 shows the correlation between MEP variability
[(Post1/Post0)/(Post0/Pre)] and Day 1 motor learning efficiency
(Pre/Block 1-5) induced by the passive movement intervention
and motor learning task. After classifying results and examining
them according to BDNF gene polymorphisms, a significant
positive correlation was noted between MEP variability and
the motor learning efficiency induced by the passive movement
intervention and motor learning task in Val/Val carriers
(r = 0.579, P = 0.013; Figure 8A), but not in Met carriers
(P = 0.096; Figure 8B). These results showed that the higher
MEP variability caused by the passive movement intervention
and motor learning task lowered the error rate in Val/Val
carriers. Conversely, under the Control condition, there was
no relationship between MEP variability and motor learning
efficiency in both Val/Val and Met carriers induced by passive
movement intervention and motor learning task (all P > 0.05;
Figures 8C,D).

DISCUSSION

In the present study, we examined the manner in which an RPM
intervention delivered before motor learning tasks impacts the

subsequent motor learning ability. The results indicated that,
although the motor learning ability transiently declined after the
5Hz RPM, the motor performance finally improved to the same
level as that detected in the Control condition; moreover, the
corticospinal excitability was also increased. Furthermore, it was
shown that, in the subjects with the Val/Val genotype, there was a
relationship between the increased corticospinal excitability and
the improved motor performance afforded by motor learning
task after RPM.

The present study showed that the MEP amplitude declined
transiently after 5Hz RPM. Previous studies have also reported
that MEP amplitude transiently decreased after RPM (Brasil-
Neto et al., 1994; Teo et al., 2012b; Miyaguchi et al., 2013, 2016;
Sasaki et al., 2017; Onishi, 2018). In the present study, we used
the 5Hz RPM intervention, which also decreased M1 excitability
for 15min after the intervention, as shown in a previous study
(Sasaki et al., 2017); moreover, the results of this study also
supported this hypothesis.

In the present study, subjects performed a visual tracking
task, which may increase the corticospinal excitability, while
experiencing decreased corticospinal excitability. While we had
predicted that homeostatic plasticity would cause a marked
increase in the excitability of the corticospinal tract, it was
equivalent to that of the Control condition. In previous studies,
the effect of the rTMS intervention depended on the M1
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FIGURE 6 | (A–D) Correlation between MEP ratio (Post1/Post0) and motor learning efficiency in carriers of each of the genetic polymorphisms of BDNF. The red

circles indicate the Val/Val genotype, whereas the blue circles indicate the Val/Met genotype, and the yellow circles indicate the Met/Met genotype. There was a

significant correlation between MEP ratio and motor learning efficiency before and after motor learning task in the RPM condition only for Val/Val genotype carriers (r =

0.706; P = 0.019). These results indicate that in the Val/Val form in the RPM condition, corticospinal excitability was more likely to be increased in individuals whose

task errors were reduced by motor learning task.

excitability before the intervention (Lang et al., 2004; Siebner
et al., 2004; Quartarone et al., 2005; Bocci et al., 2014). Thus,
similar to that reported by previous studies (Siebner et al.,
2004; Ziemann et al., 2004; Ziemann and Siebner, 2008), it is
assumed that homeostatic-plasticity-like changes would occur
by performing a motor learning task that increased the M1
excitability after a 5Hz RPM intervention that decreased M1
excitability. However, the present study showed that the MEP
recorded after motor learning task under the RPM condition
was similar to that observed under the Control condition
and did not increase more than that of the control group. It
appears that the time interval between the two interventions
may have affected this process (Müller-Dahlhaus and Ziemann,
2015). Previous studies have shown that different time intervals
between the two interventions result in different changes
in plasticity (Jung and Ziemann, 2009; Fricke et al., 2011).
Therefore, it is supposed that the time interval between the
two interventions might affect the plastic changes; however,
the mechanism underlying this phenomenon has not been

elucidated in detail (Jung and Ziemann, 2009; Monte-Silva et al.,
2010, 2013; Müller-Dahlhaus et al., 2015). Therefore, in the
present study, different effects may be obtained by varying the
time interval between the RPM intervention and the motor
learning task. Thus, going forward, we would like to investigate
the details of the effect of the time interval between the
two interventions.

