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Immunological therapy principles are increasingly determining modern medicine. They are
used to treat diseases of the immune system, for tumors, but also for infections,
neurological diseases, and many others. Most of these therapies base on antibodies,
but small molecules, soluble receptors or cells and modified cells are also used. The
development of immune checkpoint inhibitors is amazingly fast. T-cell directed antibody
therapies against PD-1 or CTLA-4 are already firmly established in the clinic. Further
targets are constantly being added and it is becoming increasingly clear that their
expression is not only relevant on T cells. Furthermore, we do not yet have any
experience with the long-term systemic effects of the treatment. Flow cytometry can be
used for diagnosis, monitoring, and detection of side effects. In this review, we focus on
checkpoint molecules as target molecules and functional markers of cells of the innate and
acquired immune system. However, for most of the interesting and potentially relevant
parameters, there are still no test kits suitable for routine use. Here we give an overview of
the detection of checkpoint molecules on immune cells in the peripheral blood and show
examples of a possible design of antibody panels.

Keywords: checkpoint receptors, immune diagnostics, flow cytometry, immune oncology, infection, immunity,
autoimmunity, laboratory diagnose
INTRODUCTION

In recent years, medical diagnostic laboratories have witnessed dynamic changes in the field of
cellular immunodiagnostics.

Those are based on several factors such as i) improvements offlow cytometers and their software,
which allows multi-parameter diagnostics with 12 and more colors even for routine laboratories,
ii) deepened immunological findings, which suggest a pathogenetic relevance for numerous
parameters, and iii) a variety of new therapies, which directly or indirectly affect the immune
system. Those changes must be described in order to optimally care for those patients.

Normally, only “Conformité Européenne” (CE)-labeled in-vitro diagnostic medical devices
(IVD) are used in patient diagnostics (1). However, due to the high dynamics in this field, the
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large number of antibodies, the required flexibility in the
composition of combinations, and the different characteristics
of the available laboratory equipment, it is not possible to use test
kits to any significant extent.

Here, we will provide an overview about checkpoint molecules
with diagnostic potential. This is not a complete list, but we have
limited ourselves to molecules for which reliable publications are
available and for which diagnostic relevance is suspected. Although
the expression of checkpoint molecules on T cells is the focus of
many studies, these markers can be detected on virtually all cells of
the innate and acquired immune system. Therefore, we present
exemplary cell populations expressing these molecules.

In order to flexibly respond to the challenges of this fast-growing
number of immune markers, we set up a combination of antibodies
in our laboratory that can be flexibly combined with additional
markers. We show examples for several cell populations which
markers we can detect this way. We know that these protocols are
not provided as IVD and must be set up thoroughly. This is a
challenge in clinical practice (2). For validation, recent publications
give support (3). Reference values are often not known and must be
established in-house (4). We present how we analyze them in a
specialized routine laboratory and give examples for T-cells,
monocytes, NK cells, and PMNs.
Frontiers in Immunology | www.frontiersin.org 2
All examinations were performed in an accredited
immunological laboratory according to the International
Standard DIN EN ISO 15189:2012 (5). The flow cytometric
measurement gave us a general overview of the distribution of
peripheral blood cells (Figure 1). Antibodies applied in our
investigation are listed in Table 1. For each sample, 100 µl of
whole blood was incubated with an antibody cocktail specific for
the desired cell populations. After surface cell staining for 15 min
at room temperature in the dark, erythrocytes were lysed by
incubation with lysis buffer (BD Biosciences, Heidelberg,
Germany) for 10 min. Lymphocytes were then fixed with 200 µl
PBS (Biochrom, Berlin, Germany) containing 1% formaldehyde.

For data acquisition, an eight color FACS Canto II flow
cytometer (BD Biosciences) was used, equipped with a 405 nm
violet laser, a 488 nm blue laser and a 647 nm red laser. All the
data were analyzed using FACS DIVA (BD Biosciences)
software. The expression of checkpoint molecules was given in
relative values (percentages).

Finally, we give examples of checkpoint regulation in human
pathologies, focusing on tumors, infection, and autoimmunity.
Here, we refrain from a comprehensive presentation of PD-1 and
CTLA-4 on T cells, as a broad body of data already exists in
this area.
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FIGURE 1 | Gating strategy. The basis of all measurements in this publication is the gating strategy shown here. After exclusion of doublets (A), Neutrophils, Monocytes
and Lymphocytes were identified based on the expression of CD45 and granularity (SSC) (B). Neutrophils are also defined by high CD16 and low CD14 expression
(CD14-CD16+) (C). Monocytes can be categorized into 3 subpopulations, based on their expression pattern of CD14 and CD16: i) “classical” CD14+CD16-, ii)
“intermediate” CD14+CD16+ and iii) “non-classical” CD14-CD16+ (D). T cells were defined as Lymphocytes expressing CD3 (E). By confronting CD4 and CD8 we then
identified cytotoxic T cells (CD4- CD8+) and T helper cells (CD4+ CD8-) (F). Among Lymphocytes, those cells that express CD56 but not CD3 were defined as NK cells
(G). They were further divided into a CD56dim (CD56+) and a CD56bright (CD56++) subset (H). Antibody panels used can be found in Table 1.
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TABLE 1 | Panel description and specification of antigens, fluorochromes, clones, distributors, and quantity of antibodies used for staining of 100 µl whole blood.

Antigen Fluorochrome Clone Company µl Antibody/100 µl blood

Panel (i): T cell 1
CD3 V500 UCHT1 BD Biosciences 2,5
CD45RA PerCP-Cy5.5 HI100 eBioscience 5
CD197 (CCR7) BV421 2-L1-A BD Horizon 2,5
TIGIT Alexa Fluor 647 A15153G BioLegend 5
PD-1 PE EH12.1 BD Pharmingen 5

Panel (ii): T cell 2
CD4 V450 RPA-T4 BD Horizon 2,5
CD8 PerCP SK1 BD Horizon 5
CD45 APC-H7 2D1 BD Pharmingen 2,5
TIGIT Alexa Fluor 647 A15153G BioLegend 5
PD-1 PE EH12.1 BD Pharmingen 5

Panel (iii): T cell 3
CD4 V450 RPA-T4 BD Horizon 2,5
CD8 PerCP SK1 BD Horizon 5
CD45 APC-H7 2D1 BD Pharmingen 2,5
CD3 V500 UCHT1 BD Horizon 2,5
PD-1 PE EH12.1 BD Pharmingen 5
Tim-3 APC F38-2E2 BioLegend 5
Lag-3 FITC 11C6C65 BioLegend 5
BTLA PE-Cy7 MIH26 BioLegend 5

Panel (iv): NK cell 1
CD3 V500 UCHT1 BD Bioscience 2,5
CD16 FITC 3G8 BioLegend 2,5
CD45 APC-H7 2D1 BD Pharmingen 2,5
CD56 PE-Cy 7 NCAM16.2 BD Bioscience 2,5
Lag-3 PE 11C3C65 BioLegend 5
Tim-3 APC F38-2E2 BioLegend 5

Panel (v): NK cell 2
CD3 V500 UCHT1 BD Bioscience 2,5
CD16 FITC 3G8 BioLegend 2,5
CD45 APC-H7 2D1 BD Pharmingen 2,5
CD56 PE-Cy7 NCAM16.2 BD Bioscience 2,5
Siglec-7 PE 6-434 BioLegend 5
TIGIT Alexa Fluor 647 A15153G BioLegend 5

Panel (vi): Monocyte 1
CD45 APC-H7 2D1 BD Pharmingen 2,5
CD16 V450 3G8 BD Horizon 2,5
CD14 Pe-Cy7 M5E2 BD Pharmingen 2,5
HLA-DR PerCP L243 BD Bioscience 5
SIRPa FITC 15-414 BioLegend 5
Tim-3 APC F38-2E2 BioLegend 5
LILRB2 PE 42D1 BioLegend 5

Panel (vii): Monocyte 2
CD45 APC-H7 2D1 BD Pharmingen 2,5
CD16 V450 3G8 BD Horizon 2,5
CD14 Pe-Cy7 M5E2 BD Pharmingen 2,5
HLA-DR PerCP L243 BD Bioscience 5
TIGIT Alexa Flour 647 A15153G BioLegend 5
VISTA PE MIH65.rMAb BD Pharmingen 5
LILRB4 BV510 ZM3.8 BDOptiBuild 2,5

Panel (vii): Monocyte 3
CD45 APC-H7 2D1 BD Pharmingen 2,5
CD16 V450 3G8 BD Horizon 2,5
CD14 Pe-Cy7 M5E2 BD Pharmingen 2,5
HLA-DR PerCP L243 BD Bioscience 5
PD-1 PE EH12.1 BD Pharmingen 5

Panel (viii): Neutrophil 1
CD45 PerCP 2D1 BioLegend 5
CD16 V450 3G8 BD Horizon 2,5
CD14 PE-Cy7 M5E2 BD Pharmingen 2,5
PD-1 FITC MIH4 BD Pharmingen 5
VISTA PE MIH65.rMAb BD Pharmingen 5
Tim-3 APC F38-2E2 BioLegend 5

(Continued)
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IMMUNE CELLS RELEVANT IN
CHECKPOINT DETECTION

T-Cells
T-cells derive from hematopoietic stem cells. Through several
processes of maturation, there are different subpopulations that
differ not only in their function within the immune system but
also in expression of unique markers. T-cells express CD3 and
the T-cell-receptor (TCR), as well as CD4 or CD8 (6). When
considering T-cells, these both molecules will be focused on in
this paper, as the detection of CD4 as well as CD8 on the cell
surface is suitable to reliably identify T-cells through flow
cytometry (Figure 1). We hereby state that essential T-cell
subpopulations are not selectively detected in this way.

T-cell activation as well as survival and expansion are
achieved through three main signals: i) interaction of TCR
with antigen peptide-loaded major histocompatibility complex
I or II (MHC-I/II) on antigen-presenting cells (APC), ii)
interaction of CD28 on T-cells with CD80 (B7-1) expressed on
APC or CD86 (B7-2) found on B-cells and monocytes, which
results in a co-stimulatory signal (7) and iii) cytokines secreted
by APCs that direct differentiation into T cell subsets.

Beyond that, several immune checkpoints interact with
signaling pathways in T-cell activation. Immune checkpoints
gained huge interest as they indicate and finally offer an
opportunity to modulate the effectiveness of the human
immune system. Long time established therapies to tumors or
chronic diseases are often limited by severe adverse events as they
come with drastic interference with the immune system.
Immune checkpoints expressed on T-cells are therefore subject
to many studies aiming at establishing an inhibitor. In this paper
there we focus on TIGIT, LAG-3, TIM-3, PD-1, and BTLA as
some common examples of immune checkpoints.

NK-Cells
Natural Killer (NK) cells are part of a heterogenous group called
innate lymphoid cells (ILCs). Even though they derive from
common CD34+ lymphoid progenitors, they do not express a
genetically rearranged antigen receptor (8). Because NK cells
uniquely express CD56 but neither CD19 nor CD3, common
markers of B- and T-cells respectively, they can be easily
identified using flow cytometry.

Accounting for 10-15% of all lymphocytes, NK cells can be
further differentiated into two main subsets, based on the
expression levels of CD56 and CD16 (9) (Figure 1). The
immature CD56bright CD16+/- subset is predominantly localized
Frontiers in Immunology | www.frontiersin.org 4
in tissue and secondary lymphoid organs and produces cytokines
(IFN-g, TNF-a, GM-CSF) and chemokines (CCL2, CCL3, CCL4,
CCL5). The fully mature CD56dim CD16+ subpopulation
accounts for 90% of NK cells in the peripheral blood and
possesses a potent cytotoxic capacity. However, contrary to
earlier believes, those main effector functions cannot be
unambiguously split up between the subsets. CD56dim NK cells
contribute significantly to early cytokine production (10) and
both CD56dim and CD56bright/CD16+ and CD16- change during
cytokine stimulation (11).

NK cells kill their targets by releasing lytic granules that
contain Granzymes, Perforin, Fas ligand (FasL, CD178), TNF-
related apoptosis-inducing ligand (TRAIL, CD253), Granulysin
and small anti-microbial peptides (12). Activity of NK cells is
determined by a homeostasis of germline encoded activating
and inhibitory receptors. The Natural Cytotoxicity Receptors
(NCRs): NKp30, NKp44 and NKp46 as well as activating forms
of KIR, 2B4 and NKG2D are some of the activating receptors
expressed on NK cells. Furthermore, FcgRIIIA facilitates
antibody-dependent cellular cytotoxicity (ADCC), through its
ability to recognize IgG opsonized targets. While most of those
activating receptors recognize ligands that are expressed by
abnormal cells, many inhibitory receptors like inhibitory KIRs
and CD94/NKG2A recognize classical or non-classical MHC-I
molecules as signs of self. Cells under stress often change the
expression of ligands for those activating or inhibitory receptors
and thus the homeostasis may shift towards activation of the NK
cells (12, 13).

