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Abstract
The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants highlights the importance 
of monitoring immune responses to guide vaccination strategies. Although neutralizing antibodies (NAbs) have garnered 
increasing attention, T-cells are crucial for conferring long-lasting immunity, especially their resilience against viral muta-
tions. However, assessing T-cell responses clinically has been hindered by cost and complexity. In this study, we recruited 
a cohort of 134 healthy adults, who had been immunized with three doses of the SARS-CoV-2 inactivated vaccine. Cellular 
immunity elicited by a comprehensive array of overlapping peptides covering the entire sequence of the virus’s structural 
proteins was assessed by intracellular cytokine staining (ICS). Additionally, a dataset including demographic information, 
routine blood indices, and immune cell indicators comprising 32 variables was collected. Multivariate analysis revealed age 
and days post-vaccination as key factors influencing the strength of the T-cell response. Importantly, random forest (RF) and 
classification and regression tree (CART) algorithms were employed, along with 8 easily accessible indicators to formulate 
predictive models for the SARS-CoV-2-specific CD4+ and CD8+ T-cell responses. Besides, these models demonstrated sub-
stantial accuracy (r > 0.9) in both the training and testing sets. Our findings offer an efficient and economical methodology 
for evaluating the T-cell reactions in healthy adults following inactivated SARS-CoV-2 vaccination, which is visualizable 
and easy to use, providing a novel strategy for assessing cellular immunity after vaccination.
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COVID-19	� Coronavirus disease 2019
SARS-CoV-2	� Severe acute respiratory syndrome coro-

navirus 2
WHO	� World Health Organization
NAbs	� Neutralizing antibodies
ICS	� Intracellular cytokine staining
ML	� Machine learning
RF	� Random forest
CART​	� Classification and regression tree

E	� Envelope
M	� Membrane
N	� Nucleocapsid
S	� Spike
T	� The total of four structural proteins
WT	� Wild-type
WBC	� White blood cell
NEU	� Neutrophil granulocyte
LYM	� Lymphocyte
MONO	� Monocyte
EOS	� Eosinophil granulocyte
BASO	� Basophil granulocyte
RBC	� Red blood cell
HGB	� Hemoglobin
MCV	� Mean corpuscular volume
MCH	� Mean corpuscular hemoglobin
HCT	� Hematocrit
RDW-CV	� Red cell volume distribution width
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RDW-SD	� Standard deviation of red blood cell 
distribution width

PLT	� Platelet absolute count
MPV	� Mean platelet volume
PCT	� Platelet count
PDW	� Platelet distribution width
% IncMSE	� Increase in Mean Square error
IncNodePurity	� Increase in Node Purities
RMSE	� Root mean squared error
R2	� Coefficient of determination
RCS	� Restricted Cubic Spline
GLR	� General Linear Regression

Background

Emerging at the close of 2019, the coronavirus disease 2019 
(COVID-19), triggered by the zoonotic severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), has profoundly 
affected global society [1]. According to the World Health 
Organization (WHO), by December 2024, the disease had 
led to over 776 million infections and claimed more than 
7 million lives [2]. The onset of COVID-19 spurred an 
unprecedented worldwide scientific endeavor encompassing 
all aspects of SARS-CoV-2 biology, resulting in the rapid 
development of vaccines [3]. Despite the shift of COVID-
19 from pandemic to endemic status and a waning sense 
of urgency, the swift dissemination and mutation of novel 
SARS-CoV-2 strains continue to bring substantial threats to 
public health [4, 5].

The severity of COVID-19 is influenced by a complex 
interaction of factors, including the pathogenicity of dif-
ferent SARS-CoV-2 variants and the strength of the indi-
vidual’s antiviral immune system. The immune response, 
initiated by vaccination or exposure to the virus, encom-
passes B cells, CD4+ T-cells, and CD8+ T-cells, all are cru-
cial for virus clearance and the development of long-lasting 
immunological memory [6, 7]. Studies have highlighted the 
essential function of CD8+ T-cells in combating the infec-
tion during its acute phase. Concurrently, CD4+ T-cells 
and neutralizing antibodies (NAbs) produced by B cells are 
acknowledged for their contributions to limiting viral dis-
semination and facilitating pathogen clearance [8].

Nonetheless, numerous studies indicate that immune 
reaction intensity diminishes with time. Koerber et al. 
observed a rapid decrease in the levels of virus-specific 
NAbs among patients who had recovered from COVID-
19. Conversely, polyfunctional T-cells have demonstrated 
a sustained level of functionality [9, 10]. Furthermore, 
the protective efficacy of NAbs, particularly those target-
ing the spike protein’s receptor-binding domain (RBD), 
appears to be diminishing in the face of continuous viral 
evolution [11, 12]. However, the relative conservation of 

SARS-CoV-2 T-cell epitopes limits the impact of viral 
mutations on the specificity of T-cell responses [13, 14]. 
This intrinsic stability underscores the critical role of 
cellular immunity in providing sustained protection, par-
ticularly against severe illness and mortality [15]. Given 
these findings, the need for continuous immune surveil-
lance in vaccinated individuals is becoming increasingly 
evident. The rising incidence of breakthrough infections 
among vaccinated populations worldwide underscores this 
necessity. Such surveillance is essential for determining 
the requirement and optimal timing for booster vaccina-
tions, which are critical for enhancing and prolonging both 
individual and public immunity.

Currently, various techniques are available for detecting 
SARS-CoV-2 specific IgA, IgM, and IgG antibodies, such 
as chemiluminescent immunoassay, enzyme-linked immu-
nosorbent assay, and lateral flow immunoassay [16–18]. 
Regarding cellular immunity, while the enzyme-linked 
immunospot assay is capable of quantifying T-cell responses 
specific to SARS-CoV-2 [19], it lacks the capacity to offer 
insights into cytokine-producing cell types. Intracellular 
cytokine staining (ICS) is a more sophisticated technique 
that can indicate specific cell subpopulations and detect pol-
yfunctional cells. In our previous research, we employed the 
ICS method to characterize the SARS-CoV-2 specific T-cell 
responses before vaccination and after the first, second, and 
third doses of BBIBP-CorV [20]. However, the substantial 
financial expenditure required to construct antigen peptide 
pools, along with the considerable time commitment and 
procedure complexity, have collectively acted as barriers 
to its broader clinical application [21]. Therefore, despite 
the extensive use of SARS-CoV-2 serology in identifying 
individuals with previous infections or active disease and 
in evaluating vaccine effectiveness [22, 23], routine assess-
ments of CD4+ and CD8+ T-cell responses have not been 
conducted. Achieving a rapid and direct evaluation of T-cell 
responses remains a considerable challenge.

