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Abstract 
Therapeutic antibody design has garnered widespread attention, highlighting its interdisciplinary importance. Advancements in 
technology emphasize the critical role of designing nanobodies and humanized antibodies in antibody engineering. However, current 
experimental methods are costly and time-consuming. Computational approaches, while progressing, faced limitations due to insuffi-
cient structural data and the absence of a standardized protocol. To tackle these challenges, our lab previously developed IsAb1.0, an in 
silico antibody design protocol. Yet, IsAb1.0 lacked accuracy, had a complex procedure, and required extensive antibody bioinformation. 
Moreover, it overlooked nanobody and humanized antibody design, hindering therapeutic antibody development. Building upon IsAb1.0, 
we enhanced our design protocol with artificial intelligence methods to create IsAb2.0. IsAb2.0 utilized AlphaFold-Multimer (2.3/3.0) 
for accurate modeling and complex construction without templates and employed the precise FlexddG method for in silico antibody 
optimization. Validated through optimization of a humanized nanobody J3 (HuJ3) targeting HIV-1 gp120, IsAb2.0 predicted five mutations 
that can improve HuJ3-gp120 binding affinity. These predictions were confirmed by commercial software and validated through binding 
and neutralization assays. IsAb2.0 streamlined antibody design, offering insights into future techniques to accelerate immunotherapy 
development. 
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Introduction 
Antibodies are derived from plasma cells and play a key role in the 
immune system. Because of their high specificity as well as their 
high affinity [1] to a large variety of macromolecules, antibodies 
are effective in treating cancer [2], viral infections [3], addiction 
[4], autoimmune diseases [5], and are of particular interest when 
considering for the current coronavirus disease 2019 pandemic 
[6]. With the development of antibody engineering technology, 
nanobodies and humanized antibodies have been identified as 
potential tools for the treatment of these conditions as they 
exhibit significant potential in therapeutics. Nanobodies are the 
recombinant variable domains of heavy-chain only antibodies 
[7]. Their unique structure imbues them with features like small 
size, increased stability, excellent solubility, and the capacity for 
deep tissue penetration. All of these properties have led to the 
use of nanobodies in molecular imaging and therapy for diseases 
[8] such as, cancer [9], viral infections [10], and autoimmune 

diseases [11]. However, a large number of xenogenetically sourced 
nanobodies and antibodies with specificity for clinically relevant 
antigens cannot be used in the clinical applications due to their 
high immunogenicity in humans [12]. Therefore, humanization is 
an important method for reducing immunogenicity of xenogeneic 
antibodies and improving their activation in human immune 
system. As such, it is apparent that current antibody design tech-
niques must be improved to evaluate these antibody derivatives. 

Currently, there are many techniques available for empirical 
antibody rational design, but these tools come with significant 
limitations. For example, X-ray crystallography and electron 
microscopy-based methods [13] are used to obtain 3D antibody 
structures, and phage display libraries are available to optimize 
affinity. However, these methods are time-consuming, expensive, 
and labor-intensive. Computational tools or algorithms are 
complementary methods that can reduce the time and cost 
required for antibody design by decreasing the number of failures
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and promoting the success rate of the experimental test [14]. 
Despite recent progress in these computational methods, several 
factors limiting their efficacy must be addressed. First, most 
antibody design tools are stand-alone and there is no free 
comprehensive antibody design protocol that provides users with 
detailed instruction from beginning to end. This requires users 
to spend considerable time creating a complete workflow of 
antibody design. Many current antibody design tools also require 
antibody–antigen complexes as an input for affinity maturation 
[15–17]. This information is not readily available for many 
complexes of therapeutic interest. Therefore, our lab previously 
established an in silico antibody design protocol IsAb1.0 [18]. 
However, the procedure of IsAb1.0 is not user-friendly enough. 
IsAb1.0 utilized homology modeling, requiring the input antibody 
to have homologous structures that are often unavailable for the 
novel antibodies. To ensure global docking accuracy, IsAb1.0 also 
requires users to input epitopes information, which is difficult to 
obtain in most cases. Finally, IsAb1.0 fails to consider the design 
of nanobodies and humanized antibodies, effectively excluding 
these potent molecules from consideration. 

Recently, artificial intelligence (AI)-based and physics-based 
methods have made great progress in antibody engineering 
[19, 20]. Evans et al. [21] developed a new model called AlphaFold-
Multimer by training AlphaFold, a deep learning-based tool 
for predicting single-chain protein structures, with multimeric 
inputs, incorporating support for multichain featurization and 
symmetry handling. AlphaFold-Multimer leverages Evoformer to 
represent pairwise relations between the different amino acids 
in the protein and multiple sequence alignment (MSA). The pair 
representation is used to predict the relative distances between 
the amino acids in the protein. The MSA information combines 
with pair representation to predict the final structure. AlphaFold-
Multimer has been proved to produce high-accuracy predictions 
in protein complexes. Barlow et al. [22] developed FlexddG, a 
physics-based method to predict protein complex binding affinity 
changes upon mutation. FlexddG uses “backrub” to generate an 
ensemble of models, followed by torsion minimization, side chain 
repacking, and averaging these two processes to approximate 
interface ��G values.  