For example, it is common for tumors and virus infected cells
to escape immunosurveillance by cytotoxic T-cells through a loss
of MHC-I and thus NK cells close a gap that is left by adaptive
immunity (13).

Based on work in our lab, this review will focus on TIM-3,
LAG-3, TIGIT and SIGLEC-7 as representatives of immune
checkpoints on NK cells (Figure 2). This selection is by no
means a complete representation of all immune checkpoints
expressed on NK cells.

B-Cells
B-cells are antigen presenting cells (APCs) which form the cellular
source of antibodies (14, 15). Stimulation of the B-cell receptor
(BCR) with its cognate antigen initiates a cascade of intracellular
signaling, leading to internalization of that antigen for processing
and presentation in context of major histocompatibility complex
class II molecules (MHC-II) to the T-cell receptor (TCR) of CD4+

T-cells (16–19). By interaction of the antigen peptide/MHC-II
TABLE 1 | Continued

Antigen Fluorochrome Clone Company µl Antibody/100 µl blood

Panel (ix): Neutrophil 2
CD45 PerCP 2D1 BioLegend 5
CD16 V450 3G8 BD Horizon 2,5
CD14 PE-Cy7 M5E2 BD Pharmingen 2,5
SIRPa FITC 15-414 BioLegend 5
LILRB2 PE 42D1 BioLegend 5
TIGIT Alexa Fluor 647 A15153G BioLegend 5
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complex and the TCR, the CD4+ T-cell gets activated and secretes
cytokines leading to an antibody class switch of the B-cell.
Consequently, the activated B-cell differentiates into a plasma
cell, which produces and secretes soluble antibodies against the
matching antigen (17, 20, 21). In addition to antigen presentation
and antibody production, activated B cells are also able to
generate immunological memory cells and carry out regulatory
functions (15, 22–25).

B-cells carry checkpoint ligands on theirs surface including
PD1-L, CD80/CD86 and ICOS-L (26–28). They also express
CD40 (CD154), a member of the tumor necrosis factor receptor
superfamily. Its ligand CD40-L is classically expressed on CD4+

T-cells (29).
CD40 is a transmembrane protein acting as a signal transducer,

which activates intracellular kinases and transcription factors as
well as the production of antibodies and a variety of cytokines.
Moreover, it influences apoptosis and regulates expression of
surface molecules (30). Clearly, the CD40/CD40-L pathway is
the most potent activator of B-cells (31, 32). It is also known that
the CD40/CD40-L pathway regulates the costimulatory activity of
B-cells, this directly influences T-cell activation (22, 33, 34).

In the past few years several therapeutic strategies, especially
in treatment of autoimmune disease, such as rheumatoid
arthritis, and lymphomas have been developed including
targeting surface markers like CD20 with Rituximab and by
disrupting inter- or intracellular functions, for example targeting
CD40-L with Toralizumab or Ruplizumab (35–40).

Tumor-infiltrating B-cells have been identified, but their
precise functional role in the tumor microenvironment (TME)
is still unclear. In some studies, it was demonstrated that B-cells
are tumor-promoting, others suggest that there is a positive
association with improved cancer outcomes, especially when
they are found in association with tertiary lymphoid structures
(TISs) (41–43). In absence of requests, we not yet included B-
cells in our diagnostic panels.
Frontiers in Immunology | www.frontiersin.org 5
Monocytes
Monocytes are a subgroup of leukocytes, belonging to the innate
immune system. Deriving from a myeloid progenitor cell in the
bone marrow, they circulate in the blood to detect any kind of
pathogens. They are able to enter tissues where they differentiate
into macrophages. Depending on what stimuli they encounter,
they can either differentiate into M1 or M2 macrophages. M1
macrophages are considered to promote inflammation by
producing proinflammatory cytokines. M2 macrophages have a
different function as they regulate and inhibit immune response
by producing anti-inflammatory cytokines (44). These different
macrophage phenotypes play an important role in cancer.
Current studies analyze how tumor derived extracellular
vesicles (EV) are able to modulate monocyte-derived
macrophages phenotype and cytokine profile (45). Some
studies suggest that these EVs contribute to M2 polarization
and thereby promote tumor immune evasion and tumor
growth (46).

Monocytes detect pathogens with their pattern recognition
receptors. Identified pathogens are phagocytized, internalized,
and processed into antigen fragments in a phagolysosome. These
fragments activate T-cells when presented viaMHC II receptors.
Besides detection of pathogens, phagocytosis and antigen
presentation, monocytes also have a secretory function. They
produce different anti- and pro-inflammatory cytokines to
regulate inflammatory responses. Therefore, they also release
chemokines to lure other immune cells to the inflammatory site.
Other secretory products are complement factors and growth
factors (47).

Monocytes can be divided into three groups according to their
surface expression of CD14 and CD16: classical monocytes are
CD14++CD16-, intermediate monocytes express both
(CD14+CD16+) and non-classical monocytes express high levels
of CD16 and low levels of CD14 (CD14lowCD16high) (48)
(Figure 1). Classical monocytes make up about 80-90% of all
A B

DC

FIGURE 2 | Representative flow cytometric analysis of the expression of immune checkpoints (green): LAG-3 (A), TIM-3 (B), Siglec-7 (C) and TIGIT (D) on resting
NK cells of a healthy donor (male, 23 years old) compared with isotype control (grey).
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monocytes and promote inflammation. Intermediate monocytes
account for 2-5% but show an increased proportion in several
inflammatory conditions such as sepsis, various viral infection,
and autoimmune diseases. 5-10% are supposed to be non-classical
monocytes with a more anti-inflammatory phenotype (49).

Monocytes are important in maintaining immune balance
and inhibiting excessive immune responses. When expressing
negative immune checkpoint receptors on their surface they
downregulate immune responses due to reduced cytokine
secretion or inhibition of immune responses of other immune
cells when interacting with them. In order to offer an overview of
common immune checkpoints expressed on monocytic surfaces
this paper attends to SIRPa, TIM-3, PD-1, TIGIT, VISTA,
LILRB2 and 4 (Figure 3).

Neutrophils
Neutrophils play a major role in immune defense against
microorganisms. They are the first cells to be recruited during
acute inflammation and possess a variety of effector mechanisms
to generate effective immune responses (50).

In addition, the importance of neutrophils in the tumor
microenvironment (TME) has become increasingly clear over
the last decade. Similar to tumor-associated macrophages
(TAMs), tumor-associated neutrophils (TANs) can be
subclassified into an anti-tumorigenic “N1” and a pro-
tumorigenic “N2” phenotype in this context (51).

It is well established that within other cell populations of the
immune system co-inhibitory and co-stimulatory stimuli
generated by checkpoint molecules play a crucial role in
Frontiers in Immunology | www.frontiersin.org 6
regulating and adapting immune responses. The neutrophil
response to invading pathogens must also be tightly controlled
in order to avert excessive inflammation and tissue damage.
However, it is not certain whether immune checkpoints
participate in this regulation of neutrophil responses.

Studies have shown that neutrophils express several immune
checkpoints such as PD-1 (52), VISTA (53, 54) and SIRPa (55)
and Siglec-7 (56). However, functions and immunological
relevance remain to be characterized. Only LILRB2 expression
and function on human neutrophils has been further studied.

In order to expand the knowledge of immune checkpoint
expression on neutrophils, we analyzed the expression of PD-1,
VISTA,TIM-3,TIGIT,SIRPaandLILRB2onneutrophils (Figure4).

Dendritic Cells
Dendritic cells (DCs) are the most potent antigen presenting cells
(APCs). They can be found in almost all tissues, where they play
a central role in regulation of the adaptive immune response.
DCs are uniquely able to induce primary naïve T-cell activation
and effector differentiation (57, 58). In comparison to other cells
in the immune system, their phenotypic and functional
heterogeneity are unique. DCs show a high expression of
major histocompatibility complex class II molecules (MHC-II)
and CD11c. They also express a lot of other molecules which
allows their discrimination into different subtypes (59, 60).

Another unique characteristic of these immune cells is the
ability of cross-presentation, a presentation of extracellular
antigens in the context of major histocompatibility complex
class I molecules (MHC-I) to activate naïve CD8+ T-cells for
A B

D
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FIGURE 3 | Representative flow cytometric analysis of the expression of immune checkpoints (blue): LILRB2 (A), LILRB4 (B), VISTA (C), SIRPa (D), TIGIT (E), PD-1
(F), TIM-3 (G) on resting peripheral blood monocytes of a healthy donor compared with isotype control (grey).
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immunity against a lot of tumors and viruses that do not infect
APCs (61, 62).

Through pathogens, cytokines and extracellular signals, such
as pathogen-associated molecular patterns (PAMPs) and
damage-associated molecular patterns (DAMPs), maturation of
immature DCs is triggered (63, 64). Mature DCs secrete T-cell
activating cytokines, increase MHC-II and CCR7 expression and
decrease their endocytic activity (65–69). In addition to increased
MHC-II expression, whilst the expression of other chemokine
receptors is downregulated, DCs lose their adhesive structures
during maturation, achieving the ability to migrate from the
periphery to secondary lymphoid organs, where their antigens
are presented to T-cells (70, 71).

Many T-cell immune checkpoint receptors have their ligands
on APCs. Manipulation of DCs through checkpoint blockade
hold great potential for avoiding T-cell anergy and inducing
efficient antitumor immunity (72).

Programmed cell death 1 ligand 1 (PD-L1 also called B7-H1
or CD274) and PD-L2 (B7-DC or CD273) are expressed by DCs
and other APCs. They inhibit cytokine production (IFN-g, IL10)
and proliferation of activated T-cells, which upregulate the
inhibitory receptor programmed cell death 1 (PD-1) (73, 74).
DCs with high expression of PD-L1 and PD-L2 can be found in
the tumor microenvironment (TME) where engagement with the
co-inhibitory receptor PD-1 limit the activity of effector T-cells
(75–77). Blocking the interaction between PD-L1 and PD-1 as a
tool in cancer immunotherapy has demonstrated therapeutic
efficacy in several cancer types (78–80). Various studies showed
remarkable anti-tumor effects in targeting PD-L1 in solid tumors
with the engineered humanized antibody MPDL3280A
(Atezolizumab), especially when PD-1 was expressed by
tumor-infiltrating lymphocytes (TILs). However, the response
rate has also been limited in several solid tumors (74, 78, 80).

CD80 is a member of the B7 superfamily and is expressed by
DCs and T-cells too. On DCs it acts as a positive regulator after
Frontiers in Immunology | www.frontiersin.org 7
binding by CD28 and as a negative regulator when interacting
with CTLA-4 on T-cells (81, 82). The checkpoint molecule
CTLA-4 binds CD80, as well as CD86, with greater affinity and
in a multivalent fashion compared to the co-stimulatory receptor
CD28, which leads to the limitation of co-stimulatory signaling
and thereby T-cell activation (83). Interestingly, PD-L1 of DCs
additionally bind CD80 on T-cells and thereby inhibit T-cell
responses (84). This means that there is a dual inhibitory effect of
PD-L1 expression: first interaction between PD-L1 and PD-1 and
second interaction between PD-L1 and CD80. Therapies with
monoclonal antibodies against PD-1 in the treatment of cancer
such as Nivolumab affect only the PD-L1/PD-1 pathway (79, 85).
This alone may not lead to overcome anergy, but an anti-PD-L1
monoclonal antibody specific to the interaction between PD-L1
and CD80 seems to be able to prevent T-cell tolerance (86, 87).
Further studies are required to determine whether monoclonal
antibodies against PD-L1 or PD-1 are more effective. Expression
of PD-L2 in tumor tissues and correlation to therapy failures
targeting PD-1 are less well studied than PD-L1, but specific
antibodies against PD-L2 could disrupt T-cell inhibition (88).

Inducible T-cell costimulatory-ligand (ICOS-L or CD275)
expressed by DCs is a member of the B7 family of
costimulatory ligands which has a sequence homology to
CD80/CD86 and is important for T-cell regulation (89, 90).
Blockade of ICOS-L disrupts binding to ICOS (CD278), which is
an activating co-stimulatory checkpoint receptor up-regulated
upon early T-cell activation (89, 91). ICOS is homologous to
CD28 and CTLA-4, they all control T-cell activation and
cytokine production (89, 91, 92). Interestingly, ICOS
furthermore adjusts the immunological memory by CD40/
CD40L dependent antibody class switching (93, 94). ICOS can
be found in tumors of different cancer types like ovarian cancer
and liver cancer, also expressed by TILs in CTLA-4 treated
melanoma patients (95–97). The dual role, antitumor and
protumor, could be a key for enhancement of antitumor
A B
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C

FIGURE 4 | Representative flow cytometric analysis of the expression of immune checkpoints (orange): PD-1 (A), VISTA (B), TIM-3 (C), SIRPa (D), LILRB2 (E),
TIGIT (F) on resting neutrophils of a healthy donor compared with isotype control (grey).
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immune responses by targeting the ICOS/ICOS-L pathway.
There are several clinical trials with monoclonal antibodies
against ICOS, for example with MEDI-570 (ClinicalTrials.gov:
NCT02520791, NCT01127321) and JTX-2011 (Vopratelimab,
NCT04319224, NCT02904226, NCT03989362, NCT04549025).
Both promise potential in immune checkpoint inhibitory and
antineoplastic activities by binding and blocking ICOS expressed
on CD4+ TILs and thereby disrupt the binding on ICOS-L
expressed by DCs. This prevents DC-induced proliferation and
accumulation of regulatory ICOS+ T-cells and would also inhibit
IL-10 production by CD4+ TILs.