Over recent years, the domain of artificial intelligence, 
particularly with the rise of deep learning and machine 
learning (ML) algorithms, has garnered significant inter-
est. Characterized by their nonlinearity properties, robust-
ness to errors, and ability to operate in real time, these 
algorithms are highly suitable for addressing intricate 
healthcare challenges [24]. The medical field has notably 
benefited from ML, particularly in the realm of predic-
tive analytics for a spectrum of diseases and facilitating 
the early identification of chronic health issues, includ-
ing acute liver failure, cardiovascular diseases, chronic 
kidney disease, hypertension, and diabetes [25, 26]. 
According, we sought to expand upon our previous study 
of individuals who had received three doses of vaccine by 
recruiting a sufficient number of additional participants. 
By collecting relevant data from these subjects, we aim to 
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utilize machine methods to efficiently predict the levels 
of T-cell responses following SARS-CoV-2 vaccination.

Among the array of ML algorithms, such as random 
forest (RF), LASSO, classification and regression tree 
(CART), and XGBoost. RF and CART have demonstrated 
exceptional precision across a multitude of scientific 
fields. The RF excels over other methodologies due to its 
adeptness at handling complex, nonlinearly datasets, its 
straightforward calibration, resilience against noise, and 
its capability for rapid parallel processing [27]. Iwendi 
et al. employed a comprehensive dataset that integrated 
patient health profiles, demographic details, and geo-
graphical information to predict the severity and clinical 
outcomes of COVID-19 cases using the RF methodol-
ogy [28]. Besides, CART is recognized for its versatility 
in both classification and regression tasks, particularly 
due to its adaptability to a wide range of data types and 
sensitivity to minor data changes [29]. Zimmerman and 
colleagues used the CART model to increase the efficacy 
of COVID-19 screening and detection by differentiating 
between individuals with confirmed laboratory diagno-
ses and non-cases [30]. However, there are a few stud-
ies on predictive models that measure the specific cel-
lular responses of T-cells post-SARS-CoV-2 vaccination, 
which is the primary focus of our research.

In our research, we assessed the responses of SARS-
CoV-2-specific CD4+ and CD8+ T-cells among adults 
aged between 18 and 60 years who had been adminis-
tered three doses of inactivated vaccines. The cellular 
immunity reaction stimulated by an array of overlapping 
peptide pools that covered the full sequence of the spike 
(S), nucleocapsid (N), membrane (M), and envelope 
(E) proteins, as well as their combined total pool (T), 
were measured using the Intracellular cytokine staining 
(ICS) method. Concurrently, a comprehensive dataset 
comprising 32 variables for the study participants was 
assembled. With this dataset, we employed the RF and 
CART algorithms to identify predictive indicators and 
to develop models that are capable of predicting specific 
cellular immunity with precision and efficiency. Our 
research presents a cost-effective and rapid method for 
assessing the intensity of T-cell responses in individuals 
vaccinated with inactivated SARS-CoV-2 vaccines. This 
method does not necessitate advanced laboratory equip-
ment, thereby broadening its use for assessing immune 
status against SARS-CoV-2 and determining the need for 
booster vaccinations across various healthcare settings, 
from hospitals to community clinics. Additionally, these 
models developed in this study offer innovative meth-
ods and insight for evaluating post-vaccination immune 
responses against multiple infectious diseases.

Methods

Study population and data collection

In this research, we enrolled a cohort of 134 healthy adults 
aged 18 to 60 years. All participants had no history of 
SARS-CoV-2 infection, as confirmed by negative results 
from pharyngeal swab nucleic acid tests. Moreover, none 
of the participants had received any COVID-19 vaccines 
other than the inactivated SARS-CoV-2 vaccine BBIBP-
CorV. Each individual had completed a three-dose regimen 
of the BBIBP-CorV between November 2021 and Septem-
ber 2022, with the first and second doses spaced 1 month 
apart, followed by a 6-month interval before the third dose. 
A compilation of demographic information, a set of 26 
routine blood examination results, along with immune 
cell markers, are presented in Table 1. The data encom-
passes a variety of parameters including age, sex, days 
post-vaccination, antibody binding titers to the RBD of 
both the wild-type (WT) Wuhan-Hu-1 strain and the Omi-
cron variants. The proportions of T-cells (CD3+, CD4+, 
CD8+) in the total blood and the CD4+/CD8+ T-cells ratio 
were obtained through flow cytometry. The remaining 
parameters, including white blood cell (WBC), neutro-
phil granulocyte (NEU and NEU%), monocyte (MONO 
and MONO%), lymphocyte (LYM and LYM%), basophil 
granulocyte (BASO and BASO%), eosinophil granulo-
cyte (EOS and EOS%), hemoglobin (HGB), red blood 
cell (RBC), mean corpuscular hemoglobin (MCH), mean 
corpuscular volume (MCV), the standard deviation of red 
blood cell distribution width (RDW-SD), red cell volume 
distribution width (RDW-CV), hematocrit (HCT), platelet 
count (PCT), mean platelet volume (MPV), platelet distri-
bution width (PDW), and platelet absolute counts (PLT), 
were derived from routine blood examination results.

This research was conducted under the Declaration of 
Helsinki, and approved by the Ethics Review Committee 
of the Eighth Affiliated Hospital of Sun Yat-sen Univer-
sity, with the reference number 2021–005-01. Besides, 
written informed consent was obtained from all subjects 
involved in the study.

Assessment of SARS‑CoV‑2‑specific CD4+ and CD8+ 
T‑cell responses

The evaluation of the T-cell responses was conducted 
according to the methods previously reported [20]. In sum-
mary, peripheral blood mononuclear cells (PBMCs) were 
separated from venous blood samples by centrifugation, 
employing Ficoll-Hypaque (TBDscience, CHN), and then 
re-suspended in RPMI 1640 culture medium (Gibco, USA) 
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supplemented with 1% penicillin–streptomycin (Gibco) 
and 10% fetal bovine serum (Gibco). A comprehensive 
pool of 324 peptides (18-mer), each with a six-amino-acid 
overlap, were crafted to encompass the entire S, N, M, 
and E proteins of the SARS-CoV-2 Wuhan-Hu-1 strain, 
with a purity exceeding 90% (ChinaPeptides, CHN). The 
PBMCs were distributed into 96-well plates at a density 
of 1 × 106 cells/well and were exposed to a mixture of S, 

N, M, E, and T peptide pool for 5 h at a concentration of 
1.5 μM, along with GolgiStop (Becton Dickinson, USA). 
Cells treated with DMSO served as the negative control, 
while cells stimulated with PMA (50 ng/ml, DARKEWE, 
CN) and ionomycin (1ug/ml, DARKEWE, CN), were used 
as the positive control. PBMCs were later harvested, and 
dead cells were labeled by LIVE/DEAD Zombie Viabil-
ity (BioLegend). After washing with PBS, cells were col-
lected and incubated with a panel of surface antibodies, 
including anti-CD3, anti-CD4, and anti-CD8. Following 
PBS washing, cells were fixed with 4% paraformaldehyde 
and were permeabilized using permeabilization wash 
buffer (Becton Dickinson), followed by intracellular stain-
ing with an anti-IFN-γ antibody and an isotype control 
mouse IgG1. All antibodies used in this study are showed 
in Table S1. The flow cytometry data were captured using 
the FACSCanto II LSRFortessa (Becton Dickinson), with 
background signals being subtracted prior to analysis.