By creating an antibody-design protocol that can overcome 
these issues, the development of antibody therapies could be 
significantly improved and more importantly, accelerated. One 
such case in which this increased speed is essential is the 
treatment of human immunodeficiency virus type 1 (HIV-1). HIV-1 
destroys CD4+ lymphocytes in their respective hosts, resulting in 
the development of acquired immunodeficiency syndrome (AIDS) 
[23,24]. The HIV-1 exterior envelope glycoprotein, gp120, binds to 
the T-cell surface receptor, CD4 [25,26], which triggers the fusion 
of the viral and cell membranes [27]. The receptor CD4 binding site 
is a conserved epitope that can be targeted by a wealth of broadly 
neutralizing antibodies that block the interaction of gp120 and 
CD4. Recently, Huang et al. [28] identified a llama VHH nanobody 
called J3 through neutralization screening of a phagemid VHH 
library. J3 exhibited a much broader and more potent neutral-
ization ability than other similar nanobodies. J3 also displayed a 
range of neutralization abilities that can neutralize over 95% of 
circulation HIV-1 strains and its IC50 reaches 0.256 μg/ml, much 
higher than soluble CD4 and VRC01 [29]. While J3 could be a 
powerful tool against HIV-1, it requires humanization before use 
in therapeutic constructs in humans to avoid/decrease immuno-
genicity. However, antibody humanization typically results in 
reducing affinity, so affinity maturation after humanization is 
warranted. 

Hence, our lab incorporated AlphaFold-Multimer2.3/3.0 and 
FlexddG to create a novel comprehensive in silico antibody design 
protocol called IsAb2.0. This new protocol is more accurate, and 
the procedure is more concise compared with the one previ-
ously developed by our lab. The protocol can also be applied to 
nanobody and humanized antibody design, meeting the demand 
for therapeutic antibodies in the treatment of complex diseases. 
IsAb2.0 only requires users to input sequences of the antibody and 
antigen. AlphaFold-Multimer first models the antibody–antigen 
complex; the output 3D structure serves as the possible binding 
pose. Then, the protocol applies SnugDock to refine the possible 
binding poses and outputs the final result. With the binding pose 
of the complex resolved, the protocol performs alanine scanning 
to predict the hotspots (or key residues) of the antibody that 
mediate antigen binding. Such information provides users with 
valuable insights for future antibody affinity engineering. Finally, 
FlexddG is conducted to perform single point mutation on anti-
body to improve its binding affinity and other properties. 

In this study, we built IsAb2.0 based on the protocol previously 
established by our lab and validated it by optimizing HuJ3. To 
generate humanized J3 (HuJ3), we first humanized the nanobody 
J3 and found that the HuJ3 compromised HIV-1 Env binding 
and neutralization potency by three to five folds. Then, we uti-
lized IsAb2.0 to model the 3D structure of HuJ3-gp120 complex 
and select point mutations that could improve HIV-1 neutral-
ization. We also used BioLuminate [30–32] from Schrödinger to 
further assess the performance of the protocol. Finally, the pre-
dicted results from IsAb2.0 were validated by experimental meth-
ods, including wet enzyme-linked immunosorbent assay (ELISA) 
and HIV-1 neutralization assays. Using IsAb2.0, we successfully 
improved HuJ3 affinity by introducing a single point mutation, 
E44R, demonstrating the versatility of our antibody design pro-
tocol. Compared with IsAb1.0, we improved our design protocol 
mainly by (i) applying AlphaFold-Multimer2.3/3.0 to accurately 
construct the 3D structure of the antibody–antigen complex, and 
(ii) applying a more accurate method, FlexddG, to conduct in silico 
antibody single point mutation. 

Method 
Antibody–antigen structural complex generation 
The COSMIC2 server (https://cosmic-cryoem.org/) [33], a cloud-
based computational platform developed by the University of 
Michigan for structural biology projects and openly accessible 
to academic researchers, facilitated the generation of an anti-
body–antigen structural complex. Initially, the protein sequence 
for gp120 Clade C was obtained from the Protein Data Bank 
(PDB: 7ri1) (https://www.rcsb.org/) and uploaded onto COSMIC2, 
along with the sequence files for HuJ3 and gp120 provided in the 
Supplementary Material. Subsequently, an AlphaFold2 job was 
initiated on the server. Since the AlphaFold toolkit on COSMIC2 

does not provide configuration of the number of generated mod-
els, the “number of predictions per model” was set to 10 to 
enhance prediction diversity. Detailed submission parameters are 
documented in the Supplementary Material. 

Structure refinement and local docking of 
antibody–antigen complex 
The initial binding pose generated by AlphaFold-Multimer was 
refined using SnugDock ensemble docking [34–36].  Due to the  
inaccuracy of AlphaFold-Multimer in modeling protein secondary 
structures, crystal structure of gp120 from PDB:7ri1 and the 3D 
structure of HuJ3, modeled by SWISS-MODEL (template PDB: 7ri1),
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were aligned to the complex generated by AlphaFold-Multimer 
and substituted for their corresponding components. This refined 
binding pose was then used as the input for SnugDock. The 
FastRelax function in Rosetta was employed to resolve potential 
clashes and identify energetically favorable conformations of the 
crystal gp120 and modeled HuJ3. Ten decoys were generated for 
both the crystal gp120 and modeled HuJ3, which were used as 
ensembles to enable flexibility of their backbone. These 10 relaxed 
gp120 and HuJ3 structures were prepacked using the Rosetta 
Prepack function to ensure low-energy starting side-chain confor-
mations. Subsequently, the SnugDock function was used to dock 
the crystal gp120 ensemble with the modeled HuJ3 ensemble. 
SnugDock initiated the docking with a random perturbation of 3 Å 
translation and 8◦ rotation in each Cartesian direction. The Motif 
Dock Score was utilized during the low-resolution docking phase 
[37]. One thousand decoys were generated and ranked by their 
interface score(I_sc). The formation of the docking funnel involved 
the criteria of whether the local docking was successful or not. 
Once the local docking was successful, the lowest I_sc result was 
chosen as the final local docking result. 