For the development of anti-cancer therapies a greater
understanding of DCs and their immune checkpoint ligands is
needed. For example, combinations of DC vaccination and
different immune checkpoint inhibitors hold great potential to
activate naïve T-cells and induce immune memory responses in
different cancer types on one hand and to activate effector T-cells
in the TME on the other hand.

We have not yet included dendritic cells in our diagnostic panels.
IMMUNE CHECKPOINT MOLECULES

For this review, we focused on checkpoint molecules for which
we have established flow cytometric detection methods for
several reasons (Figure 5). For most of our results, we were
able to find further references in the literature. It was not possible
for us to establish all the described detections, and we omitted
PD-1 and CTLA-4 on T cells due to the broad data available.

PD-1
An immune checkpoint that has already been integrated as a
target in broad fields of clinical therapy is Programmed cell death
Frontiers in Immunology | www.frontiersin.org 8
1 (PD-1). It is predominantly expressed on activated CD4+ and
CD8+ T-cells. Moreover, it can be found on B-cells, NKT-cells,
dendritic cells, and monocytes (98). There are conflicting reports
on whether or not human NK cells express PD-1 (98, 99). So far,
the FDA has approved three PD-1 inhibitors: Nivolumab,
Pembrolizumab and Cemiplimab as well as three PD-L1
inhibitors: Atezolizumab, Avelumab, Durvalumab (100).

T-Cells
We too found that PD-1 is expressed on CD4+ and CD8+ T-cells
of healthy adults with a percentage of about 33% and 31%
respectively in unstimulated whole blood.

Interactions between PD-1 and its ligand PD-L1 keep cellular
immunity from overreacting, maintain peripheral tolerance, and
suppress the development of autoimmunity (101). However,
T-cells that overexpress PD-1, exhibit low proliferation and
cytokine production as well as low levels of cytokine release.
They are described as so-called “exhausted” T-cells. Such an
overexpression may result from permanent activation of the
cellular immune system through chronic viral infection (102,
103). CD8+ tumor-infiltrating lymphocytes that express high
levels of PD-1 have also been shown to be functionally impaired
(104). Accordingly, both increased frequency of CD8+ PD-1+ T-
cells and high PD-L1 expression levels can be looked at as
negative prognostic factors in tumors like ovarian cancer (105).

Monocytes
PD-1 is expressed in low levels on monocytes (106) and can be
upregulated upon toll-like receptor (TLR) stimulation (107, 108).
As a negative immune checkpoint PD-1 inhibits activation of
monocytes and thus reduces cytokine secretion, antigen
presentation and phagocytosis. On one hand this mechanism
prevents an overactivation of the immune system but on the
FIGURE 5 | Schematic overview of immune checkpoints expressed on innate and adaptive immune cells. Only immune checkpoints included in our panels
(Table 1) are shown. This selection is by no means a complete representation of all immune checkpoints.
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other hand it leads to a reduced immune response in acute and
chronic inflammatory conditions like sepsis, endocarditis, HIV
(107, 109, 110) or cancer. We were not able to detect PD-1 on
monocytes with our panel (Table 1).

CTLA-4
Cytotoxic T lymphocyte antigen 4 (CTLA-4) (CD152) is an
important member of the immunoglobulin-superfamily (111,
112). This family also includes CD28 and ICOS (stimulatory
receptors) as well as PD-1, BTLA and TIGIT (inhibitory
receptors). CTLA-4 downregulates the immune response after
ligand binding. This inhibitory receptor and CD28 are
homologous receptors expressed by CD4+ and CD8+ T-cells
(113). Both share a pair of ligands: B7.1 (CD80) and B7.2
(CD86), which are expressed on the surface of antigen
presenting cells (APCs) such as dendritic cells and B-cells
(114). One dimer of CD28 can only bind one B7 dimer (one to
one). One CTLA-4 dimer however, can bind two different B7
dimers, making the cross-linking bond much stronger than the
single bond between CD28 and B7 molecules which leads to a
much higher affinity and avidity (112, 115). This suggests that
CTLA-4 preferentially interacts with B7 molecules and thereby
aids in the limitation of immune response as a competitive
inhibitor of CD28.

Binding of CTLA-4 to B7 molecules finally depends on their
surface availability, which is a prerequisite for the receptors
function as a negative regulator of proliferation and T-cells
effector functions. Around 90% of CTLA-4 can be found in
intracellular vesicles in FoxP3+ regulatory T-cells (Treg) or on the
intracellular membrane of conventional T-cells. T-cell receptor
signaling leads to activation, whereby CTLA-4 is rapidly
expressed through exocytosis on the cell surface (81, 82). After
binding of CTLA-4 to B7 it then interacts intracellularly with the
tyrosine phosphatase SHP-2 and the serine/threonine
phosphatase PP2A to inhibit T-cells (116, 117).

By using a flow cytometry assay Qureshi et al. observed a
substantial transfer of CD86+ vesicles into CTLA-4+ cells. Their
results indicate that CTLA-4 has a cell intrinsic function and
seems to be able to capture and deplete its ligands by trans-
endocytosis and thereby extrinsically inhibit T-cell activation via
CD28 (118). Ipilimumab is the only FDA approved CTLA-4
inhibitor available to date (100).

VISTA (VSIR, Gi24, Dies-1, PD-1H, B7-H5,
C10orf54, SISP1, and DD1a)
V-domain Ig suppressor of T-cell activation (VISTA, also known
as VSIR, Gi24, Dies-1, PD-1H, B7-H5, C10orf54, SISP1 and
DD1a) was first described in 2011 as a new member of the Ig
superfamily that has an inhibitory effect on T-cell activation (54).

VISTA is a type 1 transmembrane protein that consists
of a single extracellular Ig-V domain, a stalk region, a
transmembrane segment, and a cytoplasmic region without
any signaling domains (ITAM, ITIM or ITSM motifs) (54).
However, the cytoplasmic domain contains a Scr homology 2
(SH2)-binding motif, three C-terminal SH3-binding domains
and multiple casein kinase 2 and phosphokinase C
phosphorylation sites for signal transduction (119, 120).
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Structurally VISTA is associated with the B7-CD28 family and
closest related to its members PD-L1 (regarding the Ig-V
domain) or to PD-1 (regarding the cytoplasmic domain) (54,
121). Yet VISTA has several sequence features, which have not
been identified in any other B7 family member, e.g., four
additional invariant cysteines of which three are located within
the Ig-V domain and one within the stalk region (54, 122).

VISTA is an important regulator of immune homeostasis and
anti-tumor immunity. Within the immune cell compartment
VISTA is mainly expressed by myeloid cells (neutrophils,
monocytes, macrophages, and dendritic cells). Naïve T-cells
and CD4+ T-cells express VISTA at lower levels, CD8+ T-cells,
Foxp3+ Treg and CD56dim NK-cells show a minimal yet
detectable expression, while CD56bright NK-cells and B-cells are
mostly VISTA negative (53, 54, 123).

T-Cells
VISTA functions as both, a receptor and a ligand depending on
cellular context. Expressed by antigen presenting cells (APCs)
and regulatory T-cells (Treg) VISTA as a ligand inhibits T-cell
proliferation, cytokine and chemokine production, i.e., IFN-g,
IL-10, IL-17, IL-23 (54, 121, 124). The correspondent receptor on
T-cells remains to be characterized. Expressed by conventional
T-cells VISTA functions as a suppressive receptor. Antigen-
specific T-cell responses are down-regulated through cell
intrinsic signaling (121). Wang et al. identified V-set and Ig
domain containing 3 (VSIG-3, IGSF11) as a potential ligand for
VISTA (125). In addition to its inhibitory role, VISTA also has a
co-stimulatory effect. Bharaj et al. described that in context of
HIV, antigen-presentation by monocytes with high VISTA
expression levels resulted in increased cytokine secretion by
HIV-specific T-cells (126).

Monocytes
Lines et al. examined circulating blood cells by flow cytometry
staining them with an anti-VISTA monoclonal antibody. They
demonstrated that especially the myeloid compartment shows
strong VISTA expression, and that VISTA appears to be
expressed by all monocyte subsets: classical (CD14++CD16-),
intermediate (CD14+CD16+) and non-classical (CD14-CD16++)
(53). Several groups analyzed the impact of VISTA on innate
immune cells in cancer, autoimmune and inflammatory diseases
(54, 126–129).

TIM-3
T cell immunoglobulin and mucin domain-containing protein 3
(TIM-3) is an inhibitory receptor and a transmembrane protein.
It was originally described on T helpers cells type 1 (Th1) and
cytotoxic T cells type 1 (Tc1) (130). TIM-3 has an extracellular
IgV domain and a mucine stalk which consists of an N- and O-
linked glycosylation site. The intracellular tail has tyrosine
residues. The ligands galectin-9 and HMGB1 bind to TIM-3,
which leads to a phosphorylation of two conserved tyrosine
residues. The ligands Ceacam-1 and galectin-9 bind to different
regions in the IgV domain but both ligands lead to the same
phosphorylation of two tyrosine residues which are required for
the functional activity of TIM-3 (131, 132). Another ligand,
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HLA-B-associated transcript 3 (Bat3), binds to the intracellular
tail of TIM-3 and leads to a repression of TIM-3’s function. Bat-3
prevents TIM-3 dependent cell death and exhaustion. It saves
Th1 cells from galectin-9 mediated cell death and stimulates
proliferation and pro-inflammatory cytokine production (132).
TIM-3 is part of the TIM gene family as well as Tim-1 and Tim-
4. Besides T-cells it is expressed on NK-cells, monocytes,
macrophages and DCs (133).

T-Cells
In our own laboratory we observed very low expression levels of
TIM-3 on both unstimulated CD3+CD4+ and CD3+CD8+ T-
cells. After stimulating the T-cells with CD3/28 for 24 hours the
expression of TIM-3 was upregulated. This is shown in Figure 6
for CD3/28 stimulated T cells.

NK-Cells
NK-cells are the lymphocyte population with the highest surface
expression of TIM-3. CD56dim NK-cells express the checkpoint
with higher frequency than CD56bright NK-cells (72% ± 5% vs.
53% ± 6% [P <.001, n = 20]) and TIM-3’s surface expression also
appears to be slightly denser on the mature subset (134)
(Figure 7). Stimulation with IL-2, IL-12, IL-15, and IL-18
results in an up-regulation of TIM-3 (134, 135). TNF-a was
also reported to increase surface expression through an NF-kB
signaling pathway (136). Eomes and T-bet, two transcription
factors, play an important role in regulating TIM-3 on T-cells. In
Frontiers in Immunology | www.frontiersin.org 10
NK-cells regulation through T-bet appears to be more important
(134, 137). While TIM-3 was described as a marker of exhaustion
in the context of advanced melanoma (138) and other advanced
tumors (139), TIM-3+ NK-cells from healthy donors do show
functional diversity thus suggesting that TIM-3 cannot be looked
at as an independent exhaustion marker in NK-cells (140). There
have been conflicting reports on TIM-3’s function in the context
of NK-cells. Gleason et al. reported that engagement of TIM-3
increased IFN-g production (134). They proposed activation of
ERK followed by degradation of IkBa as the responsible
signaling pathway. Others reported TIM-3 to be an inhibitory
receptor capable of restricting NK-cells potential to lyse target
cells and to produce IFN-g (135, 138). Gleason et al. discussed the
possibility that the receptor could very well function both as
activator and as inhibitor. This could be realized through
phosphorylation of different tyrosine residues in the
cytoplasmic tail, which then could lead to distinct adaptor
proteins being recruited, ultimately resulting in different
pathways. They named the surrounding microenvironment
and ligand-dependence (as is the case with Tim-1) as possible
factors that can decide which distinct receptor function is
triggered (134). In contrast to T-cells, chronic activation of
TIM-3 does not result in apoptosis (138).