NAb assay

To assess SARS-CoV-2 NAb levels, we employed the 
iFlash-2019-nCoV NAb kit, consistent with our previous 
methodology [20]. In brief, serum was mixed with RBD-
coated microparticles, and then acridinium-ester-labeled 
ACE2 was added to bind the unoccupied RBD sites. Non-
specifically bound materials were removed with a wash 
buffer, and chemiluminescent signals, indicative of antibody 
presence, were quantified as relative light units (RLUs) upon 
introducing a signal buffer. NAb titers were then calculated 
from RLU values using a calibration curve.

Random forest model to predict and evaluate 
cellular immunity

The dataset was randomly segregated, allocating 70% 
for the training set and the remaining 30% designated for 
the testing set. The RF algorithm was then applied to the 
training subset to evaluate the influence of diverse indica-
tors on cellular immunity against SARS-CoV-2. The RF 
model assessed multivariate significance by systematically 
eliminating predictor variables from individual trees within 
the forest, subsequently measuring the resultant accuracy 
changes to determine the importance of these variables. 
Variables importance was ascertained by quantifying and 
ranking based on the Increase in Node Purities (IncNodePu-
rity) and percentage of Increase in Mean Square error (% 
IncMSE), both of which are tied to the loss function, with 
the optimal loss function selected through the most effec-
tive segmentation. To enhance the RF model’s stability and 
accuracy and reduce the risk of overfitting, several strat-
egies have been employed. These steps involved increas-
ing the number of trees (n_estimators) to 500 for enhanced 

Table 1   Baseline table of the 134 participants

NAb (WT) and NAb (Omicron): antibody binding titers to the RBD 
of the wild-type (WT) Wuhan-Hu-1 strain and Omicron variants; 
Data are mean ± standard deviation or medians (1st Quartile, 3rd 
Quartile) and depend on the test for normality

Variables Total (n = 134)

Age 36.21 ± 8.15
Sex, n (%)
 Female 73 (54.48%)
 Male 61 (45.52%)
 Days post-vaccination 89.00 (65.00, 145.00)

Serology (AU/ml)
 NAb (WT) 16.80 (4.93, 46.56)
 NAb (Omicron) 4.16 (0.00, 12.99)

Immune cell indicators
 CD3+ T-cell% 70.25 (63.28, 75.65)
 CD4+ T-cell% 52.42 ± 9.34
 CD8+ T-cell% 30.90 (26.57, 36.08)
 CD4+/CD8+ T-cell 1.68 (1.32, 2.10)

Routine blood indicators
      WBC 6.01 (5.25, 7.00)
   NEU 3.33 (2.75, 4.03)
 NEU% 56.15 (51.23, 59.90)
 LYM 2.16 ± 0.52
 LYM% 34.95 (30.92, 39.53)
 MONO 0.34 (0.28, 0.43)
 MONO% 5.82 ± 1.23
 EOS 0.12 (0.07, 0.21)
 EOS% 2.05 (1.30, 3.10)
 BASO 0.03 (0.02, 0.04)
 BASO% 0.50 (0.30, 0.60)
 RBC 4.94 (4.62, 5.42)
 HGB 143.00 (133.25, 159.00)
 MCV 90.10 (87.93, 92.27)
 MCH 29.50 (28.52, 30.30)
 MCHC 327.00 (322.00, 331.00)
 HCT 0.44 (0.41, 0.49)
 RDW-CV 12.80 (12.43, 13.17)
 RDW-SD 40.90 (39.90, 41.80)
 PLT 258.50 (237.00, 302.25)
 MPV 9.81 ± 0.98
 PCT 0.25 (0.23, 0.29)
 PDW 16.10 (15.90, 16.40)
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predictive averaging and variance reduction, limiting the 
variables considered at each split (max_features) to three to 
foster tree diversity and minimize correlation, and applying a 
maximum depth limit (max_depth) to avoid the model from 
becoming overly complex with the training dataset.

For the predictive model, variables were selected based 
on the criteria of maximized coefficient of determination 
(R2) and minimized root mean squared error (RMSE) val-
ues [31]. The model’s predictive efficacy was then validated 
using the test set. Predictive accuracy was evaluated by 
comparing the predicted values with the actual experimen-
tal data, employing scatter plots and Spearman correlation 
analysis for both the training and testing datasets.

Tenfold cross‑validation

To enhance model reliability and assess generalizability, we 
performed tenfold cross-validation using the caret package 
in R. The predictor variables were the eight features selected 
based on variable importance from the initial random for-
est model. Model performance was evaluated across each 
fold using root mean square error (RMSE), R-squared (R2), 
and mean absolute error (MAE). The optimal number of 
variables tried at each split (mtry) was selected based on the 
lowest average RMSE.

Visualization models for assessing T‑cell responses 
through the CART algorithm

The RF methodology is an ensemble learning method that 
integrates multiple CARTs and combines their predictions 
to generate a final output. A single CART utilizes the entire 
feature set to determine the optimal split at each node, 
employing various thresholds and nodes to assess and cal-
culate the value of the predicted variable. Factor variables 
can be categorical for classification trees or continuous vari-
ables for regression trees [32]. In our study, we performed a 
regression tree analysis to assess the quantitative interrela-
tions among a range of variables and to predict the extent of 
cellular immunity across different conditions.

Data analysis

Variables that adhered to a normal distribution were 
depicted using the mean ± standard deviation, and non-
normally distributed continuous variables were described 
as medians (interquartile ranges, i.e., upper and lower 
quartiles). Categorical data were presented as counts and 
percentages (%). Correlations between the two variables 
were assessed using Spearman’s correlation. In addition, 
General Linear Regression (GLR) was applied to examine 

linear relationships between the independent and depend-
ent variables, while Restricted Cubic Spline (RCS) analy-
sis was used for nonlinear relationships.

Statistically significant was set at the P value threshold 
of less than 0.05. For the construction of models based 
on ML, R software, version 4.2.3 (The R Project for Sta-
tistical Computing, Vienna, Austria), was employed. The 
specific R packages employed for these methodologies 
included the rms package for RCS analysis, the rpart and 
rpart.plot packages for the CART model, and the random 
Forest package for the random forest.