Computational alanine scanning and point 
mutation 
Possible hotspots (or key residues) on the antibody were predicted 
by Rosetta alanine scanning program [38–40] (AlaScan.xml, 
https://github.com/Kortemme-Lab/ddg/, Fig. S1). The distance 
cutoff value of interface residues was set to 5 Å. Among the 
alanine scanning results, the residues whose ��G higher than 
1 kcal/mol were selected as hotspots on the antibody. 

The “define_interface.py” was used to find out the inter-
face residues on antibody (Fig. S1). FlexddG program [22] 
(https://github.com/Kortemme-Lab/flex_ddG_tutorial, Fig. S1) 
was applied to perform single point mutation on the antibody 
interface residues to increase the binding affinity of HuJ3-
gp120 complex. The complex we wished to mutate was placed 
in the “inputs” folder. The antibody chain id was specified 
in the “chains_to_move.txt” file located in the “inputs” folder. 
FlexddG only allows users to mutate one residue at a time, 
so the “run_example_2.py” script was modified to specify the 
residue chain id and number we wanted to mutate each time. 
The parameters used to run the program were set as the 
recommended values. The “analyze_flex_ddG.py” file was used 
to analyze the output results from “run_example_2.py”, which 
printed the wild type and mutant interface �G. ��G score and the
��G score reweighted with the fitted GAM model were calculated 
and listed in a .csv file through “analyze_flex_ddG.py”. The 
mutant whose reweighted ��G score was lower than 0 kcal/mol 
was accepted as the mutation which may increase the binding 
affinity of the complex. 

BioLuminate point mutation validation 
BioLuminate software was downloaded from the Schrödinger 
website. The target complex structure was first imported to 
BioLuminate. Then, “protein preparation and refinement” was 
used to fix the structure (optimize orientations of hydrogen-
bonded groups, delete waters, and minimize the structure). The 
parameters used the default setting. The prepared structure 
was then imported to the “Residue Scanning” panel and the 
“Calculation type” selected the “Stability and Affinity” mode. 
In the residues table, the residues predicted by our protocol 
were selected and mutated to the potential mutations. The other 
parameters used the default settings. The mutations with affinity 
scores smaller than 0 kcal/mol were accepted. 

Humanization of nanobody J3 
Llama nanobody J3 was humanized by grafting its complementar-
ity determining regions (CRDs) (CDR1–3) residues to the closest 
human Ig germline variable domain (VH) family VH3–23 scaf-
fold. However, not all framework region (FR) residues are human. 
We deliberatively kept specific llama-derived FR residues, which 
include the vennerier region and packing residues that can modu-
late CDRs conformations and impact antigen binding. In addition, 
the “tetrad” in FR2, which is important to the nanobody stability 
and solubility, was left in its native state. Through this process, we 
obtained huJ3 with a 13 amino acid difference from the original 
nanobody J3. The “humanness” prediction results indicated the 
HuJ3 displayed a higher sequence similarity to naïve human 
antibody repertoire than the original J3, indicating a reduced risk 
of inducing immunogenicity in human applications. 

Experimental validation of point mutation 
All of the mutations of HuJ3 were selected for experimental 
validation. Their mutation sequence alignment was shown in 
supporting Fig. S2. These mutants were recombinantly expressed 
by the phagemid pComb3x [41] (Fig. S3), PComb3x was modified 
based on the original plasmid pComb3XSS, which is purchased 
from Addgene (Plasmid #63890). In the pComb3X, the lac pro-
moter is used for transcription initiation followed by an OmpA 
signal peptide directing VH proteins secretion into periplasm. 
The six consecutive histidine tag and the following Flag tag were 
used for protein purification and detection. The pComb3x con-
taining huJ3 was constructed by molecular subcloning to insert 
the huJ3 gene into the Sfi I linearized pComb3x backbone using 
the enzymes Sfi I and T4 ligase. The mutants plasmids were 
made through site-directed mutagenesis at BonOpus. Competent 
HB2151 Escherichia coli was transformed with these plasmids to 
express VH nanobodies. Antibodies were purified from E. coli 
periplasm after polumyxin B treatment followed by Ni-NTA chro-
matography. The molecular size and purity was verified by SDS-
PAGE in Fig. S4. ELISA was performed to determine quantita-
tive binding of each variant to the HIV-1 envelope glycopro-
tein. Transiently expressed gp140, a functional homolog of gp120 
used to evaluate HIV-1 binding in vitro, served as the antigen 
for evaluation. Plates were coated with 50 ng gp140/well at 4◦C 
overnight and subsequently blocked with 3% milk for 1 h at room 
temperature. Primary VH nanobodies, including the original J3, 
HuJ3, and each of the five variants, were serially diluted in 3% 
milk to achieve an 8-concentration gradient ranging from 1000 to 
0.0128 nM, then incubated on the coated and blocked plate for 
2 h at room temperature. After incubation, the plate was washed 
4 times by 0.05% PBST. The detection antibody, anti-FLAG M2-
peroxidase (A8592, Sig-ma-Aldrich, St. Louis, MO, USA), was added 
and incubated for 1 h at room temperature. The plate was washed 
another 4 times by 0.05% PBST. Binding activity was detected using 
3,3′,5,5′-tetramethylbenzidine (TMB, Sigma-Aldrich, St. Louis, MO, 
USA). The reaction was stopped after 2 min by TMB stop buffer 
(ScyTek Laboratories, Logan, UT, USA) to prevent oversaturation 
and absorbance was read at 450 nm. The experiment was per-
formed in duplicate. After analysis, another ELISA was performed 
in the same manner as above to validate and compare the gp140 
affinity of variant E44R with J3 and HuJ3. 