Monocytes
TIM-3 is constitutively expressed on unstimulated peripheral
blood CD14+ monocytes. Zhang et al. (108) used flow cytometry
A

B

FIGURE 6 | Representative flow cytometric analysis of TIM-3 expression on T helper cells (CD4+) (A) and cytotoxic T cells (CD8+) (B). Comparison of unstimulated
(left) and CD3/28 stimulated results after 24h (right) (healthy donor, male, 23 years old).
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to analyze PBMCs from healthy humans for TIM-3 surface
expression on naïve and stimulated monocytes. They further
examined intracellular expression of IL-12, -10, -6, and TNF-a,
proinflammatory cytokines produced by monocytes. They
showed that unstimulated monocytes with low or nearly no
cytokine expression, express TIM-3 at relatively high levels. This
indicates TIM-3’s inhibitory role in monocytes. During the first
24h after stimulation with 5µg/ml LPS they observed a rapid
reduction of TIM-3’s expression, that resolved slowly after 48h.
Additionally the LPS mediated decline in TIM-3 expression
correlated inversely with IL-12 release. To verify that this effect
is due to TIM-3 expression on monocytes, its expression was
blocked with a monoclonal antibody confirming the increase of
TLR-mediated IL-12 production in monocytes. Thus,
downregulation of TIM-3 might play an important role in
inflammatory conditions.

Other studies show similar results for TIM-3 expression
under TLR Stimulation. Ma et al. (141) stimulated monocytes
with 1 µg/ml LPS for 1-6 h. TIM-3’s surface expression was at
first reduced and almost not existing after 6 h of stimulation.

Anderson et al. generated an antagonistic antibody of TIM-3
showing a rapid reduction in galactin-9 mediated TNF-a
production in monocytes suggesting that TIM-3 could
promote production of pro-inflammatory cytokines such as
TNF-a in monocytes (142). Therefore, it may be an important
therapeutic target in inflammatory diseases. Interestingly, these
results are in contradiction with the results of Zhang et al. (108).
Further studies are needed to evaluate influence of TIM-3 on
cytokine production in monocytes.

Neutrophils
To our knowledge, no studies have been performed on TIM-3
expression on neutrophils. We could not detect any relevant
TIM-3 expression on neutrophils in unstimulated whole
blood (Figure 4).
Frontiers in Immunology | www.frontiersin.org 11
LAG-3
The first description of Lymphocyte-activation gene 3 was in
1990 on activated NK- and T-cells (143). Furthermore, LAG-3
can be detected on B-cells (144) and dendritic cells (145). LAG-3
contains 4 extracellular domains. There are strong internal
homologies between domain 1 and 3, as well as domain 2 and
4. The peptide sequence and the general organization of the
molecule lead to the assumption that LAG-3 is closely related to
CD4. Furthermore, they both share a location in the distal part of
chromosome 12 (143). The cytoplasmic tail of LAG-3 has a
unique KIEELE motif (131). There is a correlation between the
expression level and the inhibitory function of LAG-3. An FXXL
motif in the membrane-proximal region and a C-terminal EX
repeat transduce two inhibitory signals of LAG-3 which inhibit
IL-2 production. They are independent from each other. LAG-3
could be another target for combinatorial therapy because other
inhibitory co-receptors do not use these motifs (146). Major
histocompatibility complex class II (MHC-II) is the main ligand
of LAG-3. Fibrinogen-like protein (FGL1) is a liver secreted
protein which inhibits antigen-specific T-cell activation. It is
another functional ligand of LAG-3 and works independently
from MHC-II. The removal of FGL1 promotes T-cell immunity
(147). LSECtin, a Type-II transmembrane protein of the C-type
lectin-superfamily is also able to interact with LAG-3 and thus
cause inhibition of INF-g production by effector T-cells. LSECtin
is expressed in the liver but can also be found in tumor tissues
like melanoma (148).
T-Cells
In our own experiments, we did not observe LAG-3 expression
on unstimulated CD3+CD4+ or CD3+CD8+ T-cells. Expression
on both subsets increased after 24h of stimulation with
CD3/28. In Figure 8, effect of CD3/28 stimulation of T-cells
is shown.
FIGURE 7 | Representative flow cytometric analysis of the expression of the immune checkpoint TIM-3 on resting NK cells of a healthy donor (male, 23 years old)
compared with isotype control.
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NK-Cells
Lymphocyte activation gen (LAG)-3 was described as
undetectable on resting but expressed on activated NK-cells
(143) (Figure 9).

Our understanding of LAG-3’s functional role on NK-cells is
still developing. NK-cells from homozygote LAG-3-/- mice show
reduced cytotoxic activity against different tumor cell lines but
remain able to lyse MHC class-I deficient targets (149). However,
Frontiers in Immunology | www.frontiersin.org 12
when Huard et al. used two different monoclonal antibodies
(mAbs) or a soluble form of LAG-3 to inhibit interaction
between LAG-3 and its ligand MHC class II, they did not
observe any changes in their cytotoxic activity against different
targets. They therefore concluded that LAG-3 is not involved in
the regulation of NK-cell cytotoxicity. However, they did not
investigate whether LAG-3 could impact cytokine secretion in
any form (150).
A

B

FIGURE 8 | Representative flow cytometric analysis of LAG-3 expression on T helper cells (CD4+) (A) and cytotoxic T cells (CD8+) (B). Comparison of unstimulated
(left) and CD3/28 stimulated results after 24h (right) (healthy donor, male, 23 years old).
FIGURE 9 | Representative flow cytometric analysis of LAG-3 Expression on NK cells. Comparison of unstimulated NK cells after 48h of co-incubation with
complete medium (left) and stimulated NK cells after 48h of co-incubation with 10ng/ml IL-15 (right). (healthy donor, female, 65 years old).
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TIGIT (VSig9, Vstm3, WUCAM)
TIGIT, which stands for “T-cell Ig and ITIM domain”, was first
described in 2009 (151–153). The member of the Ig superfamily
consists of a single extracellular immunoglobulin domain, a type
1 transmembrane region and a cytoplasmatic tail with a single
immunoreceptor tyrosine based inhibitory motif (ITIM) and an
immunoglobulin tail tyrosine (ITT)-like motif. It is expressed by
activated T-cells, Treg, memory T-cells, and NK-cells (153).

All known TIGIT ligands are Nectins and Nectin-like
molecules (Necls), which are cell adhesion molecules. CD155
(a.k.a. Poliovirus receptor [PVR], Necl-5) shows the highest
affinity, while CD112 (a.k.a. PVRL2, Nectin-2) only binds with
low affinity. Yu et al. also reported CD113 (a.k.a. PVRL3) to be a
TIGIT ligand which Stanietsky et al. were not able to confirm
(152, 153). Recently Nectin4 has been identified as an additional
TIGIT-ligand (154). CD155 is expressed on T, B, NK and NKT-
cells, DCs, macrophages, granulocytes, and monocytes as well as
on non-hematopoietic cells like endothelia and epithelia cells or
on cells of the central nervous system (155). Furthermore,
CD155 can be overexpressed in human malignancies like
primary lung adenocarcinoma (156), pancreatic cancer (157),
primary melanoma and metastasis of melanoma (158). In all
those cases overexpression correlates with poor prognostic
factors. Patients with different types of cancer also show
increased levels of soluble CD155 in their serum (159). CD112
is expressed on macrophages, DCs, granulocytes and monocytes
(155) but also on malignant cells like acute myeloid leukemia
(AML) blasts (160). Nectin4 expression in various healthy tissues
ranges from weak to moderate but can be highly expressed in
tumors like bladder-, breast- or pancreatic cancer (161). In
patients with gastric cancer, overexpression of Nectin4 was
associated with poor prognostic factors like, low differentiation,
primary tumor size, lymph node metastasis and higher TNM
staging as well as shorter overall survival (162).

Both CD155 and CD112 are also recognized by the activating
Receptor CD226 [a.k.a. DNAXaccessory molecule-1 (DNAM-1)]
(163). CD96 (a.k.a. T-cell activated increased late expression
[Tactile]) also binds CD155, but its functional role in humans is
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not well characterized (164). Due to its higher affinity, TIGIT
(Kd = 1-3 nM) can block interaction between CD155 and CD266
or CD155 and CD96 (153). To add even more complexity to this
regulatory network, CD112R [a.k.a. poliovirus receptor related
immunoglobulin domain containing (PVRIG)] is another
inhibitory receptor, that also binds CD112 as its ligand (165).
Nectin4 interacts with TIGIT but not with CD266, CD96 or
CD112R (154).

T-Cells
In healthy individuals, about 13% of CD4+ and 24% of CD8+ T-
cells express TIGIT in unstimulated whole blood samples.

TIGIT competes with CD226 for the common ligand CD155.
The higher affinity favors the inhibitory counterpart, which
results in reduced T-cell proliferation and cytokine production.
This is transmitted through a reduced expression of T-bet (T-box
expressed in T-cells), IRF4 (Interferon regulatory factor 4), and
RORc (retinoic acid receptor [RAR] related orphan receptor
gamma) (166).

TIGIT is upregulated on dysfunctional CD8+ cells that can
especially be found in the tumor microenvironment. For
example, CD8+ TIGIT+ T-cells were found in patients with
multiple myeloma. The ability of those cells to proliferate and
degranulate inflammatory cytokines was shown to be
insufficient (167).

Dual blocking TIGIT and PD-1 can partly restore the
capacities of CD8+ T-cells (168, 169). Further studies that aim
at establishing an anti-TIGIT monoclonal antibody (mAb), are at
different stages of testing. With PD-1 and TIGIT both being
expressed on the T-cell surface (170), measurement is possible
through cell surface staining with antibodies in flow
cytometry (Figure 10).

NK-Cells
Stanietsky and colleagues were the first group to establish TIGITs
role as an inhibitory receptor on natural killer (NK) cells (152).

Its expression on NK-cells shows a big interindividual
variance, ranging from 20% to up to 90% (mean, 62.57%),
FIGURE 10 | Representative flow cytometric analysis of the expression of immune checkpoints TIGIT and PD-1 on unstimulated whole blood T lymphocytes of a
healthy 41-year-old female.
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with TIGIT expression being higher on CD56dim than CD
56bright NK-cells (171) and Figure 11.

Interaction between PVR and TIGIT results in phosphorylation
of Tyr225 in the ITT-like motif by Src family kinases Fyn or Lck
initiating two known signaling pathways:

i) cytosolic adaptor protein Grb2 binds to phosphorylated
TIGIT (pTIGIT) and recruits SH2-containing inositol
phosphatase 1 (SHIP1). SHIP1 then inhibits PI3K by
hydrolysis of PI(3,4,5)P3, inactivating its downstream
effectors including parts of the mitogen−activated protein
kinase (MAPK) pathway, ultimately resulting in a disruption
of the polarization of granules toward the immunological
synapse between NK and target cells, almost blocking NK-
cell-mediated cytolysis (172).

ii) adaptor protein b-arrestin 2 binds to pTIGIT and recruits
SHIP1. SHIP1 suppresses auto-ubiquitination of TRAF6
which then impairs activation of NF-kB. In consequence,
secretion of IFN-g by NK-cells is inhibited (173).

Based on research with mice, He et al. proposed that TIGIT
could also play a role in the process of NK-cell education, that is
separate from the MHC-I dependent education pathway and that
also does not relay on involvement of CD226 (155).

Monocytes
TIGIT expression on monocytes is controversial and unclear.
There are studies negating the expression on resting and
activated monocytes (153). However, studies by Luo et al.
describe TIGIT expression on a small percentage of monocytes
in healthy individuals and showed that there might be a tendency
for a higher percentage of TIGIT expressing monocytes in
autoimmune diseases such as rheumatoid arthritis and
systemic lupus erythematosus (174, 175).

In our experiments we detected low TIGIT expression on
monocytes compared to isotype control in healthy individuals
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(Figure 3). Further studies are needed to create a consistent
picture of the TIGIT expression on monocytes.

Neutrophils
To our knowledge, no studies have been performed on TIGIT
expression on neutrophils. We show that TIGIT is expressed at a
low level on neutrophils in unstimulated whole blood (Figure 4).

SIRPa (CD172a, PTPNS1, MFR,
p84, BIT, SHPS-1)
Signal regulatory protein alpha (SIRPa) was first described in
1996 as a novel membrane-associated glycoprotein and potential
substrate for Src homology 2 (SH2)-containing protein tyrosine
phosphatases, SHP-1 and SHP-2 in rat fibroblasts (176).

SIRPa contains three Ig like domains – one N-terminal V-set
domain and two C1-set domains, a transmembrane segment and
a cytoplasmic region with two ITIM motifs containing four
tyrosine residues (176–178).

SIRPs form an own family of paired receptors. SIRPa, b1 and
g share structurally closely related extracellular regions but show
diversity within their transmembrane and cytoplasmic regions
and thus facilitate different intracellular signals. SIRPa has an
inhibitory effect, SIRPb1 has an activating effect and SIRPg has
no signaling function [reviewed in (179)].