Results

Descriptive statistics of the cohort and basic 
exploratory data analysis

A total of 134 healthy participants, aged between 18 and 
60 years old, who had completed the three-dose schedule 
of inactivated SARS-CoV-2 vaccines and had not been 
infected with SARS-CoV-2, were enrolled in this study. 
Table 1 provides an overview of the demographic and 
baseline characteristics of these participants. The volun-
teers had an average age of 36 years, and 61 individu-
als (comprising 45.52% of the study cohort) being men. 
Serum NAbs against both the Wuhan-Hu-1 and Omicron 
strains of SARS-CoV-2 were quantified, with median titers 
being16.80 AU/ml and 4.16 AU/ml, respectively.

In this study, we developed a comprehensive set of 324 
18-mer overlapping peptides that encompass the complete 
sequences of the SARS-CoV-2 four structural proteins. 
PBMCs were extracted and exposed to the S、N、M、E 
and T peptide pool, respectively. The specific cellular 
responses to SARS-CoV-2 were then evaluated employing 
ICS assays. The gating strategy is detailed in Figure S1A, 
and the representative fluorescence-activated cell sorting 
(FACS) plots are presented in Figure S1B, depicting the 
expression of IFN-γ by CD4+ and CD8+ T-cell (as indi-
cated on the y-axis), following stimulation with the five 
peptide pools or the negative control. Table 2 illustrates 
the quantitative results of specific CD4+ and CD8+ T-cell 
responses to the S, N, M, E, and T pools, highlighting that 
certain individuals exhibit notably elevated response lev-
els. The T pool, in particular, triggered the highest median 
and average levels of T-cell responses among the study 
participants. Additionally, the incidence of individuals 
with T-cell reactions to the T pool notably surpassed the 
response rate to any one of the four individual structural 
proteins, with a positive response rate reaching 85.82% 
for both CD4+ and CD8+ T-cells, as detailed in Table 3.
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Correlation analysis

To determine the connections between various variables and 
the T-cell response, we initially conducted a Spearman’s cor-
relation analysis, with the findings presented in Table S2 and 
Table S3. Considering the comprehensive coverage of pep-
tides derived from the four structural proteins by the T pool 
and the fact that the proportion of individuals manifesting 
cellular responses to each of the four individual structural 

proteins is markedly less than the proportion responding 
to the T pool, the T pool specific T-cell responses were 
selected as the targets for evaluation and prediction in this 
research. The findings indicated that T-specific CD4+ and 
CD8+ T-cell responses were correlated with age, days post-
vaccination, and NAb (WT) (P < 0.05). Additionally, there 
was a statistically significant correlation between the levels 
of NAb (Omicron) and the T-specific CD8+ T-cell responses 
(P < 0.001). Nonetheless, the overall correlation strength 
was moderate, with a correlation coefficient below 0.5, as 
depicted in Fig. 1.

This heatmap illustrates the correlation coefficients 
between the CD4+ and CD8+ T-cell responses and several 
variables, including age, the number of days post-vaccina-
tion, and the levels of NAb (WT) and NAb (Omicron). The 
intensity of the correlation is indicated by the color spectrum 
located on the side. NAb, neutralizing antibody; WT, wild 
type, referring to the SARS-CoV-2 Wuhan-Hu-1 strain.

Linear and nonlinear regression analysis

In our investigation of the linkage between the magnitude 
of SARS-CoV-2-specific CD4+ and CD8+ T-cell response 
magnitudes and three highly related indicators—age, days 
post-vaccination, and NAb—both GLR and RCS analysis 
were utilized. Our findings indicated that age, after adjusting 
for days and NAb as covariates, exhibited a statistically sig-
nificant positive linear correlation with the response levels 
of both CD4+ and CD8+ T-cell responses (P < 0.05, Fig. 2A 
and B). In contrast, days post-vaccination, when adjusted for 
age and NAb, demonstrated a statistically significant lin-
ear negative relationship with the T-cell response (P < 0.05, 
Fig. 2C and D). According to the univariate RCS analysis, 
an ‘L’-shaped nonlinear relationship between NAb levels 
and the response levels of both CD4+ and CD8+ T-cells, 

Table 2   Quantitative 
assessment of specific CD4+ 
and CD8+ T-cell response 
against SARS-CoV-2 structural 
proteins

S: Spike protein peptide pool; N: Nucleocapsid peptide pool; M: Membrane protein peptide pool; E: Enve-
lope protein peptide pool; T: the total of four structural protein peptide pool

Structural 
protein

Min 1stQu Median Mean 3rdQu Max

CD4+ T-cell response level (%)
  S 0.000 0.000 0.000 0.072 0.069 1.200
 N 0.000 0.000 0.035 0.101 0.115 1.222
 M 0.000 0.000 0.000 0.027 0.019 0.570
 E 0.000 0.000 0.000 0.028 0.022 0.680
 T 0.000 0.000 0.078 0.269 0.220 2.130

CD8+ T-cell response level (%)
 S 0.000 0.000 0.101 0.315 0.444 2.240
 N 0.000 0.000 0.035 0.358 0.269 4.855
 M 0.000 0.000 0.000 0.068 0.058 0.860
 E 0.000 0.000 0.000 0.092 0.026 1.424
 T 0.000 0.103 0.372 0.933 1.456 5.510

Table 3   SARS-CoV-2 structural proteins specific CD4+ and CD8+ 
T-cell responses rate

S: Spike protein peptide pool; N: Nucleocapsid peptide pool; M: 
Membrane protein peptide pool; E: Envelope protein peptide pool; T: 
the total of four structural protein peptide pool; data are presented as 
medians (1st Quartile, 3rd Quartile)

Structural protein CD4+ T-cell response 
rate n (%)

CD8+ T-cell 
response rate 
n (%)

S, n (%)
 No 46 (34.33) 46 (34.33)
 Yes 88 (65.67) 88 (65.67)

N, n (%)
 No 52 (38.81) 61 (45.52)

  Yes 82 (61.19) 73 (54.48)
M, n (%)
 No 97 (71.64) 92 (68.66)
 Yes 38 (28.36) 42 (31.34)

E, n (%)
 No 94 (70.15) 92 (68.66)
 Yes 40 (29.85) 42 (31.34)

T, n (%)
 No 19 (14.18) 19 (14.18)
 Yes 115 (85.82) 115 (85.82)
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indicating a threshold effect where T-cell responses plateau 
beyond a certain NAb titer (P < 0.05, Figure S2). However, 
upon multivariate adjustment for days since vaccination and 
age, these nonlinear relationships dissipated, suggesting that 
the initial ‘L’-shaped pattern was influenced by the con-
founding effects of days post-vaccination and age (P > 0.05, 
Fig. 2E and F). These findings indicate that age and days 
post-vaccination are the predominant factors influencing 
T-cell response levels, and the impact of NAb was signifi-
cant only in univariate analysis and not after multivariate 
adjustments.