E44R was further validated in the laboratory-developed TZM-
bl HIV-1 Phenotyping Assay to measure the susceptibility of HIV-1 
(group M, subtype B, isolate BAL) to E44R compared with HuJ3. 
TZM-bl cells are an indicator cell line that allows quantitative 
analysis of HIV replication. TZM-bl cells were generated from
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HeLa cells that stably express large amounts of CD4 and CCR5 
and have separately integrated copies of the luciferase and ß-
galactosidase genes under control of the HIV-1 promoter. These 
cells naturally express CXCR4 receptors. TZM-bl cells were plated 
at 10 000 cells per well overnight. The cells were treated with 
serial dilutions of HuJ3 antibodies, and infected with a dilution of 
infectious HIV-1 virus normalized to an output of 140 000 relative 
light units (RLU) as determined by endpoint dilution. After a 48-h 
incubation at 37◦C, cells were lysed, and luminescence was mea-
sured in RLU using a commercially available luciferase detection 
system. The 50% in vitro concentration (IC50) was calculated as 
the concentration of antibodies needed to inhibit 50% of HIV-1 
replication in the assay. A batch control virus was run with each 
experimental setup. 

HuJ3 designed by IsAb1.0 
The crystal structure of gp120 CladeC (PDB: 7ri1) was obtained 
from the PDB (https://www.rcsb.org/). The sequence of HuJ3 
was submitted to the SWISS-MODEL web server [42] (https:// 
swissmodel.expasy.org/interactive). VHH nanobody J3 (PDB: 7ri1) 
was selected as the template to model the HuJ3. 

ClusPro [43–46] was employed to generate the potential binding 
poses of the HuJ3-gp120 complex. To specify the antibody docking, 
“Antibody Mode” [47] was chosen. HuJ3 was designated as the 
receptor and gp120 as the ligand. Paratopes and epitopes were 
entered into the attraction sections of the receptor and ligand, 
respectively, to set the docking constraints. The cluster among the 
top 10 global docking results that closely resembled the binding 
pose of PDB: 7ri1 was selected as the potential binding pose. 

The selected binding pose from global docking was input into 
the SnugDock function on the ROSIE web server, utilizing “thor-
ough mode” to refine the structure. The success of the local 
docking is based on the formation of the docking funnel. Once the 
local docking was successful, the lowest I_sc result was chosen as 
the final local docking result. 

Potential hotspots (or key residues) on the antibody were iden-
tified using the Rosetta alanine scanning program (AlaScan.xml). 
The distance cutoff for interface residues was set to 5 Å. Among 
the alanine scanning results, residues with a ��G higher than 
1 kcal/mol were identified as hotspots on the antibody. 

Single State Design protocol was obtained from Dr. Jens Meiler’s 
lab website. Initially, ‘define_interface.py’ was utilized to pre-
pare a residue file (resfile), which defined the interface residues 
should be mutated. Subsequently, the Single State Design protocol 
(design.xml) was employed to modify the antibody. 

Results 
Workflow of IsAb 2.0 
The general procedure of IsAb2.0 is outlined in Fig. 1. In  the  
first step, users input sequences of the antibody and antigen 
into the protocol, with antibody sequences retrievable from the 
IMGT (https://www.imgt.org/) database. In Step 2, AlphaFold-
Multimer2.3/3.0 generates 3D structures of the antibody, antigen, 
and their complex, effectively combining the functions of 
homology modeling and global docking from IsAb1.0. The per-
residue confidence metric (pLDDT) is used to evaluate the quality 
of the model generated by AlphaFold-Multimer, assessing local 
accuracy. If the pLDDT scores are below 70, the antibody–antigen 
complex undergoes further refinement. Otherwise, the complex 
proceeds to Step 4 for local docking. In Step 3, several methods 
can be used for structural refinement. If the structure with lower 
pLDDT score has a crystal structure, this crystal structure will 

Figure 1. The workflow of the IsAb2.0; users are required to input the 
sequences of antibody and antigen into IsAb2.0 protocol; AlphaFold-
Multimer 2.3/3.0 generates 3D structure of antibody–antigen complex 
based on their sequences; if the prediction quality (pLDDT) of complex is 
below 70, the structure undergoes refinement; SnugDock is then used to 
refine the antibody–antigen complex, followed by alanine scanning and 
FlexddG for hotspot identification and antibody optimization. 

be optimized by Rosetta FastRelax to resolve potential clashes 
and identify energetically favorable conformations. The relaxed 
structures will then replace the model generated by AlphaFold-
Multimer. If a crystal structure is unavailable, SWISS-MODEL will 
generate a new 3D homology model for low pLDDT structure 
and replace it. In Step 4, SnugDock performs local docking 
for the antibody and antigen, allowing flexibility of the CDR 
loops and interfacial side chains. SnugDock refines the potential 
binding poses provided by AlphaFold-Multimer and outputs the 
final antibody–antigen complex. In Step 5, after obtaining the 
3D structure of antibody–antigen complex, alanine scanning 
is performed to predict possible hotspots on the antibody, 
facilitating future antibody design. Alanine scanning mutates the 
interface residues to alanine and calculates the change in energy 
to identify hotspots. In Step 6, point mutations are applied to 
mutate the antibody interface residues to the remaining 17 amino 
acids and identify mutations that can improve the binding affinity 
of the complex. The antibody–antigen complex is imported into 
FlexddG to perform point mutations, identifying mutations that 
enhance binding affinity. 