CD47 (also known as Integrin-associated protein, IAP) was
identified as a ligand for SIRPa (180). CD47 and SIPRa however
are not restricted to interact with each other but are both known
to have alternative binding partners. SIRPa is involved in
inhibiting alveolar macrophage phagocytosis through
interaction with lung surfactant proteins SP-A and SP-D (181)
while CD47 interacts with several integrins and functions as a
receptor for thrombospondin-1 (182, 183). This review focuses
on the SIRPa-CD47 axis.

As CD47 is ubiquitously expressed including erythrocytes
and thrombocytes, it was initially characterized as a ‘marker
of self’ (184). Also, senescent erythrocytes have shown to
FIGURE 11 | Representative flow cytometric analysis of the expression of the immune checkpoint TIGIT on resting NK cells of a healthy donor (male, 23 years old)
compared with isotype control.
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undergoCD47 conformational changes leading to engulfment
by splenic macrophages (185). Consequently, CD47-SIRPa
interaction was classified as a ‘do not eat me’ signal preventing
inadequate phagocytosis.

The interaction between SIRPa on macrophages and CD47
leads to phosphorylation of SIRPa’s ITIM motifs involving
recruitment of SHP-1 and SHP-2. Subsequently, accumulation
of non-muscle myosin IIA at the phagocytic synapse is inhibited
compromising contractile engulfment (186).

Within the immune cell compartment SIRPa is highly
expressed by myeloid cells (macrophages, monocytes,
granulocytes, dendritic cells) while T-cells, B-cells and NK-cells
do not show any relevant SIRPa expression (55).

Monocytes
Adams et al. analyzed the SIRPa expression on rat monocytes
finding high surface expression levels (177).. Seiffert et al. showed
similar results in a study on cells from healthy human donors.
They incubated monocytes with agonistic anti-SIRPa
monoclonal antibodies and observed the expression using flow
cytometry. Compared to other hematological cells, monocytes
had the strongest SIRPa expression (55). Smith et al. confirmed
the constitutive SIRPa expression on monocytes using flow
cytometry as well (187).

BTLA
B and T lymphocyte attenuator (BTLA) is an inhibitory receptor
expressed by B- and T-cells (188). It is a cell surface molecule
(189). BTLA is an immunoglobulin domain containing
glycoprotein and has two immune receptor tyrosine based
inhibitory motifs (190).

It has been indicated that BTLA is recognized by B7x which is
an orphan B7 homolog (191). Other studies reported herpesvirus
entry mediator (HVEM) as another ligand for BTLA. The
extracellular immunoglobulin domain of BTLA is connected
with the membrane distal cysteine-rich domain (CRD1) of
herpesvirus entry mediator (HVEM) (192). HVEM is part of
the TNFR superfamily, a type 1 membrane protein with a N
terminal extracellular region. The cytoplasmic segment is closely
associated with TNFR- associated factors (TRAFs) and in
addition with STAT3 signaling pathways (193, 194).

T-Cells
There is no expression of BTLA on naive T-cells. The expression
of BTLA is induced in activated T-cells and remains on T-helper
type 1 Th1 but not on Th2 cells. Activation of BTLA leads to
phosphorylation of its tyrosine and linkage to Src homology
domain 2 (SH2). Furthermore, it lessens the CD3 induced
Interleukin 2 (IL-2) production. BTLA reduces the proliferation
of T-cells (190).

Complementarily to its inhibitory function, other studies show
an activating feature. BTLA on CD8+ dendritic cells acts as a
trans-activating ligand and delivers positive co-signals through
HVEM expression in T-cells. HVEM-BTLA interaction triggers a
bidirectional co-signaling system in virus defense by amplifying
the differentiation of memory CD8+ T-cells (195).
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Siglec-7
Sialic acid-binding immunoglobulin-like lectin 7 (Siglec-7, a.k.a.
p75/AIRMI, CD328) was first identified in 1999 by Falco et al.
(196). They called this 75-kD glycoprotein p75/AIRM1 (adhesion
inhibitory receptor molecule 1). In the same year, Nicoll et al.
correctly categorized it as a member of the Siglec family (56).

This family of surface transmembrane receptors belongs to
the immunoglobulin superfamily and consists of 14 members
that have been identified in humans. They can be further divided
into one group of Siglecs that are conserved across mammals and
a second group, the CD33-related Siglecs, whose members vary
among mammals. Siglec-7 belongs to the latter.

All Siglecs bind sialylated glycans but each with a distinct
preference. Sialylated glycans can be found on all mammalian
cells and are thus regarded as markers of self. They form in the
golgi apparatus where different sialyltransferases transfer sialic
acids to the terminal ends of glycoproteins and glycolipids.
Siglecs can either interact with sialylated glycans on other cells
(trans) or with sialylated glycans on the same cell (cis). Most of
the Siglecs contain an ITIM-motif in their cytoplasmic tail
and thus provide inhibitory signaling. However, Siglec-14, -15
and -16 associate with the DAP12 adaptor which contains an
ITAM, hence they provide an activating signal (197, 198).

Siglec-7 is a type 1 membrane protein. Its extracellular region
consists of three Ig-like domains: one N-terminal V-set domain
and two C2-set domains. A transmembrane region links the
extracellular region to the cytoplasmic tail that includes a
membrane proximal ITIM- and a membrane-distal ITIM-like
motif (56, 196). Siglec-7 binds terminal a2,3 and a2,6-linked
sialic acids with moderate affinity but shows preferred binding to
a2,8-disialic acid and branched a2,6-sialylated glycans (199).
Interaction with its ligands results in a polarization of Siglec-7
towards the immunologic synapsis and increased phosphorylation
of the ITIM motif, which than allows the recruitment of SHP-1.
Ultimately, the interaction reduces both chemokine production
and cytolytic potential towards the target cell (200). However,
interactions between the membrane proximal ITIM motif and
SHP-1 and -2 are not just essential to forward the inhibitory signal
but could also influence ligand recognition by Siglec-7 in an
“inside out” signaling fashion. This possibility was raised
because mutations in the ITIM-motif can cause increased
binding between Siglec-7 and its ligands (201).

Disialosyl globopentaosylceramide (DSGb5) is an internally
branched a2,6-linked disialic ganglioside that is expressed on
renal carcinoma cells (RCC) and its expression correlates with
higher rates of distant metastasis. Interaction between DSGb5
and Siglec-7 reduced cytotoxicity of NK-cells towards RCC cells
in vitro (202).

GD3 is a ganglioside with a2,8-disialic acid overexpressed on
melanoma cells and is also able to inhibit NK-cell cytotoxicity
through interaction with Siglec-7 (203).

Both ligands were not capable to interact with Siglec-7 if it was
masked by cis-interaction with endogenous ligands. Pretreatment of
the NK-cells with neuraminidase was required to unmask the
receptor, which enabled the receptor to interact with its ligand and
ultimately inhibit the NK-cell mediated killing of targets. Jandus et al.
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also observed a consistent expression of Siglec-7 ligands in AML and
chronic lymphocytic leukemia patients as well as in melanoma
patients, where the expression was restricted to malignant cells
only (204). However, they reported that ligand expression on
malignant cells was able to inhibit the antitumor response by NK-
cells directly without sialidase pretreatment. Siglec-7 is expressed by
NK cells, monocytes, macrophages, and neutrophils (197).

NK-Cells
Most NK-cells express Siglec-7 in healthy humans (median,
80.6%; 95% CI, 70.57–90.63) (Figure 12). Expression on
mature CD56dim NK cells appears to be more dens than on
CD56bright NK cells (205). However, CD56bright NK-cells show a
higher density of sialic acids on their cell surface compared to
CD56dim. This led to the suggestion that masking effects could be
stronger on CD56bright than on CD56dim NK-cells (206).
Although Siglec-7 is an inhibitory receptor, the absence of
Siglec-7 defines a more dysfunctional subset of NK-cells.
Siglec-7+ cells express activating receptors (e.g., CD16, CD38,
DNAM1, NCRs) more frequently and show a higher ability to
degranulate and to produce IFN-g than Siglec-7- NK-cells (205).

Interestingly, obesity as a risk factor for infections and several
cancer types, influences the Siglec-7 expression on NK-cells: the
CD56bright subset shows a reduction in Siglec-7 surface density.
Nevertheless, the overall frequency of Siglec-7+ NK-cells in the
peripheral blood remains normal (206).

LILRB2 (ILT 4, CD85d)
A further family of immune checkpoint receptors are the
leukocyte Ig-like receptors (LILR), also known as Ig-like
transcript (ILT) or CD85. They belong to the immunoglobulin
superfamily (IgSF) and can be divided into immune system
activating (207) and inhibitory receptors (208).

In this review, we will focus on two inhibitory members of the
LILR family: Leukocyte immunoglobulin-like receptor
Frontiers in Immunology | www.frontiersin.org 16
superfamily B (LILRB) 2 and LILRB 4. They are type 1
transmembrane glycoproteins, that consist of extracellular
immunoglobulin-like domains responsible for ligand binding, a
transmembrane domain and a cytoplasmatic tail with
immunoreceptor-tyrosine based inhibitory motifs (ITIM). The
tyrosines contained in the ITIMs are phosphorylated by kinases,
e.g., Src-kinase. Subsequently, phosphatases like SHP-1, SHP-2 or
SHIP can bind to these phosphotyrosines with their SH2-domains.
This interaction results in phosphatase activation. The activated
phosphatases are able to dephosphorylate intracellular molecules
that activate different intracellular signaling cascades leading to
downregulation of the immune response. This explains how
LILRB2 and LILRB4 function as negative immune checkpoints
and mediate inhibition of immune cell activation (209, 210).

Using flow cytometry, Fanger et al. analyzed the expression of
LILRB2 on circulating blood lymphocytes, monocytes and
dendritic cells showing that LILRB2 cannot be found on B-
cells, T-cells and NK-cells but is highly expressed on monocytes
and dendritic cells (211).

LILRB2 binds to classical and non-classical HLA class I (212),
members of the angiopoietin-like protein family (213), and b-
Amyloid oligomers (209).

Monocytes
Venet et al. confirmed that circulating monocytes from healthy
donors express LILRB2 at high levels. Furthermore, they
described that CD16+ monocytes show a significantly higher
LILRB2 expression than CD16- monocytes, indicating that
especially nonclassical proinflammatory CD16+ monocyte may
play a role in dysregulating immune responses and altering the
monocyte phenotype in inflammatory conditions (214).

Neutrophils
Baudhuin et al. were the first to elaborately analyze LILRB2 on
neutrophils. The preferred ligand for LILRB2, HLA-G, has two
FIGURE 12 | Representative flow cytometric analysis of the expression of the immune checkpoint Siglec-7 on resting NK cells of a healthy donor (male, 23 years
old) compared with isotype control.
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other well-known receptors namely LILRB1 (ILT2, CD85j) and
KIR2DL4 (215). The authors described that neither LILRB1 nor
KIR2DL4 were expressed by neutrophils, leaving LILRB2 as the
only known receptor for HLA-G expressed by neutrophils. On
resting neutrophils, they detected high LILRB2 surface
expression (68,8 ± 19,1%) and localized a pool of LILRB2
within neutrophil granules. LILRB2 stored in those
intracellular granules was mobilized to the surface through
exocytosis upon stimulation with fMLF, LPS or TNF-a
resulting in increased surface expression. Up-regulation
occurred rapidly reaching a plateau after 15 min. Furthermore,
in a model with the myelomonoblast PLB-985 cell line, Baudhuin
et al. identified LILRB2 expression as a process induced during
neutrophil differentiation.

Functionally, LILRB2-HLA-G interaction has shown to
inhibit neutrophil phagocytic function and CD32a-mediated
production of reactive oxygen species. The corresponding
signaling pathway in neutrophils has not been analyzed, but
regarding studies performed with monocytes, Baudhuin et al.
suggested that LILRB2-HLA-G interaction might induce SHP-1-
mediated deactivation of the spleen tyrosine kinase (Syk). Syk is
important for calcium mobilization and neutrophil activation.
Finally, Baudhuin et al. performed an in vitro experiment
incubating healthy neutrophils with either healthy or septic
plasma. LILRB2 up-regulation upon stimulation was
dysregulated under sepsis conditions (215).

Venet et al. performed a study evaluating LILRB2 expression by
monocytes and neutrophils in septic shock patients. In comparison
to healthy controls, LILRB2 expression on neutrophils was
significantly increased in septic shock patients (214).

LILRB4 (ILT 3, CD85k)
We have already briefly introduced this receptor in 3.10.; Cella
et al. analyzed its expression on hematological cells by
monoclonal antibody staining. B-cells, T-cells and NK-cells
could not be stained in contrast to monocytes, dendritic cells,
monocyte-derived dendritic cells, and macrophages (216).