(A-B) After adjusting for the number of days post-vac-
cination and NAb levels as covariates, a linear positive 
association was identified between age and the responses 
of CD4+ T-cell (left panel) and CD8+ T-cell (right panel) 
responses was observed. (C-D) The linear negative correla-
tion between number of days post-vaccination and the T-cell 
responses, with adjustments for age and NAb as covariates. 
(E–F) The ‘L’-shaped nonlinear relationship between the 
T-cell responses and the levels of NAb became statistically 
insignificant (P > 0.05) after applying a multivariate adjust-
ment for age and days post-vaccination. The y-axis (β) rep-
resents the partial effect size (regression coefficient) of age 
on log-transformed CD4⁺/CD8⁺ T-cell response, estimated 
from a generalized additive model adjusted for days post-
vaccination and neutralizing antibody (NAb) levels.

The prediction model established by RF algorithms

The RF model encompassed a comprehensive set of 
32 variables as detailed in Table 1, to identify the key 
determinants of T-cell response magnitudes. Importance 
analysis was conducted to screen these variables, with the 
outcomes ranked by the % IncMSE to spotlight the most 
impactful variables on T-cell response levels. The predic-
tion model was then constructed, comprising the top 8 
predictors, selected based on their higher R2 values and 
lower RMSE values. Alongside the strongly correlated 
variables- age, days post-vaccination, and NAb (WT)-the 
proportions of CD3+, CD4+, and CD8+ T-cells were found 
to be significantly predictive of the CD4+ T-cell response 
(Fig.  3A). Conversely, for the CD8+ T-cell response, 
MONO, MONO%, MCV, NAb (Omicron), and NEU 
emerged as pivotal predictors (Fig. 3B). The importance 
metrics are detailed in Tables S4 and S5.

The impact of the 32 candidate variables listed in Table 1 
on the levels of SARS-CoV-2-specific T-cell response was 
assessed. The top 8 determinants for CD4+ T-cell (left panel) 
and CD8+ T-cell responses (right panel) are displayed in 
descending order relative to their contribution based on the 
% IncMSE. MONO, monocyte; NEU, neutrophil granulo-
cyte; MCV, mean corpuscular volume; % IncMSE, percent-
age of Increase in Mean Squared Error.

Fig. 1   Heatmap displaying 
correlations between CD4+ and 
CD8+ T-cell responses with 
multiple variables
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The dataset was divided, with 70% (n = 94) allocated to 
the training subset and the remaining 30% (n = 40) desig-
nated for the testing set. Subsequently, the predictive models 
were subjected to verification against the test set to assess 
their accuracy. An analysis comparing the alignment of the 
predicted values with the actual data from both the training 

and testing datasets revealed a high degree of correlation. 
Specifically, the predictive model for the CD4+ T-cell 
response demonstrated r values above 0.95 for both sets 
(Fig. 4A and B). Similarly, the model for the CD8+ T-cell 
response achieved an r value greater than 0.94 (Fig. 4C and 
D). These findings suggest that the random forest model 

Fig. 2   Analysis of variables’ impact on SARS-CoV-2 specific T-cell response via multivariate linear and nonlinear regression
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offers a high level of precision in predicting the responses 
of SARS-CoV-2-specific T-cells in healthy adults aged 
18–60 years, who have received three doses of inactivated 
vaccines.

(A-B) The scatter plot shows the alignment between the 
predicted values for the CD4+ T-cell response and the actual 
values from both the training and testing datasets. (C-D) 
The scatter plot illustrates the verification of the alignment 
between the predicted values for the CD8+ T-cell response 
and their actual values from the training and testing datasets.

In the tenfold cross-validation, the random forest model 
showed stable predictive performance for CD8⁺ T-cell 
responses (T8), with R2 ranging from 0.315 to 0.675 and 
MAE from 0.0044 to 0.0084, indicating good model fit. In 
comparison, the CD4⁺ T-cell response (T4) model exhibited 
greater variability, with R2 ranging from 0.0065 to 0.796. 
However, its overall RMSE and MAE remained low, sug-
gesting that despite inconsistent explanatory power, the 
model retains reasonable predictive value (Table S6 and S7).

Quantitative predictive T‑cell responses using 
the CART model

CART models were built for the accurate prediction and evalu-
ation of T-cell responses specific to SARS-CoV-2. Variables 

including days post-vaccination, age, the proportion of CD3+ 
and CD4+ T-cells, and LYM% were screened by the CART 
model for predicting the specific value of the CD4+ T-cell 
response, identified to range from 0.0723% to 1.3% (Fig. 5A). 
In parallel, the specific value of the CD8+ T-cell response was 
determined using days post-vaccination, MCV, MPV, and 
HGB, with values ranging from 0.17% to 3.8% (Fig. 5B). For 
example, considering a 50-year-old individual received the 
SARS-CoV-2 vaccine 100 days prior, and the proportion of 
CD3+ T-cells is 50% of the total T-cell count, the model esti-
mates that the SARS-CoV-2-specific CD4+ T-cell response 
rate is likely to be around 0.34%.

(A) Variables including days post-vaccination, age, the 
percentages of CD3+ T-cell and CD4+ T-cell, and LYM were 
screened by the CART model to predict the CD4+ T-cell 
response quantitatively. (B) For the prediction of CD8+ T-cell 
responses, the CART model incorporated variables including 
days post-vaccination, MCV, MPV, and HGB. LYM, lympho-
cyte; MPV, mean platelet volume; HGB, hemoglobin; MCV, 
mean corpuscular volume.

Fig. 3   Ranking of the 8 most influential variables determined by the random forest (RF) model
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Discussion

For this study, we enrolled a group of 134 healthy donors 
aged 18–60 years who had received three doses of the inac-
tivated SARS-CoV-2 vaccine. Then, the T-cell responses 

specific to the S, N, M, E, and T pools were detected using 
the ICS method. As anticipated, the result showed a higher 
proportion of participants displayed T-cell responses to the 
T pool compared to the individual structural proteins, owing 
to the T pool’s comprehensive coverage of peptides from all 

Fig. 4   RF model for predicting the responses of SARS-CoV-2-specific CD4+ and CD8+ T-cells
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four structural proteins. Consequently, the T pool-specific 
T-cell response offers a more comprehensive representation 
of the cellular immune response against SARS-CoV-2. Thus, 
our study concentrates on the analysis and predictive mod-
eling for the response of T pool-specific T-cells.

Vaccination elicits both cellular and humoral immune 
responses, which collectively mediate immune protection. 

While inactivated vaccines primarily confer protection by 
inducing NAbs that block viral entry into host cells, their 
titers tend to wane significantly over time and exhibit 
reduced efficacy against variants bearing mutations in the 
spike protein. Nevertheless, previous studies have confirmed 
that BBIBP-CorV can also induce significant SARS-CoV-
2-specific T-cell responses [33]. These T-cell responses, 

Fig. 5   Classification and regression tree (CART) model for quantitative prediction of the SARS-CoV-2-specific T-cells responses
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which target conserved viral epitopes, can endure for sev-
eral years, thereby offering long-term protection against viral 
infections and variants [34]. Therefore, the magnitude of 
T-cell responses to SARS-CoV-2 within a population may 
serve as an indicator for resistance to SARS-CoV-2, and the 
potential need for booster immunization.