Antibody–antigen structural complex modeling 
As a result, we acquired 50 decoys along with their respective 
predicted local distance difference test (pLDDT) scores for sub-
sequent analysis. By ranking the decoys based on their interface 
predicted template modeling and predicted template modeling 
(ipTM+pTM) scores, we identified the top 10 models with the 
highest scores. Remarkably, nine of these top models shared an 
identical binding position with J3-gp120. The model with the
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Table 1. pLDDT and ipTM + pTM value for top 10 
AlphaFold-Multimer predictions 

Top 10 predictions Average pLDDT ipTM + pTM 

Model_3_Pred_5 94.8754 0.9347 
Model_3_Pred_2 94.6905 0.9325 
Model_3_Pred_9 94.4099 0.9288 
Model_3_Pred_3 94.3835 0.9277 
Model_3_Pred_7 94.3328 0.9284 
Model_3_Pred_4 94.2564 0.9269 
Model_3_Pred_0 94.0165 0.9229 
Model_3_Pred_6 93.9752 0.9252 
Model_5_Pred_7 93.8252 0.9252 
Model_1_Pred_2 91.6369 0.6868 

Model_3_Pred_5 has the highest average pLDDT score and was selected as 
the result of AlphaFold-Multimer. 

highest pLDDT and ipTM + pTM scores was selected as the 
likely binding pose. However, upon aligning the gp120 modeled by 
AlphaFold-Multimer with the crystal gp120, it was revealed that 
even the best model, Model_3_Pred_5, contained some structural 
errors ( Fig. S5). These errors included a loss of alpha helix between 
residues LEU369-THR372 and two structural errors in the beta-
sheet regions, specifically between residues LYS419-LYS421 and 
ASP464-GLU466. The pLDTT plot indicated that all these regions 
had lower pLDTT scores. For HuJ3, since no crystal structure 
is available, the model generated by AlphaFold-Multimer was 
evaluated based on the pLDDT scores. According to the pLDTT 
plot (Fig. S6), the pLDTT value in CDR1 between residues PHE29-
GLN31 was lower than 60, indicating low confidence in this region. 
Structure analysis suggested that AlphaFold-Multimer may have 
failed to predict the alpha helix in this region. Similarly, the 
CDR3 residues SER105-GLY107 also had lower pLDTT scores. The 
structural analysis showed that this region may have failed in 
modeling an alpha helix. Since both CDR1 and CDR3 are impor-
tant in the local docking step. Hence, structure refinement was 
conducted to correct the structure of these regions. Additionally, 
Table 1 summarizes the average pLDDT and ipTM+pTM scores 
for each model. Moreover, detailed pLDDT data for each residue 
was plotted in Fig. S6, enhancing the comprehensive overview of 
model performance metrics. 

HuJ3-gp120 local docking 
AlphaFold-Multimer encountered challenges in accurately 
modeling protein secondary structures. Consequently, the crystal 
structures of gp120 and modeled HuJ3 generated by SWISS-
MODEL were used to replace the corresponding in the complex 
modeled by AlphaFold-Multimer. Then, using the complex binding 
pose to serve as starting structure to the local docking. The 
SnugDock ensemble docking was employed to perform local 
docking searches using backbone ensembles, which has been 
proved to improve docking accuracy. This ensemble docking 
approach relies on the conformational-selection mechanism for 
protein docking, utilizing a pre-generated ensemble of protein 
partners. The ensembles were generated using Rosetta Relax 
to sample various backbone conformations during docking. In 
the low-resolution stage, each docking run involves rigid-body 
translation and rotation around the protein partner, along with 
backbone swapping from the pre-generated ensemble. This 
allows for the sampling of diverse backbone conformations. In 
the high-resolution stage, an all-atom refinement is applied to 
the generated encounter complex, and the side-chains at the 

Figure 2. Comparison between HuJ3-gp120 and J3-gp120 3D structures. 
We overlapped the HuJ3-gp120 complex generated by IsAb2.0 with the 
J3-gp120 crystal complex. The general binding poses of HuJ3 and J3 with 
gp120 are highly similar, especially their CDR loops. 

interface are packed for optimal binding. The interface root 
means square deviation (I_rmsd) of heavy atoms in the interface 
residues between the reference structure and resulting structure 
was used to evaluate the performance of local docking. According 
to the Critical Assessment of Protein Interactions [ 38], docking 
results with an I_rmsd value lower than 4 Å are considered “near-
native” structure. According to the criteria from SnugDock [48], 
the robust evaluation of successful local docking is the presence of 
a “docking funnel”, in which the “near-native” result (low I_rmsd) 
has lower energy (low I_sc) than the non-native result [49]. In 
this case, three of the five lowest interface score (intermolecular 
energy/I_sc) results [50] have an I_rmsd value lower than 4 Å 
(N5 > =3), and the performance will be identified as successful 
docking. From the I_sc versus I_rmsd plot (Fig. S7), we found that 
all the five lowest I_sc results had I_rmsd lower than 4 Å, which 
meant that this local docking was successful and the native HuJ3-
gp120 binding pose has a higher chance of being similar to the 
binding pose we predicted. As for the final result, we chose the 
lowest I_sc result as our final binding pose of the HuJ3-gp120 
complex. The predicted HuJ3-gp120 complex also overlapped with 
the J3-gp120 crystal structure and showed that the binding pose 
of HuJ3 to gp120 was highly similar to J3 (Fig. 2). 