Monocytes
CD14+ monocytes and THP-1, a myelo-monocytic cell line from
an AML patient, express LILRB4 on the cells’ surface (216).
Other studies found that monocytes circulating in cerebral spinal
fluid express LILRB4 at higher levels than peripheral blood
monocytes (217). Further, Cella et al. confirmed the role of
LILRB4 expressed on monocytes as a negative immune regulator
(216). They triggered monocytes with anti-HLA-DR or anti-
FcgRIII, which would normally induce intracellular Ca2+ release.
Yet when they stimulated LILRB4 in parallel, this could be
inhibited. The ligand of LILRB 4 is unknown (209).

Lu et al. also demonstrated LILRB4s inhibitory function. They
incubated THP-1 cells with the monocyte activator CD64 (anti-
CD64) alone or co-ligated with LILRB4 (anti-LILRB4). LILRB4
co-ligation resulted in a significant decrease in CD64-induced
production of pro-inflammatory TNF-a. The underlying
mechanism described is the LILRB4 induced inhibition of
CD64-mediated phosphorylation of signal molecules important
in cell activation cascades. These results thus assume that CD64-
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mediated activation of monocytes can be inhibited by
LILRB4 (218).

Kim-Schulze et al. found that membrane-bound and soluble
LILRB4 inhibits T-cell proliferation, can anergize CD4+ T cells,
and is able to suppress differentiation of CD8+ cytotoxic T-cells.
On the other hand, LILRB4 promotes differentiation of immune
system restraining CD8+ suppressor T-cells which upregulates
LILRB4 on monocytes and dendritic cells making them
tolerogenic (219). Another study by Chang et al. showed
similar results (220). They showed that CD8+ CD28- T-
suppressor cells induce upregulation of both LILRB2 and
LILRB4 on antigen presenting cells (APC) such as monocytes
and dendritic cells. Therefore, they incubated monocytes and
immature dendritic cells with T-suppressor cells from generated
T-cell lines. On APC pretreated with T-Suppressor cells, surface
expression of LILRB2 and 4 was upregulated while the co-
stimulatory CD86 was downregulated. T-suppressor cells
upregulated inhibitory receptors on APC (220). Further they
generated myelomonocytic cell lines (KG1) overexpressing
LILRB2 and LILRB4 and could show that this overexpression
reduces CD4+ T-cell mediated upregulation of co-stimulatory
receptor CD80. These results support their hypothesis that
LILRB2 and 4 lead to T-cell anergy and induce immune
tolerance. In vivo experiments with blood from patients after
heart transplantation present similar results (220).
PATHOLOGY

The described multiple functions of checkpoint molecules on cells
of innate and acquired immunity not only allow to study the
regulation of immune cells in detail, but also open new therapeutic
possibilities. Figure 13 shows essential checkpoint molecules, the
expressing cells, and the ligands. Please note that there are only
two of them target of approved therapies (PD-1 and CTLA-4).

Tumors
VISTA
VISTA is a multipurpose immune regulator and therefore
promising target for immunotherapy. Several studies observed
the VISTA expression on various types of cancer cells and
corresponding tumor infiltrating immune cells, e.g., in melanoma
(221), gastric cancer (222), oral squamous cell carcinoma (223),
pancreatic cancer (224) and pleural mesothelioma (225).

For instance, Gao et al. found elevated VISTA expression on
peripheral blood monocytes in patients with metastatic prostate
cancer receiving ipilimumab (anti CTLA-4 mAb) treatment
suggesting VISTA’s inhibitory function may be relevant in
advanced prostatic cancer (127). To show the inhibitory effect,
they incubated monocytes untreated or pretreated with an anti-
VISTA mAb with peripheral T-cells from patients. Untreated
monocytes suppressed the IFN-g production in peripheral T-cells
whereas T-cells incubated with the pretreated monocytes showed
normal IFN-g production.

These results indicate that one way of VISTA carrying out its
immunosuppressive function when expressed on monocytes is
the inhibition of cytokine production in T-cells. Blocking VISTA
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may promote anti-tumor response and can be useful as a new
therapeutic option for patients with metastatic prostate cancer.

Deng et al. assumed that VISTA expression may even be
associated with reduced overall survival of cancer patients (128).
They showed that VISTA upregulation on colon carcinoma
samples correlated with a significant worse prognosis compared
to low expressing samples. Further they demonstrated that tumor
induced hypoxia leads to an increased VISTA expression on colon
carcinoma cells and on tumor infiltrating leukocytes.
Overexpression on monocyte derived suppressor cells (MDSC)
contributes to T-cell suppression. Targeting VISTA expression on
MDSC may be a useful therapeutic target to inhibit the MDSC
mediated suppressive function, enhancing the immune response
in patients with colon carcinoma.

To date, there are two phase one clinical trials (ClinicalTrials.gov:
NCT02671955, NCT04475523) analyzing safety, pharmacokinetics,
and pharmacodynamics of two different anti-VISTA monoclonal
antibodies in advanced cancer patients.

TIM-3
Several studies showed the influence and importance of TIM-3
on immune response regulation in various cancers. According to
Wang et al., TIM-3 expression on monocytes might be relevant
for tumor progression in gastric cancer patients (226). They
found increased TIM-3 expression on monocytes from gastric
cancer patients. Elevated TIM-3 expression was associated with
increased tumor depth and lymph node metastasis, indicating
that TIM-3 expressing monocytes reduce the anti-tumor
response and promote tumor growth and spread.
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Circulating and tumor infiltrating NK-cells from patients
with esophageal cancer express increased levels of TIM-3, with
expression being higher on the CD56bright, than the CD56dim

subset. TIM-3 positive cells showed functional defects like
decreased cytotoxicity and reduced production of IFN-g and
granzyme B. TIM-3 expression also correlated with lymph node
metastasis, clinical stage, and tumor invasion (136).

Similar observations were made in patients with gastric cancer
(137) and advanced melanoma (138), in which patients showed
increased TIM-3 expression on peripheral blood NK-cells that
correlated with poor prognostic factors. Blocking TIM-3 on the
surface of NK-cells isolated from melanoma patients resulted in
the internalization of the checkpoint molecule, upregulation of
the IL-2 receptor (IL-2R) and most importantly an increased
cytotoxicity and cytokine production (138).

Patients with lung adenocarcinoma also show higher TIM-3
expression, either when comparing their entire circulating NK-
cell population or just the CD56dim subpopulation individually to
those of healthy donors. The CD56bright subset appears to be
unaffected. Overexpression on the mature NK cell subset
correlated with bigger tumor size (≥ 3cm), higher tumor stage
(T3-4), incidence of lymph node metastasis and shorter overall
survival. Use of blocking antibodies against TIM-3 resulted in
increased IFN-g production and cytotoxicity by isolated NK-cells
from patients against the human lung adenocarcinoma cell line
A549 (227).

Furthermore, intratumoral NK-cells from patients with
different cancers (i.e., colorectal, melanoma, bladder cancer)
co-express TIM-3 and PD-1 to a higher extend than NK-cells
FIGURE 13 | Immune checkpoints observed on different immune cells. Inhibitory receptors expressed on different immune cells are illustrated as blue rods, and
ligands for these receptors are illustrated as green rods. FDA approved monoclonal antibodies that block receptor-ligand interaction are shown within the outlined
boxes. Checkpoint inhibitors targeting the receptor are marked in blue, checkpoint inhibitors targeting ligands are marked in green. Immune cell populations printed
in bold signalize that the respective immune checkpoint was included in our own antibody-panel (provided in Table 1) and that we were able to detect expression.
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in normal tissue from the same donor. Those TIM-3+ PD-1+

NK-cells appear to be exhausted based on their reduced ability to
kill K562-target cells and to produce granzyme B and IFN-g.
Treatment with IL-21 can restore those effector functions in
vitro. Moreover, injection of IL-21 into MHC-class I deficient
tumors of Rag 1 -/- mice, led to an increase in tumor infiltration
by NK-cells showing higher levels of IFN-g and CD107a as well
as reduced expression of TIM-3 and PD-1. Tumor growth was
thereby inhibited (139).

Elevated TIM-3 expression can also be found on dendritic
cells in the tumor microenvironment compared to normal
environments. On tumor associated dendritic cells, TIM-3
suppresses inborn pattern recognition receptor mediated
immune responses to nucleic acids. HMGB1 mediated
activation of TIM-3 blocks the transport of nucleic acids into
endosomal vesicles and thereby reduces the sensing system of
nucleic acid (228).

LAG-3
In both pleural and peritoneal effusions of patients with
malignant pleural mesothelioma, LAG-3+ NK-cells can be
found, but the expressions vary strongly between patients
(1.0 –68.1% LAG-3+ NK-cells of all NK-cells) (229). Further
studies are needed to evaluate the role of LAG-3 expression in
this context and other malignancies.

TIGIT
Reports about the TIGIT expression on NK-cells in patients with
malignant diseases are indecisive. Increased expression of TIGIT
on NK-cells in the peripheral blood has been reported in patients
with myelodysplastic syndrome (230), high risk non-muscle
invasive bladder cancer (231) and gastrointestinal cancer (gastric
and colon cancer) (171). Patients with colon cancer show higher
TIGIT expression on NK-cells in intratumoral regions than in
peritumoral regions (232). On the other hand, there are reports
that TIGIT expression on circulating NK-cells (cNK) does not
change in patients with other neoplastic diseases such as AML
(233), pancreatic cancer (234) and hepatocellular carcinoma (235).
Interestingly, Chauvin et al. reported that TIGIT expression on
circulating NK cells (cNK’s) of patients with melanoma did not
differ from expression in healthy donors; only to later elaborate
that TIGIT expression on tumor infiltrating NK-cells (TiNKs) in
those patients is downregulated when compared to TIGIT
expression on cNKs from both patients and healthy individuals.
According to them, membrane bound CD155 can mediate
internalization of TIGIT but not degradation (236).

Different tumor models in mice showed that TiNK-cells
overexpress TIGIT which is accompanied by an exhausted
phenotype. Treatment with anti-TIGIT mAbs resulted in an
increased infiltration of active NK-cells into the intratumoral
region, a reversion of the exhausted state (measured by increased
expression of CD107a, TNF, IFN-g, and CD226), inhibited
tumor growth, reduced tumor metastasis and ultimately
increased overall survival of the mice. Those effects were NK-
cell dependent and did not rely on the presence of a functioning
adaptive immune system (232). However, others reported that
application of anti-TIGIT mAbs only reduced metastasis when
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combined with IL15/IL15R treatment in their tumor bearing
mice models (236). Right now there are multiple clinical trials
registered, that investigate both safety and efficacy of anti-TIGIT
mAbs in the treatment of a variety of malignant diseases (e.g.,
NCT04047862, NCT04353830, NCT02964013, NCT04543617,
NCT4732494, NCT04732494, NCT04693234).

SIRPa
Various cancer types including solid tumors as well as
hematological malignancies have shown to harness the SIRPa/
CD47 pathway to evade immune surveillance by overexpressing
CD47. To name a few: acute lymphoblastic leukemia (237), non-
Hodgkin’s lymphoma (NHL) (238), multiple myeloma (239), B-
cell lymphoma (240), leiomyosarcoma (241), breast cancer (242)
and osteosarcoma (243).

In this context Seifert et al. analyzed the SIRPa expression on
cells from patients with primary myeloid leukemias (55).
Immature leukemic blasts showed no or significantly reduced
SIRPa expression suggesting the possibility that reduced SIRPa
expression is a cause or consequence of aberrant proliferation of
these cells.

SIRPa expression is not only limited to tumor cells but also
expressed on tumor infiltrating immune cells. Cabrales et al.
showed that SIRPa expression on monocytes may play a role in
cancer (244). They studied the effects of RRx-001, an anti-cancer
agent used in clinical trials, on tumor cells and monocytes. RRx-
001 reduced SIRPa expression in vitro and thus constrained the
CD47-SIRPa signaling axis which ultimately enhanced both
immune response and phagocytosis as well as antigen
processing and presentation. RRx-001 also promoted the
switch from M2 to M1 macrophages in the tumor
microenvironment promoting M1-mediated proinflammatory
antitumor conditions.

In patients with NHL, there may be differentiated between
three monocyte subsets according to their SIRPa expression:
CD14+SIRPahigh, CD14-SIRPalow and CD14-SIRPaneg. To
analyze the impact on T-cell activation Chen et al. cultured T-
cells with these three monocyte subsets finding out that T-cell
proliferation was inhibited by monocytes expressing SIRPa at
high and low levels but not by monocytes that are SIRPaneg (245).