The findings revealed associations between responses 
of SARS-CoV-2-specific CD4+ and CD8+ T-cells and fac-
tors including age, days post-vaccination, and NAb (WT). 
Additionally, a correlation was identified between the lev-
els of NAb (Omicron) and CD8+ T-cell responses. Albeit, 
the overall correlation was relatively weak. Notably, age 
demonstrated a statistically significant positive linear cor-
relation with SARS-CoV-2-specific cellular immunity 
(P < 0.05), which might seem counterintuitive considering 
the increased disease severity and mortality with older age 
in COVID-19 patients [35, 36]. Besides, Dietz et al. reported 
that adaptive immune responses, particularly spike-specific 
responses, decline with age [37]. However, Dietz and col-
leagues assessed post-vaccination immunity across groups 
aged > 65, 65–74, and > 75 years. In contrast, our study 
focused on healthy adults within the 18 to 60 age range, with 
an average age of 36 years (1st Quartile:30; 3rd Quartile: 
42), indicating that the impact of aging within this cohort 
is quite minimal. What’s more, a meta-analysis of 31 lung 
single-cell RNA-sequencing uncovered cell type-specific 
connections between age and the expression levels of recep-
tors and proteases crucial for SARS-CoV-2 entry, including 
TMPRRSS2, ACE2, and CTSL [38]. This provides insight 
into the increased symptom severity in older COVID-
19 patients. Additionally, cross-reactive T-cell immunity 
against SARS-CoV-2 has been observed in individuals with 
no prior exposure to the virus, which is thought to be due 
to the partial homology of T-cell epitopes between SARS-
CoV-2 and common cold coronaviruses like HKU1, OC43, 
229E, and NL63 [39]. Given the recurrent nature of com-
mon cold coronaviruses, elderly individuals may have more 
frequent encounters with these viruses, which could account 
for the stronger cellular immune responses post-vaccination 
observed in the older participants in our study.

Days post-vaccination maintained a linear negative 
impact on T-cell responses, even after the analysis was 
adjusted for age and NAb. This finding aligns with numer-
ous studies indicating that SARS-CoV-2-specific T-cell 
responses decrease as time progresses [40]. Additionally, the 
nonlinear, ‘L’-shaped increase in specific T-cell responses 
with NAb levels was observed, potentially attributable to 
the combined effect of CD4+ and CD8+ T-cells in neutral-
izing antibody production [41, 42]. However, after adjusting 
for age and days post-vaccination, the correlation between 
specific T-cell responses and NAb became statistically insig-
nificant. This suggests that the initial ‘L’-shaped pattern 
observed is likely influenced by the confounding effects of 

time since vaccination and the age of participants. Notably, 
while the CD4⁺ T-cell response showed an apparent stabi-
lization after approximately day 100, this nonlinear pattern 
was not statistically significant (P for nonlinearity = 0.068). 
This observation may reflect limited sample density at 
longer follow-up intervals or individual heterogeneity. In 
summary, the responses of T-cells targeting SARS-CoV-2 
were predominantly influenced by age and duration follow-
ing vaccination, with the impact of NAb being significant 
in univariate analysis but not after multivariate adjustments.

AI-driven technologies have proven instrumental in refin-
ing clinical decision-making processes, accelerating the evo-
lution of pharmaceuticals, enhancing diagnostic procedures 
for a spectrum of diseases, and strengthening health surveil-
lance systems [43, 44]. ML has adeptly been deployed to 
craft early alert systems for monitoring emerging SARS-
CoV-2 strains [45], pinpoint possible neutralizing agents 
[46], and predict epitopes for B cells and T-cells that could 
be targeted in vaccine development [47]. However, the appli-
cation of ML in predicting the level of cellular immunity 
post-vaccination remains limited. Such predictive capabili-
ties are crucial for assessing the necessity for booster vac-
cinations, which are pivotal for reinforcing and maintaining 
individual and public immunity.

In this study, we collected an array of datasets encom-
passing epidemiological information, routine blood indices, 
and immune cell parameters, totaling 32 distinct variables. 
Through the assessment of the % IncMSE, variables with 
the most substantial influence were identified. Besides age, 
days post-vaccination, and NAb, MONO was also identified 
as a key predictor for the T-cell response, possibly because 
of their ability to produce mediators that influence T-cell 
polarization [48]. The proportions of CD3+, CD4+, and 
CD8+ T-cells were essential for predicting the responses of 
CD4+ T-cells, potentially owing to their foundational role 
in driving T-cell reactions. However, the underlying rea-
sons for the importance of the MCV and NEU in predicting 
CD8+ T-cell responses warrant further investigation. Sub-
sequently, variables were chosen for the predictive model 
based on their higher R2 value and lower RMSE values. The 
model’s validation against both training and testing datasets 
confirmed its predictive efficacy, with a high degree of align-
ment observed between predicted and actual values. This 
substantiates the random forest model’s high precision in 
predicting T-cell responses.

In our initial analysis, the model demonstrated a high 
Pearson’s correlation coefficient on the training dataset 
derived from a 70/30 split. While this result suggests excel-
lent predictive accuracy, it likely reflects overfitting, as the 
model was evaluated on data it had already seen during 
training. To obtain a more robust estimate of model per-
formance and generalizability, we applied tenfold cross-
validation across the entire dataset. This approach yielded 
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a lower but more realistic correlation, indicating moderate 
predictive power when applied to unseen data. The differ-
ence between the two results underscores the importance of 
cross-validation, especially when working with small data-
sets, to prevent overestimation of model accuracy and ensure 
more reliable conclusions.

To address the limitations of generalized linear models 
in capturing complex, nonlinear relationships, we further 
employed a CART model. This model provides an inter-
pretable, nonlinear approach to quantitatively predict T-cell 
responses. Utilizing the CART algorithm, we developed 
visualization models to evaluate the response levels of CD4+ 
and CD8+ T-cell responses. Notably, the day of the peak in 
the linear relationship graph for CD4+ T-cells with the days 
post-vaccination corresponds precisely with the first branch-
ing condition in the CART decision tree. This congruence 
between the two analytical methods underscores the depend-
ability of our data analysis and further supports the validity 
of our findings.

However, this study also has several limitations. Although 
the 32 variables included in this study were mostly easily 
obtained from clinical sources, the number of variables 
was limited, and the participant’s sample size was modest. 
Moreover, the absence of data from participants with break-
through infections, coupled with the fact that the maximum 
duration of vaccination considered for our volunteers was 
297 days, and participants who received types other than 
inactivated ones were not included, may restrict the predic-
tive model’s generalizability to those vaccinated for over 
297 days, recipients of alternative vaccine types, or individ-
uals with breakthrough infections. Furthermore, our study 
was conducted within a population cohort from Shenzhen, 
China. Given the substantial heterogeneity in HLA genotype 
distribution across different geographical regions, caution 
should be exercised when extrapolating these findings to a 
global context [49, 50].