After the structural analysis of CD4-gp120 and J3-gp120, we 
found that residues D368, N425, M426, and V430 on gp120 inter-
acted with both J3 and CD4. In this case, we proposed that these 
residues may be the epitopes on gp120. In addition, the binding 
site on gp120 of J3 and HuJ3 are the same as CD4. Therefore, we 
hypothesized that these epitopes on gp120 will form a connection 
with HuJ3. Structural analysis of the predicted HuJ3-gp120 com-
plex (Fig. 3) revealed that gp120 formed 12 hydrogen bonds with 
HuJ3 (Table 2). The structure analysis of the HuJ3-gp120 complex 
revealed that D368 on gp120 formed hydrogen bonds with H56 
and I101 (HuJ3). N425, M426, and V430 formed hydrogen bonds 
with Y100, T99, and N30 on HuJ3, respectively. Compared with 
Fig. 3B and D, we noticed that both these interactions could be 
found on the J3-gp120 and CD4-gp120 complexes, which matched 
with the hypothesis we made previously and increased the relia-
bility of the HuJ3-gp120 complex we predicted.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae445#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae445#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae445#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae445#supplementary-data
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Figure 3. Comparison of hydrogen bonds between HuJ3 and J3 with gp120. Yellow dash line is hydrogen bond. (A) and (B) are the hydrogen bonds on 
HuJ3-gp120. (C) and (D) are the hydrogen bonds on J3-gp120. Most of the residue pairs forming hydrogen bonds are the same between HuJ3-gp120 and 
J3-gp120 complexes. Predicted epitopes of gp120 (D368, N425, M426, and V430) form hydrogen bonds with HuJ3. 

Table 2. Residue pairs forming hydrogen bonds on the 
HuJ3-gp120 and J3-gp120 complexes and the number of 
hydrogen bonds they form 

Residues on HuJ3 Residues on gp120 Number of hydrogen bonds 

N30 V430 1 
Y32 Q476 1 
H56 D368 1 
T99 M426 1 
Y100 N425 1 
I101 D368 2 
Y103 G366 1 
N104 D457 1 
N106 R456 1 
D109 K282 2 
Residues on J3 Residues on gp120 
N30 E429/V430 2 
Q31 Q428 1 
Y32 R476 1 
H56 D368 1 
K97 A281/T283 2 
T99 M426 1 
I101 D368 2 
Y103 G366 1 
N104 S365/D457 2 

HuJ3-gp120 alanine scanning and point mutation 
Computational alanine scanning was applied to predict the 
hotspots on the HuJ3-gp120 interface. Based on the criteria that 
neutral residues and hotspots were defined as ��G less or more 
than 1 kcal/mol during the mutation to alanine, six residues were 
defined as possible hotspots (Table 3). 

Table 3. Hotspots predicted by IsAb2.0 and their ��G 

Hotspots ��G (kcal/mol) 

Y32 1.00 
H56 3.11 
T99 2.50 
Y100 6.51 
Y103 1.79 
D109 3.13 

Residues whose ��G larger than 1 kcal/Mol are considered as the hotspots. 

To perform point mutation for the HuJ3-gp120 complex, the 
‘define_interface.py’ was used to find the interface residues on 
HuJ3. The interface cutoff value was defined as 5 Å, and 18 
residues on HuJ3 were identified as interface residues. Since previ-
ous experiments have tested mutations on CDR1 and Framework 
Region 1, our current focus is on mutating CDR2, CDR3 and inter-
face residues. All these residues were input into FlexddG program 
and mutated to the remaining 17 amino acids. The mutants whose 
��G smaller than 0 kcal/mol were filtered from the FlexddG 
results, and E44, V54, S98, T99, and S102 were all identified as 
possible mutation sites. Structure rational analysis was used to 
reduce the number of possible mutations. ��G of E44R was  
−0.394 kcal/mol, the second lowest mutation among the other 
E44 substitutions. Given that E44 is located within a negatively 
charged pocket, mutating it to a positively charged residue could 
enhance electrostatic interactions favorably (Fig. 4A). V54E had
��G value  −0.299 kcal/mol and E54 formed two hydrogen bonds 
with R432 on gp120 (Fig. 4B). Because S98 was in a hydrophobic 
pocket, it mutated into a hydrophobic residue which could imbue 
the complex with better electrostatic properties (Fig. 4C). T99R
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Figure 4. Comparison of hydrogen bonds between HuJ3 and designed HuJ3 with gp120. The yellow dashed line is the hydrogen bond. (A) E44R mutation, 
R44 enhances electrostatic interactions favorably. (B) V54E mutation, E54 forms two hydrogen bonds with R432 compared with V54. (C) S98W mutation, 
W98 increases the electrostatic property of the HuJ3-gp120 complex. (D) T99R mutation, T99 forms a hydrogen bond with M426, and R99 forms two 
hydrogen bonds with W427 and one with D474. (E) S102R mutation, R102 forms hydrogen bonds with P470 and I371 on gp120, respectively. 