When comparing the phagocytic function of these three
subsets, the authors demonstrated that CD14+SIRPahigh

monocytes showed the strongest increase in phagocytic activity
after blocking SIRPa with an Fc fragment. The activity in CD14-

SIRPalow and CD14-SIRPa- monocytes was lower but also
enhanced. The SIRPa-Fc downregulated even CD47 on
monocytic surfaces confirming the reduced signaling via the
CD47-SIRPa axis. Blocking the CD47-SIRPa pathway may
result in enhancement of immune activity and phagocytosis
rate. Therefore, SIRPa expressing phenotypes may have better
clinical prognosis due to new therapeutic possibilities.

So far, immunotherapy exploiting checkpoint inhibition has
focused on targeting the adaptive immune system, especially
T-cells. Targeting CD47 respectively SIRPa and therefore
targeting the innate immune system provides a novel approach
in cancer therapy. As described in the examples above, this
approach may be promising. Currently, there are multiple
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preclinical and clinical trials testing biosafety, tumor specificity
and effectiveness of anti-CD47 antibodies, anti-SIRPa antibodies
and SIRPa-Fc fusion proteins [reviewed in (246)].

BTLA
Upregulation of BTLA is important for restricting the expansion
and function of NY-ESO-1 (New York esophageal squamous cell
carcinoma-1) specific CD8+ T-cells in melanoma. BTLA+ PD-
1+TIM-3- CD8+ T-cells are the largest group of NY-ESO-1–
specific CD8+ T-cells. These cells are partially dysfunctional
producing less IFN-g than BTLA-T-cells. T-cells expressing all
three immune checkpoints PD-1, TIM-3 and BTLA are highly
dysfunctional and produce less IFN-g, TNF-a and IL-2. In
contrast to the negative correlation between T-cell functionality
an PD-1 expression, BTLA expression remains constant showing
no further increase. This leads to the assumption that a higher
BTLA expression is rather independent of functional exhaustion
and powered by high antigen load. In addition to PD-1 and TIM-
3 blockade, BTLA blockade enhances the NY-ESO-1-specific
CD8+ T-cells functions (247) and is a promising therapeutic
option for NY-ESO-1 patients.

Siglec-7
Tao et al. analyzed NK cells in patients with hepatocellular
carcinoma showing a reduced number of NK-cells and
decreased proportion of the mature NK cell subset. Among the
circulating NK-cells, the frequency of Siglec-7 expression is
significantly decreased, regardless of whether a patient is
positive or negative for HBV or HCV infection (235).

Further studies on patients with other cancer entities showed
normal expression levels. The frequency of Siglec-7+ circulating
NK-cells in patients with colon adenocarcinoma and malignant
melanoma are similar to healthy individuals (204). Regulation of
transcription appears to be the main factor for the level of Siglec-
7 expression. Hypomethylation of CpG site 8 and 9 within a CpG
island in the 5’ Siglec-7 promotor increases Siglec-7 surface
expression. Furthermore, histone modification through the use
of histone deacetylase inhibitors also results in higher Siglec-7
surface levels. DNA methyltransferase inhibitors and histone
deacetylase inhibitors are used to fight leukemia but it is
currently unknown if or how changes in the expression of
Siglec-7 on NK-cells contribute to the effects of this course of
treatment (248).

LILRB
Another potentially important checkpoint in cancers is LILRB2.
Sun et al. describe the expression on non-small-cell lung
carcinoma (NSCLC) and show the correlation between high
LILRB2 expression and reduced infiltration of lymphoid cells
in the tumor tissue. This confirms the inhibitory effect of LILRB2
due to reducing lymphocytic immune response (249).

Similar results were found by Liu et al. (250). LILRB2 is
overexpressed on lung tissue from patients with lung carcinoma
in comparison with normal lung tissue that did not express the
receptor. A549, a NSCLC cell line, showing the highest
expression, was used for their further experiments. Using
shRNAs to inhibit LILRB2 expression, they demonstrated that
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the cultured A549 cancer cells were significantly slower in
proliferation and had an increased cell death suggesting that
LILRB2 overexpression enhances tumor growth (250).

Further LILRB 4, and also LILRB1 expression is detected on
gastric cancer cell lines. Less differentiated cell lines show higher
expression compared to differentiated cell lines. To compare
the cytotoxicity of NK-cells in a LILRB1lowLILRB4low (high
differentiated) gastric cancer cell line with a LILRB1high

LILRB4high (low differentiated) gastric cell line, the gastric
cancer cell lines were co-cultured with the natural killer cell
line NK92MI showing reduced NK cytotoxicity in the poorer
differentiated gastric cancer cell line. This leads to the suggestion
that LILRB4 and 1 expression correlate with poor differentiation
of gastric cancers and effectively suppress NK-cell activity (251).

LILRB4 overexpression is also detected on pancreatic cancer
(252) and breast cancer (253) cells.

Elevated LILRB expression is not limited to solid cancer cells
but also found in hematological malignancies such as AML.
Especially cells of patients with AML M4/5 monocyte
differentiation have a significantly higher LILRB4 expression
compared to other forms of AML. LILRB4 expression is more
sensitive and specific for AML M4/5 than other differentiation
markers used in flow cytometry and can be used as a diagnostic
marker (254).

The importance of LILRB4 expression in therapy of AML
patients is described by John et al. (255). One promising treatment
option for AML patients are CAR-T-cells. Unfortunately, therapy
is limited due to the lack of an AML blast specific antigen and
occurring side effects such as myelotoxicity and – suppression.
Since LILRB4 is specifically expressed by nearly all monocytic
AML subtype M5 cells, John et al. developed an anti-LILRB4 CAR
transducing it into T-cells. Using a mouse model, they
demonstrated the efficiency of these T-cells on fighting leukemic
blasts compared to an untreated control group. LILRB4 expression
is not found on hematopoietic stem cells or pluripotent progenitor
cells. Therefore, side effects occurring in the common CAR-T-cell
therapy are not expected making LILRB4-CAR-T-cells a new
efficient therapeutic option for patients with AML.

LILRB 2 and 4 as negative immune checkpoint molecules being
expressed on hematological and solid tumors downregulating
innate and adaptive immune response may be relevant
therapeutic approaches and targets in anti-tumor treatment.
Blocking LILRB expression with an antibody or altering their
signal transduction with a specific high-affinity ligand could
enhance an anti-tumor immune response and inhibit tumor
growth (209). Further studies are needed to prove these effects
and therapeutic targets need to be evaluated in clinical trials.

Infection
PD-1
Sepsis is a life-threatening disease due to a dysregulated and
excessive immune response. Xia et al. analyzed the effect and
expression of PD-1 on monocytes in septic patients using flow
cytometry (109). They showed that in septic patients
CD14+CD16+ monocytes have a significantly increased PD-1
expression compared to healthy controls. When blocking PD-1
with an antibody and stimulating the cells with LPS, the
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proportion of pro- and anti-inflammatory cytokines TNF-a- and
IL-10-secreting monocytes increased. These results suggest that
PD-1 may dysregulate monocyte function in septic patients,
especially the inflammatory CD14+CD16+ monocyte subset.
Blocking the PD-1 pathway may enhance the secretory
function of monocytes which is important for balancing the
immune response.

PD-1 expression is also found on monocytes of septic
neonates. Zasada et al. described the expression on the
different monocyte subsets in preterm neonates with late-onset
sepsis (LOS) (256). They showed that neonates with LOS had an
increased number of all monocyte subsets. The percentage and
number of classical and intermediate monocytes expressing PD-
1 was elevated. Neonates with LOS who developed a septic shock
had an increased number of intermediate monocytes and the
percentage and number of intermediate monocytes expressing
PD-1 were significantly elevated compared to neonates without a
septic shock. PD-1 expression may be an important factor
regulating immune responses and a potential therapeutic target
to possibly improve outcome in septic patients.

Similar results were shown for patients with Q-fever
endocarditis. PD-1 was also upregulated on the intermediate
monocyte subset in patients with Q-fever. When incubating
monocytes with C. burnetii, the gram-negative bacterium
causing Q-fever, PD-1 upregulation was detected. Further
investigation on PD-1 modulation with LPS from E. coli also
showed an increased PD-1 expression on monocytes compared
to unstimulated cells (107).

PD-1 upregulation is also seen on all monocytes subsets in
patients with HIV compared to healthy controls. In acute HIV
infection and chronic HIV infection without antiretroviral
therapy, especially the intermediate subsets showed an elevated
expression of PD-1 compared to treated patients. The non-
classical monocytes showed an elevated PD-1 expression
mainly in chronic untreated patients compared to acute and
chronic treated infection. PD-1 expression on both subsets
correlates positive with the frequency of regulatory, also called
suppressor, T-cells suggesting that elevated PD-1 expression on
monocytes promotes T-cell exhaustion and downregulation of
immune response in patients with HIV (110).

Herpes simplex virus 1, a chronic infection, causes exhaustion
in antiviral T-cells. HSV-specific CD8+ T-cells have a higher
expression of PD-1 and LAG-3 receptors in symptomatic
patients with a recurrent herpetic disease than in asymptomatic
patients. A combined blockade of LAG-3 and PD-1 pathways
improved the function of antiviral CD8+ T-cells in the cornea
and the trigeminal ganglia of rabbits (257).

VISTA
The immunosuppressive function of VISTA can be beneficial in
autoimmune diseases to decrease inflammation and disease
activity. Bharaj et al. found out that VISTA is up regulated on
monocytes of HIV-infected individuals, especially on the
intermediate inflammatory subset (CD14+CD16+), which induce
secretion of high levels of proinflammatory cytokines (126).
Furthermore, this overexpression stimulated T-cells from HIV-
seropositive individuals and, in contrast, blocking VISTA on
Frontiers in Immunology | www.frontiersin.org 21
monocytes reduced T-cell induced cytokine production in these
individuals. In HIV the activation of the immune system negatively
influences the course of the disease and VISTA expression on
monocytes correlates with this activation. Blocking VISTA
expression on monocytes could be a new therapeutic approach.

There are several factors that modulate VISTA expression on
monocytes. Bharaj, et al. described the influence of several TLR
agonists and cytokines (126). Poly : IC (TLR3) and Flaggelin
(TLR5) induced an upregulation suggesting that VISTAmight be
increased during viral and bacterial infections. Also, significant
upregulation was induced by IL-10 and INF-g. No effect was seen
after stimulation with TLR4 (LPS). TLR8/9 ligands caused
a downregulation.

TIM-3
It has been shown that the expression of TIM-3 is increased in
HIV-1 infected individuals in comparison to uninfected
individuals. There is a positive correlation between the TIM-3
expression and the HIV-1 viral load. HIV-1 –specific CD8+ T
cells showed an upregulated expression of TIM-3. T-cells with
TIM-3 expression did neither produce cytokines nor showed
proliferation in response to the antigen. The proliferation and
cytokine production could be restored by blocking the signal
pathway of TIM-3 in HIV-1 specific T-cells (258). CD56bright but
not CD56dim NK-cells from untreated HIV patients show higher
TIM-3 levels than a healthy control group. After 6 months of
combined antiretroviral treatment this overexpression is reverted
to normal (259).

Similar findings were described in Hepatitis C infected
patients. There is an increased expression of TIM-3 on CD4+

and CD8+ T-cells in individuals with chronic hepatitis C
infection. A high expression of TIM-3 correlates with
dysfunction and reduced cytokine production, which can be
restored by blocking the TIM-3 pathway (260).

Hepatitis C virus (HCV) infection also causes increased TIM-
3 expression on CD56dim but not on CD56bright NK-cells (261).
Transcription factor T-bet is also up-regulated in NK-cells from
HCV patients. Furthermore, miR-155 is decreased by tenfold.
Reconstitution of this micro-RNA results in a reduction of both
T-bet and TIM-3 expression (262). TIM-3high NK-cells from
HCV patients do not only show an activated phenotype (higher
expression of activating receptors NKp30, NKp46, NKG2C,
NKG2D, lower expression of inhibitory receptor NKG2A) but
also a greater ability to kill target cells upon pre-activation with
lymphokines. They are also better at inducing the expression of
TRAIL upon IFN-a stimulation and at controlling HCV in an in-
vitro model. Cytokine production was comparable to TIM-3low

NK-cells. TIM-3 expression remained high even when IFN-a
based antiviral therapy successfully led to viral eradication (261).
Treatment of NK-cells from HCV patients with anti-TIM-3
antibodies resulted in increased IFN-g expression. Given that
the blockade also enhanced phosphorylation of STAT-5, it can be
speculated whether TIM functions through interference with the
Jak/STAT pathway within NK-cells (262).