While our model demonstrates strong predictive per-
formance through internal validation, external validation 
remains an important goal. However, our predictive frame-
work is based on a multi-dimensional feature set—including 
not only age and time post-vaccination, but also detailed 
immunological markers (e.g., CD3⁺, CD4⁺, and CD8⁺ 
T-cell percentages), neutralizing antibody levels (WT and 
Omicron), and routine clinical laboratory indicators (e.g., 
MONO, NEU, and MCV). To date, few external datasets 
provide this full set of predictors alongside matched T cell 
response outcomes. Nevertheless, future work will aim to 
identify partial external cohorts to validate model compo-
nents and further test generalizability.

Despite these limitations, we proposed an economi-
cal and efficient model capable of evaluating the levels of 
SARS-CoV-2-specific T-cell responses following vaccina-
tion. This approach requires no sophisticated laboratory 

facilities, thereby expanding its applicability for evaluat-
ing SARS-CoV-2 immune status and assessing the need for 
booster vaccination across a range of healthcare settings, 
from large hospitals to local community clinics. While the 
direct applicability of our model is limited by the specificity 
of our cohort, it provides a foundation for future research. By 
incorporating more diverse populations and additional data 
sources, future models can address the global circulation of 
SARS-CoV-2 and its variants, enhancing the generalizability 
and applicability of immune response prediction. Moreover, 
these methodologies are well-suited for multicenter studies 
and may prove instrumental in predicting adaptive immunity 
after vaccination with a variety of vaccines targeting various 
pathogens. Additionally, the framework of our model, which 
currently focuses on predicting T-cell responses-a clinically 
challenging measurement-could be adapted to forecast anti-
body dynamics using similar input features. This adaption 
could potentially enable low-cost monitoring of humoral 
immunity in rescore-limited settings.

Conclusions

In this research, multivariate analysis revealed that age and 
the number of days post-vaccination were the most signifi-
cant factors affecting the responses of SARS-CoV-2-specific 
T-cells. Utilizing the RF and CART algorithms, we have 
crafted predictive models that employ readily available 
data, including age, days post-vaccination, NAb, and routine 
blood parameters, to predict the levels of T-cell responses 
with remarkable precision and efficiency. This visualizable 
and easy-to-use methodology also has the potential for appli-
cation in the evaluation of other vaccines and offers clinical 
utility.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10238-​025-​01772-2.

Acknowledgements  We would like to thank all of the volunteers in 
the study.

Author Contributions  Jie Ning and Ying Chen designed this study and 
drafted the manuscript. Ying Chen also played a key role in analyzing 
the data. The recruitment of participants for the study was managed by 
Jie Ning, Yayi Ren, Zelin Zhang, Xianhuang Zeng, Qinjin Wang, Jia 
Xie, Yue Xu, Yali Fan, and Huilan Li. Aixia Zhai, Bin Li, and Chao 
Wu refined the article for intellectual content and accuracy. The final 
review and editing of the manuscript, obtaining funding for the project, 
and overall supervision of the study were accomplished by Chao Wu, 
Jie Ning, and Ying Chen.

Funding  This project was supported by the China postdoctoral Sci-
ence Foundation under Grant Number 2024M763770, the Postdoctoral 
Fellowship Program of CPSF under Grant Number GZC20233232, 
the National Natural Science Foundation of China (72204276), 
the Shenzhen Science and Technology Innovation Program 

https://doi.org/10.1007/s10238-025-01772-2


	 Clinical and Experimental Medicine          (2025) 25:236   236   Page 14 of 15

(JCYJ20210324115204012), and the Futian Healthcare Research Pro-
ject (FTWS2023023).

Data availability  The dataset generated from this study is publicly 
available in the Harvard Data verse repository. It is titled “Predicting 
SARS-CoV-2-specific CD4 + and CD8 + T-cell responses elicited by 
inactivated vaccines in healthy adults using machine learning models” 
and can be accessed at https://​doi.​org/​10.​7910/​DVN/​1GZHO4.

Declarations 

Conflicts of interest  The authors declare no competing interests.

Ethical approval  This research was approved by the Ethics Review 
Committee of the Eighth Affiliated Hospital of Sun Yat-sen University, 
with the reference number 2021–005-01, and it was carried out under 
the principles of the 1975 Declaration of Helsinki.

Informed consent  Written informed consent was obtained directly 
from each participant involved in the study.

Open Access   This article is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International License, 
which permits any non-commercial use, sharing, distribution and repro-
duction in any medium or format, as long as you give appropriate credit 
to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if you modified the licensed material. 
You do not have permission under this licence to share adapted material 
derived from this article or parts of it. The images or other third party 
material in this article are included in the article’s Creative Commons 
licence, unless indicated otherwise in a credit line to the material. If 
material is not included in the article’s Creative Commons licence and 
your intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

References

	 1.	 Steiner S, Kratzel A, Barut GT, Lang RM, Aguiar Moreira E, 
Thomann L, et al. SARS-CoV-2 biology and host interactions. 
Nat Rev Microbiol. 2024;22(4):206–25. https://​doi.​org/​10.​1038/​
s41579-​023-​01003-z.

	 2.	 WHO. WHO COVID-19 dashboard [updated 2025.3.14. Available 
from: https://​data.​who.​int/​dashb​oards/​covid​19/​deaths?​n=c.

	 3.	 Zhu C, Pang S, Liu J, Duan Q. Current progress, challenges and 
prospects in the development of COVID-19 vaccines. Drugs. 
2024;84(4):403–23. https://​doi.​org/​10.​1007/​s40265-​024-​02013-8.

	 4.	 Zhang L, Kempf A, Nehlmeier I, Cossmann A, Richter A, Bdeir 
N, et al. SARS-CoV-2 BA.2.86 enters lung cells and evades neu-
tralizing antibodies with high efficiency. Cell. 2024;187:596.

	 5.	 Callaway E. Beyond Omicron: what’s next for COVID’s viral evo-
lution. Nature. 2021;600(7888):204–7. https://​doi.​org/​10.​1038/​
d41586-​021-​03619-8.

	 6.	 Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and 
COVID-19. Cell. 2021;184(4):861–80. https://​doi.​org/​10.​1016/j.​
cell.​2021.​01.​007.

	 7.	 Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, et al. 
Immunological memory to SARS-CoV-2 assessed for up to 8 
months after infection. Science. 2021. https://​doi.​org/​10.​1126/​
scien​ce.​abf40​63.

	 8.	 DeWolf S, Laracy JC, Perales MA, Kamboj M, van den Brink 
MRM, Vardhana S. SARS-CoV-2 in immunocompromised indi-
viduals. Immunity. 2022;55(10):1779–98. https://​doi.​org/​10.​
1016/j.​immuni.​2022.​09.​006.