Previous studies have shown that the motor learning ability
is improved by performing motor learning task during periods
of reduced M1 excitability (Jung and Ziemann, 2009); however,
the present study did not confirm those findings. The difference
in the methods of the interventions used as preconditioning
may explain this discrepancy. The reported interventionmethods
used for preconditioning include repetitive transcranial magnetic
stimulation (rTMS), transcranial direct current stimulation
(tDCS), and PAS (Lang et al., 2004; Siebner et al., 2004;
Ziemann et al., 2004; Gentner et al., 2008; Jung and Ziemann,
2009; Siebner, 2010; Fricke et al., 2011; Schambra et al., 2011).
Therefore, its impact on motor learning ability may vary
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FIGURE 7 | (A–D) Correlation between MEP ratio (Post1/Pre) and motor learning efficiency to Pre for each genetic polymorphism of BDNF. The red circles indicate

the Val/Val, the blue circles are the Val/Met, and the yellow circles are the Met/Met genotypes. In the RPM condition alone, there was a significant correlation between

MEP ratio and motor learning efficiency for the Val/Val genotype (r = 0.735; P = 0.043). These results showed that in the case of the Val/Val genotype in the RPM

condition, corticospinal excitability was increased in individuals whose task errors were reduced by motor learning task.

according to the intervention methods used for preconditioning
(Karabanov et al., 2015; Lopez-Alonso et al., 2018). Furthermore,
we can consider that the results of the present study were also
influenced by the difference in the motor learning tasks used
after the preconditioning intervention. Previous studies used
motor learning tasks, including the thumb tapping task and the
sequence reaction time task (SRTT), after preconditioning for the
M1, to show that the learning ability in the thumb tapping task
improved (Jung and Ziemann, 2009), while the learning ability
in the SRTT task remained unchanged (Kuo et al., 2008). The
present study used a visual tracking task as a motor learning task,
and this difference in motor learning tasks may have affected our
results compared with those of previous studies.

In the present study, motor learning ability was transiently
decreased in the early stages of motor learning task, although it
finally became similar to that observed in the control condition.

Previous studies have reported that the M1 excitability plays an
important role in motor learning (Muellbacher et al., 2000, 2001;
Stagg et al., 2011a; Kolasinski et al., 2019). Reportedly, motor
learning is inhibited by reduced M1 excitability (Kuo et al., 2008;
Stagg et al., 2011b). Thus, the 5Hz RPM used in the present
study may also be responsible for the transient decrease in motor
performance observed immediately after the RPM intervention
because of the reduction of M1 excitability.

Here, BDNF gene polymorphisms also affected the correlation
between motor learning and increased MEP amplitude. We
found that Val/Val genotype carriers alone showed a positive
correlation between MEP variability and motor learning rates
after the RPM intervention and motor learning. The Val/Val
genotype carriers secrete more BDNF compared with the Met
carriers, and this genotype is prone to cause plastic changes
in nerve cells (Kleim et al., 2006; Fritsch et al., 2010; Cirillo
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FIGURE 8 | (A–D) Correlation between homeostatic plasticity and motor learning efficiency for each genetic polymorphism. The red circles are the Val/Val, the blue

circles are the Val/Met, and the yellow circles are the Met/Met genotypes. A significant correlation between homeostatic plasticity and motor learning efficiency was

found for the Val/Val genotype in the RPM condition alone (r = 0.579; P = 0.013). These results suggest that in carriers of the Val/Val genotype, the motor learning

rate was more likely to be higher in subjects who exhibited homeostatic-plasticity-like plastic changes in the RPM condition.

et al., 2012). The Val/Val genotype is also more prone to the
plastic changes in the M1 that are associated with motor learning
task and to improve motor performance (Fritsch et al., 2010;
McHughen et al., 2010). Moreover, it is obvious that the Val/Val
genotype is undoubtedly more prone to homeostatic plasticity
than are the Val/Met and Met/Met genotypes (Cheeran et al.,
2008). In light of these previous studies, the association detected
between homeostatic plasticity and the motor learning ability
in the present study may have been caused by the fact that,
in subjects with the Val/Val genotype, homeostatic plasticity is
prone to be caused by the RPM intervention and motor learning
task, with motor learning therefore improving. However, this
study had several limitations, including the inadequate sample
size of the Val/Met and Met/Met genotype groups, as well as
the inability to perform comparisons among the three groups of
Val/Val, Val/Met, andMet/Met genotypes. In the future, this topic
warrants study in greater detail using a larger sample size.

CONCLUSIONS

In the present study, we showed that, although the motor
learning task performed after passive motor intervention does
not affect the M1 excitatory changes and motor learning ability,
the effects differed according to the genetic polymorphism of
the subjects. In particular, we demonstrated that, in Val/Val
genotype carriers, the greater M1 excitatory change induced
by the passive exercise intervention and motor exercise led
to a greater improvement in motor learning ability. It was
also suggested that this might be associated with homeostatic-
plasticity-like changes occurring in the M1.
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