Wang et al. evaluated the role of TIM-3 on monocytes in
patients with chronic Hepatitis C receiving recommended
Hepatitis B vaccination (263). They revealed that TIM-3 was
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overexpressed on monocytes in Hepatitis B vaccine non-
responders. First, they examined IL-12 and -23 production in
monocytes after LPS stimulation in patients with chronic
hepatitis finding out that cytokine production in patients with
chronic HCV is reduced compared to healthy controls. When
comparing vaccine responders and non-responders, similar
results were shown; non-responders had reduced cytokine
levels. To show that TIM-3 expression may be responsible for
this inhibitory effect on monocytes, TIM-3 expression was
examined with flow cytometry. Same result as for cytokine
production was obtained meaning chronic HCV patients and
non-vaccine responders had elevated TIM-3 levels. These results
suggest that TIM-3 expression may downregulate IL-12 and -23
expression. Using a TIM-3 mAb proved this suggestion because
cytokine production in monocytes increased after TIM-3
blockade and stimulation with LPS (263). These results show
TIM-3’s potential influence on vaccine response.

Circulating NK-cells from patients with a chronic hepatitis B
virus infection also show higher expression of TIM-3 than their
counterparts in healthy donors. This overexpression is weakly
correlated with higher levels of alanin transaminase, which can
be an indicator of a bad prognosis. In an ex-vivo model anti-TIM
mAb’s were able to significantly improve the cytotoxicity of NK-
cells isolated from chronic hepatitis B patients towards
Hep2.2.15 cells (264).

LAG-3
LAG-3, PD-1 and TIGIT are immune checkpoint molecules
which are positively associated with the frequency of CD4+ T-
cells with HIV DNA. CD4+ T-cells with all 3 checkpoints
expressed are highly enriched for integrated viral genomes.
Most of the T-cells with at least one of these checkpoints
carried HIV genome. To target latently infected cells in HIV
suppressed individuals, immune checkpoint blockers against
LAG-3, PD-1 and TIGIT could be a valuable option (265).
High expression levels of immune checkpoints such as LAG-3,
PD-1, TIM-3 and CD38 on CD8+ T-cells show a correlation with
T-cell exhaustion and increased clinical disease progression as
well as duration of infection (266).

HIV positive women who had received antiretroviral therapy
(ART) show significantly higher frequencies of LAG-3+ NK-cells
than HIV negative women. The expression of the checkpoint
molecules did not correlate with CD4 count, CD4 recovery or
ART duration (267). Taborda et al. also reported that HIV
progressors express LAG-3 more frequently than HIV
controllers (<2000 copies/ml for ≤1 year without ART) (268).

Merino et al. studied adaptive NK-cells in the context of
human cytomegalovirus infection (269). Adaptive NK-cells show
a certain pathogen specificity, long-term persistence, and control
of secondary infection. Chronic stimulation of adaptive NK-cells
results in a significant upregulation of LAG-3 and PD-1.
Hypomethylation within the promotor regions of their gens
appears to be responsible for the induction of both PD-1 and
LAG-3. LAG-3 positive adaptive NK-cells produced less IFN-g in
response to stimulation with K562 cells compared to LAG-3
negative adaptive NK-cells but showed a comparable rate
of degranulation.
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SIRPa
Under pro-inflammatory stimuli like LPS or TNF-a, Londino
et al. demonstrated that SIRPa proteolysis is enhanced (270),
abrogating its inhibitory function which results in enhancement
of inflammatory signaling via JAK/STAT pathway. This leads to
activation of the immune response. This result suggests that
SIRPa may play an important role in regulating inflammatory
conditions due to lack of its inhibitory function.

Smith et al. analyzed the role of SIPRa on regulating the
innate immune response towards different pathogens like gram+

or gram- bacteria or yeast (187). Incubation with a murine anti-
human SIPRa mAb and stimulation with LPS resulted in
reduced production of proinflammatory cytokine TNF-a but
had no effect on other cytokines. Similar results were found when
LPS was replaced by zymosan or mycobacterial antigens. These
result show that SIPRa inhibits the immune response under
inflammatory conditions.

The importance of SIPRa regulating the monocyte response
during inflammation was also shown by Liu et al. (271). They
demonstrated that SIRPa reduces b2-integrin-mediated monocyte
adhesion, transendothelial migration, and phagocytosis. Thus, it
may serve as a critical molecule in preventing excessive activation.

Therefore, they created SIRPa overexpressing THP-1 cells.
SIRPa significantly reduced the upregulation of surface b2-
integrin by chemokine MCP-1. b2-Integrin is responsible for
adhesion to endothelial cells. With the help of a transmigration
assay, transendothelial migration on SIRPa overexpressing cells
was analyzed showing a reduced migration of monocytes in the
presence of MCP-1, which was even further reduced in the
absence of MCP-1. The same was shown for phagocytosis.
SIRPa overexpressing cells showed decreased phagocytosis of
fluorescein-labeled E. coli compared to mock-transfected cells.
All these results indicate that SIRPa is important for regulating
monocyte and macrophage responses. Nevertheless, this
downregulation may be important in some diseases such as
early stage of arteriosclerosis where monocytes contribute to
disease progression. In this case SIRPa overexpression would be
beneficial (271).

Siglec-7
Varchetta et al. showed that untreated patients with HCV or
HBV virus possess a lower frequency of circulating Siglec-7+ NK-
cells than healthy donors (272). Meanwhile they were able to
detect increased serum levels of Siglec-7. The expression among
HCV patients is inversely correlated with negative indicators of
disease progression like liver cell injury, liver stiffness, fibrosis
scores and histological fibrosis. Higher frequency of Siglec-7+

NK-cells at baseline is also a positive predictor of sustained
virological response after treatment with IFN-a and ribavirin.

Even though HIV-1 is not able to directly infect NK-cells, it is
able to impair their cytolytic function and induce phenotypical
changes. During the first response of the innate immune system
in the early stages of infection, patients show an increasing subset
of Siglec-7-/CD56+ NK-cells. This subset shows reduced
degranulation and cytokine production. The loss of Siglec-7 is
dependent on ongoing viral replication since this change cannot
be observed in long-term non-progressors. A suppression of the
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virus with ART to undetectable levels can revert the loss of
Siglec-7 expression (273).

LILRB
In inflammatory conditions LILRB expression can be
upregulated. Brown et al. analyzed LILRB2 and 4 expression
on salmonella infected APCs (274). Macrophages showed an
LILRB2 and 4 upregulation during Salmonella infection
regardless of whether heat killed or viable Salmonella
typhimurium bacteria were used. Other TLR-ligands like LPS
and flagellin also induced higher expression, though flagellin not
as strong as the other ligands. Furthermore, macrophages had an
altered, but statistically not significant, cytokine secretion with
increased anti-inflammatory cytokine IL-10 and decreased pro-
inflammatory IL-8. Upregulation of LILRB during infection
could be a regulatory mechanism by the immune system to
prevent excessive damage and reduce inflammation.

Venet et al. analyzed the LILRB2 expression on patients with
septic shock. In comparison with healthy donors LILRB2
expression was generally increased on monocytes and higher
on the nonclassical CD16+ subset. These results propose that
elevated LILRB2 expression on monocytes in septic shock
patients may play a role in altered immune response in
patients with sepsis. These findings could be confirmed under
inflammatory conditions ex vivo (214).

Baffari et al. investigated the cause of LILRB2 upregulation on
monocytes in septic patients. They found out that there was an
association of organ dysfunction in septic patients and LILRB2
surface expression on monocytes. Patients with severe
dysfunctions had elevated checkpoint molecule levels. They
incubated blood from healthy donors with sera from septic
patients where an upregulation of LILRB2 on monocytes could
be seen. This suggest that factors in the serum of septic patients
may be responsible for the increased checkpoint expression
leading to a more severe condition. Furthermore, they pointed
out that immunosuppression caused by LILRB2 may have a
negative influence on mortality and morbidity in septic
patients. On the other hand, this inhibition may prevent an
uncontrolled excessive immune response that would worsen the
condition (275).

LILRB2 expression on monocytes of patients with HIV
(AIDS, acquired immune deficiency syndrome) was analyzed
by Vlad et al. They found LILRB2 upregulation on the monocytic
surface and a switch into a more anti-inflammatory phenotype
indicated by an altered cytokine secretion. Blood from healthy
donors incubated with HIV patients’ sera lead to an increase of
LILRB2 expression on monocytes as well. This suggests that HIV
infection alters function of antigen-presenting cells by
upregulating the inhibitory checkpoint LILRB2 and by
increased secretion of anti-inflammatory cytokines (276).

Autoimmunity
CTLA-4
CTLA-4 on Treg is important to prevent autoimmunity and
controls the activity of other cells such as APCs and naïve T-cells
(277, 278). Its expression on activated T-cells regulates T-cell
activation by reducing IL-2 production and also IL-2 receptor
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expression (92, 279). Both may be important for therapies
aiming for specific immunosuppression in autoimmune
diseases and for transplantation settings. Immunosuppressants
are for example the CTLA-4 fusion protein Belatacept, which
binds B7 and thereby prevents co-stimulation by CD28. Another
one is Abatacept, this fusion protein is commonly used in
treatment of rheumatoid arthritis.

VISTA
Studies with murine models have shown that VISTA deficiency
is accompanied by a higher risk for autoimmune disease (121,
280–282).

Ceeraz et al. had a closer look on the impacts of VISTA on a
murine model of lupus (129). They examined the VISTA
expression by flow cytometry in Sle1. Sle3 lupus prone mice in
comparison with B6 mice used as controls. They showed that
VISTA expression in the inflammatory monocyte compartment
is reduced during active lupus assuming that VISTA deficiency
might lead to an increased disease activity. Blocking VISTA with
a mAb would enhance the disease. They also showed that
myeloid cells of VISTA deficient Sle1.Sle3 mice had a
heightened activation status that correlated with increased
cytokine production. Their data demonstrated the importance
of VISTA in regulating autoimmune disease and in this model
preventing disease progression (129).

Wang et al. describe similar results. In experimental
autoimmune encephalomyelitis which is a murine disease
model for human multiple sclerosis, anti-VISTA treatment
provoked disease exacerbation (54).

TIGIT
Kurita et al. examined the frequency of TIGIT expression on CD4+

T-cells in patients with atopic dermatitis and found a higher
expression compared to a healthy control group. They stated that
this could indicate that TIGIT may function as a partial inhibitor to
autoimmune reactions and skin inflammation. They also discussed
the possibility that a lower expression of TIGIT in certain patients
may lead to an exacerbated activity of atopic dermatitis (283).

LILRB2
LILRB2 as a negative immune checkpoint molecule may be
relevant in neurological diseases such as Alzheimer disease
(284). Kim et al. showed in a study with human transgenic
mice that the mice LILRB2 homologue PirB can bind b-
Amyloid oligomers. This binding engages colfilin, a PirB ligand,
responsible for actin depolymerization resulting in synaptic loss
and “altered synaptic plasticity and cognitive deficits”. Similar
mechanisms are suggested in patients with Alzheimer disease.
Blocking LILRB2 may be a beneficial therapeutic approach to
reduce the neuronal damage and therefore disease progression.

In rheumatoid arthritis, LILRB2 expression is found on
immune cells in the synovial tissue. Huynh et al. suggested
that LILRB2 expression and function may be altered under
disease modifying antirheumatic drugs (DMARD’s) (285).
They treated macrophages differentiated from THP-1 with
dexamethasone, methotrexate and cyclosporine A and stained
them with anti-LILRB2 mAbs. Patients responding to treatment
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showed a reduced number of inflammatory cells and reduced
LILRB2 expression on tissue macrophages, compared to non-
responders who showed increased number and expression.

Chang et al. examined the LILRB2 expression on monocytes
incubated with CD8+ T-cells (220). Flow cytometry analysis
showed upregulation of LILRB2 expression and downregulation
of co-stimulatory receptors such as CD86. To determine the role
of this upregulation they evaluated the LILRB2 expression in
patients with heart transplantation. CD8+ T-cells from these
patients were isolated and incubated with monocytes from a
control individual. They revealed that patients without acute
rejection within the first 6 months showed an upregulation of
LILRB2 which was not the case in patients with acute rejection.
This suggests that CD8+ T-cells induce a tolerogenic phenotype in
monocytes characterized by LILRB2 upregulation that reduces
immune responses after transplantation and supports acceptance
of the donated organ.

LILRB4
One study demonstrated that LILRB4 expression on monocytes in
patients with multiple sclerosis can be upregulated upon stimulation
with Vitamin D3 and IFN-g. Combined stimulation had an additive
effect (217). Vitamin D3 and IFN-g could therefore be useful in
patients with multiple sclerosis to reduce the cerebral inflammation
in a LILRB4 dependent fashion.
CONCLUSION

We are convinced that the new immunological tumor therapies
and the rapidly growing knowledge about the importance of
checkpoint molecules in malignant, infectious, and autoimmune
diseases will generate a broad demand for appropriate flow
Frontiers in Immunology | www.frontiersin.org 24
cytometric assays. It is not expected that ready-to-use test kits
will be available at an early stage. Here, we have placed next to
the literature review a selection of flow cytometric examples of
how, with appropriate effort, diagnostic laboratories can offer
these examinations. In this way, it should be possible to meet this
current challenge in immunodiagnostics.
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