Table 4. Five potential mutations repeated by BioLuminate 

Mutations � Affinity (kcal/mol) 

S102R −23.19 
T99R −12.63 
S98W −4.09 
V54E 2.52 
E44R −3.48

� affinity smaller than 0 kcal/Mol indicating that the mutation can increase 
binding affinity of the complex. Four of the five potential mutations 
predicted by IsAb2.0 have the same results as BioLuminate. 

had the lowest ��G value  −0.979 kcal/mol among the other 
substitutions. Compared with T99 forming a hydrogen bond with 
gp120, R99 formed two hydrogen bonds with W427 and one with 
D474, which made the binding between HuJ3 and gp120 more 
stable (Fig. 4D). S102R connected with P470 and I371 on gp120 by 
forming a hydrogen bond with them respectively, its ��G value  
−1.752 kcal/mol was the lowest among the other substitutions 
(Fig. 4E). Overall, E44R, V54E, S98W, T99R, and S102R were selected 
as the potential mutations. 

To increase the reliability of our predictions, the powerful 
protein engineering software BioLuminate from Schrödinger was 
applied to test the five predicted mutants. Each potential muta-
tion was performed by BioLuminate again. According to BioLu-
minate result analysis rules, the ‘� Affinity’ score lower than 
zero means the mutant binds more effectively than the original 
protein. Four of the five mutations predicted by our protocol with 
‘� Affinity’ lower than 0 (Table 4), indicating that four of the five 
mutations predicted by the protocol and BioLuminate had the 
same results. 

ELISA validation (Fig. 5B) showed that E44R had better binding 
affinity than HuJ3, which is consistent to the predicted result. 
V54E had the same binding affinity as HuJ3. The T99R mutant 
protein failed to express. S98W and S102R exhibit lower binding 
affinity than HuJ3. HIV-1 neutralization was consistent with ELISA 
results, with E44R showing an enhanced neutralization potency 
compared with HuJ3. However, its neutralization capacity was 
still lower than that of the original J3 nanobody (Table 5). A 
potential reason why V54E, S98W, and S102R failed to increase 
the binding affinity is that the side chain of valine and serine 
are uncharged, but glutamic acid and arginine have charged side 
chains. Also, tryptophan is significantly larger than serine. Such 
mutations may have caused a repulsive effect. Additionally, the 
loop regions are flexible, which may change the conformation 
of the loops, leading to decrease or no change to the binding 

Table 5. Comparison of mutation energy predicted by FlexddG 
and binding affinity data (EC50) determined by ELISA 

Mutations ��G (kcal/mol) EC50 (nM) 

E44R −0.394 1.696 
V54E −0.299 2.305 
S98W −0.621 N/A 
T99R −0.979 N/A 
S102R −1.752 10.36 

S98W showed no binding to the antigen, while T99R failed to express; 
therefore, there are no EC50 data for these two variants. 

affinity when mutations are introduced. As for T99R, it is likely 
that the mutation caused inaccurate folding and led to expression 
failure. 

Comparisons between IsAb2.0 and IsAb1.0 
To demonstrate the improvement of IsAb2.0, IsAb1.0 was applied 
to design HuJ3 and its predictions validated by the experimental 
methods (Fig. S8). The results of IsAb1.0 are provided in the 
Supplementary Materials. Figure 6 illustrated that the differences 
between the 3D structures of HuJ3-gp120 complexes generated 
by IsAb1.0 and IsAb2.0 were minimal. The modeling and docking 
results from both versions were closely aligned. However, IsAb2.0 
does not require modeled structures to have homologous pro-
teins as template, allowing it to generate 3D structures for novel 
antibodies and antigens. Additionally, IsAb2.0 does not require 
pre-existing binding information of the antibody and antigen, 
making it broadly applicable in various scenarios. The integration 
of AlphaFold-Multimer in IsAb2.0 enables the direct generation 
of antibody–antigen complexes from their sequences, achieving 
similar accuracy to complexes generated by IsAb1.0. This use of 
AlphaFold-Multimer effectively replaces the processes of homol-
ogy modeling and global docking in IsAb1.0, significantly sim-
plifying the protocol. Figure 5A showed that all four mutations 
predicted by IsAb1.0 exhibited either the same or lower binding 
affinity compared with HuJ3. In contrast, as discussed previously, 
one of the five predictions from IsAb2.0 was shown to increase 
the HuJ3-gp120 binding affinity, indicating that IsAb2.0 achieves 
higher prediction accuracy than IsAb1.0. Since protein–protein 
interaction can cause structure changes, Single State Design does 
not account for the conformational plasticity of proteins, leading 
to inaccurate predictions. Hence, FlexddG that uses the backrub 
method to generate ensemble models and allows structure flexi-
bility can achieve higher accuracy in increasing antibody binding 
affinity.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae445#supplementary-data
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Figure 5. Experimental validation of designed HuJ3 variants. (A) Binding affinity of HuJ3 variants predicted by IsAb1.0 for HIV-1 Bal gp140. (B) Binding 
affinity of HuJ3 variants predicted by IsAb2.0 for HIV-1 Bal gp140. (C) Percent neutralization of HIV-1 Bal by HuJ3 variants predicted by IsAb2.0. 

Figure 6. Alignment of the HuJ3-gp120 complexes generated by IsAb1.0 
and IsAb2.0. 

Discussion 
In this study, we developed an advanced antibody design proto-
col, IsAb2.0, by integrating state-of-the-art AI-based and physical 
methods. IsAb2.0 can be utilized for the design of humanized anti-
bodies and nanobodies, enabling the construction of more accu-
rate models of antibody–antigen complexes without the need for 
template and additional binding information, using AlphaFold-
Multimer. Furthermore, IsAb2.0 employs more accurate method 
FlexddG for predicting mutations. To validate our protocol and 
apply J3 to treat HIV-1 in human patients, we first humanized 
the llama nanobody J3 to HuJ3 to decrease its immunogenicity. 
We then applied the IsAb2.0 to design HuJ3 and increased its 
binding affinity with gp120. The IsAb2.0 modeled HuJ3-gp120 
complex. Based on the HuJ3-gp120 complex, the IsAb2.0 predicted 
six hotspots on HuJ3 and found five potential mutations that 
could increase the binding affinity of the HuJ3-gp120 complex. All 
five mutations had been repeated by BioLuminate, and four of the 
five mutations gave the same results as our protocol, showing that 
IsAb2.0 yielded similar predictions as the well-known commercial 
protein design software. Among the predicted mutations, experi-
mental validation by ELISA proved that E44R could increase the 
binding affinity of HuJ3-gp120. HIV-1 neutralization assays also 
showed the increased neutralization capacity of E44 compared 
with HuJ3. Although the prediction accuracy did not reach our 
expectations, these results support that IsAb2.0 has the potential 

to be applied to antibody design, including the design of nanobod-
ies and humanized antibodies. In the future, we will further refine 
our protocol and resolve its limitations. For example, we will aim 
to improve the accuracy of point mutation which, at this point, 
is not sufficient. This may be due in part to the inaccuracies of 
the score function in FlexddG. The current score function may 
not evaluate the mutations accurately, leading to point mutation 
failure. Also, the current point mutation program does not con-
sider the rationale of mutations, which contributes to the failure 
of prediction. The process of running FlexddG is complicated, 
leading to a prohibitively expensive computing time. Another 
limitation of our protocol is that it cannot run automatically. In 
some steps, to maintain prediction accuracy, it still requires users 
to choose the results manually. This problem means the protocol 
is not yet entirely user-friendly, especially for users who are not 
experienced in the area of antibody engineering. 

To solve the limitations mentioned above, we will develop a 
novel score function suitable for FlexddG that enhances the pre-
cision of the result evaluation. We will also examine the rationale 
of amino acids substation during mutation. In addition, we will 
create a machine-learning-based method than can predict amino 
acids probability in each position based on the difference between 
the framework and CDR regions. This method will combine with 
FlexddG and build an advanced program. The advanced program 
will let FlexddG mutate the specified position to the amino acids 
with high occurrence probability which can improve the efficiency 
of FlexddG. Another solution is to leverage the advantages of 
graph neural networks in handling 3D structures to develop an 
AI-based antibody design model. This AI-based model can more 
effectively represent the interactions between antibodies and 
antigens, enabling it to learn the patterns of the interactions 
within complexes and design the antibodies with higher accuracy. 
To achieve the automation of the protocol and maintain predic-
tion accuracy, we will create more advanced programs or modify 
existing methods to let the protocol select the correct results by 
itself. 

Another limitation is that AlphaFold-Multimer often fails to 
accurately model secondary structures, which can affect local 
docking accuracy. Users can evaluate the quality of structures 
modeled by AlphaFold-Multimer based on the pLDDT scores of 
residues. According to the AlphaFold official document, regions 
with pLDDT scores lower than 70 have low confidence and should 
be treated cautiously. We suggest that if pLDDT scores of all 
regions, or the interaction critical regions, are higher than 70, 
users can directly input complex modeled by AlphaFold-Multer 
into SnugDock. In our case, some secondary structures of both 
the antibody and antigen were not accurately predicted. Hence, 
structure refinement is necessary to achieve higher structural 
accuracy for the antibody or antigen. The best way to perform 
structure refinement is to replace the structures of both the
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antibody and antigen modeled by AlphaFold-Multimer with high-
resolution crystal structures. If the crystal structures are unavail-
able, users can generate accurate 3D structures by some powerful 
modeling program, e.g. SWISS-MODEL. 

Overall, the improvements made to the IsAb2.0 protocol has 
important implications for the future of antibody design. A 
standard, user-friendly antibody design tool could significantly 
improve and accelerate the development of antibody therapies 
across several fields, including the treatment of cancers, viral 
infections, and addiction. By developing IsAb2.0 protocol to 
include methods of nanobody and humanized antibody design 
while reducing its reliance on available structural data, we aim to 
expand treatment options for such conditions and reduce barriers 
to antibody engineering. 

Key Points 
• The novel antibody design protocol, IsAb 2.0, integrates 

AlphaFold-Multimer 2.3/3.0 to model the 3D structure 
of a humanized llama nanobody J3 and construct the 
binding complex of HuJ3-gp120. It can also predict the 
possible hotspots of HuJ3 and the potential mutations 
that can increase the binding affinity of HuJ3-gp120. 

• Four of the five potential mutations predicted by our 
protocol are validated by powerful protein engineering 
commercial software. ELISA confirmed that one of the 
predicted mutations can increase the binding affinity of 
HuJ3 for gp120. 

• The antibody design protocol provides comprehensive 
step-by-step instructions for users and addresses some 
challenges in antibody design. It has the potential to 
design antibodies with increased binding affinity, assist-
ing researchers in meeting the high demand for thera-
peutic antibodies. 
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