	 9.	 Koerber N, Priller A, Yazici S, Bauer T, Cheng CC, Mijočević H, 
et al. Dynamics of spike-and nucleocapsid specific immunity dur-
ing long-term follow-up and vaccination of SARS-CoV-2 conva-
lescents. Nat Commun. 2022;13(1):153. https://​doi.​org/​10.​1038/​
s41467-​021-​27649-y.

	10.	 Jung JH, Rha MS, Sa M, Choi HK, Jeon JH, Seok H, et al. SARS-
CoV-2-specific T cell memory is sustained in COVID-19 conva-
lescent patients for 10 months with successful development of 
stem cell-like memory T cells. Nat Commun. 2021;12(1):4043. 
https://​doi.​org/​10.​1038/​s41467-​021-​24377-1.

	11.	 Garcia-Beltran WF, Lam EC, St Denis K, Nitido AD, Garcia ZH, 
Hauser BM, et al. Multiple SARS-CoV-2 variants escape neutrali-
zation by vaccine-induced humoral immunity. Cell. 2021. https://​
doi.​org/​10.​1016/j.​cell.​2021.​03.​013.

	12.	 Uriu K, Kimura I, Shirakawa K, Takaori-Kondo A, Nakada 
TA, Kaneda A, et al. Neutralization of the SARS-CoV-2 Mu 
variant by convalescent and vaccine serum. N Engl J Med. 
2021;385(25):2397–9. https://​doi.​org/​10.​1056/​NEJMc​21147​06.

	13.	 Meyer S, Blaas I, Bollineni RC, Delic-Sarac M, Tran TT, Knetter 
C, et al. Prevalent and immunodominant CD8 T cell epitopes are 
conserved in SARS-CoV-2 variants. Cell Rep. 2023;42(1):111995. 
https://​doi.​org/​10.​1016/j.​celrep.​2023.​111995.

	14.	 Keeton R, Tincho MB, Ngomti A, Baguma R, Benede N, Suzuki 
A, et al. T cell responses to SARS-CoV-2 spike cross-recognize 
Omicron. Nature. 2022;603(7901):488–92. https://​doi.​org/​10.​
1038/​s41586-​022-​04460-3.

	15.	 Yang M, Meng Y, Hao W, Zhang J, Liu J, Wu L, et al. A prog-
nostic model for SARS-CoV-2 breakthrough infection: analyzing 
a prospective cellular immunity cohort. Int Immunopharmacol. 
2024;131:111829. https://​doi.​org/​10.​1016/j.​intimp.​2024.​111829.

	16.	 Ong DSY, Fragkou PC, Schweitzer VA, Chemaly RF, Moschopou-
los CD, Skevaki C. How to interpret and use COVID-19 serology 
and immunology tests. Clin Microbiol Infect. 2021;27(7):981–6. 
https://​doi.​org/​10.​1016/j.​cmi.​2021.​05.​001.

	17.	 Wang C, Yang X, Gu B, Liu H, Zhou Z, Shi L, et al. Sensitive and 
simultaneous detection of SARS-CoV-2-specific IgM/IgG using 
lateral flow immunoassay based on dual-mode quantum dot nano-
beads. Anal Chem. 2020;92(23):15542–9. https://​doi.​org/​10.​1021/​
acs.​analc​hem.​0c034​84.

	18.	 Roda A, Cavalera S, Di Nardo F, Calabria D, Rosati S, Simoni P, 
et al. Dual lateral flow optical/chemiluminescence immunosen-
sors for the rapid detection of salivary and serum IgA in patients 
with COVID-19 disease. Biosens Bioelectron. 2021;172:112765. 
https://​doi.​org/​10.​1016/j.​bios.​2020.​112765.

	19.	 Slota M, Lim JB, Dang Y, Disis ML. ELISpot for measuring 
human immune responses to vaccines. Expert Rev Vaccines. 
2011;10(3):299–306. https://​doi.​org/​10.​1586/​erv.​10.​169.

	20.	 Ning J, Wang Q, Chen Y, He T, Zhang F, Chen X, et al. Immu-
nodominant SARS-CoV-2-specific CD4(+) and CD8(+) T-cell 
responses elicited by inactivated vaccines in healthy adults. J Med 
Virol. 2023;95(4):e28743. https://​doi.​org/​10.​1002/​jmv.​28743.

	21.	 Freer G, Rindi L. Intracellular cytokine detection by fluorescence-
activated flow cytometry: basic principles and recent advances. 
Methods. 2013;61(1):30–8. https://​doi.​org/​10.​1016/j.​ymeth.​2013.​
03.​035.

	22.	 Fung CYJ, Scott M, Lerner-Ellis J, Taher J. Applications of 
SARS-CoV-2 serological testing: impact of test performance, 
sample matrices, and patient characteristics. Crit Rev Clin Lab 
Sci. 2024;61(1):70–88. https://​doi.​org/​10.​1080/​10408​363.​2023.​
22543​90.

	23.	 Kahn R, Schrag SJ, Verani JR, Lipsitch M. Identifying and alle-
viating bias due to differential depletion of susceptible people in 

https://doi.org/10.7910/DVN/1GZHO4
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1038/s41579-023-01003-z
https://doi.org/10.1038/s41579-023-01003-z
https://data.who.int/dashboards/covid19/deaths?n=c
https://doi.org/10.1007/s40265-024-02013-8
https://doi.org/10.1038/d41586-021-03619-8
https://doi.org/10.1038/d41586-021-03619-8
https://doi.org/10.1016/j.cell.2021.01.007
https://doi.org/10.1016/j.cell.2021.01.007
https://doi.org/10.1126/science.abf4063
https://doi.org/10.1126/science.abf4063
https://doi.org/10.1016/j.immuni.2022.09.006
https://doi.org/10.1016/j.immuni.2022.09.006
https://doi.org/10.1038/s41467-021-27649-y
https://doi.org/10.1038/s41467-021-27649-y
https://doi.org/10.1038/s41467-021-24377-1
https://doi.org/10.1016/j.cell.2021.03.013
https://doi.org/10.1016/j.cell.2021.03.013
https://doi.org/10.1056/NEJMc2114706
https://doi.org/10.1016/j.celrep.2023.111995
https://doi.org/10.1038/s41586-022-04460-3
https://doi.org/10.1038/s41586-022-04460-3
https://doi.org/10.1016/j.intimp.2024.111829
https://doi.org/10.1016/j.cmi.2021.05.001
https://doi.org/10.1021/acs.analchem.0c03484
https://doi.org/10.1021/acs.analchem.0c03484
https://doi.org/10.1016/j.bios.2020.112765
https://doi.org/10.1586/erv.10.169
https://doi.org/10.1002/jmv.28743
https://doi.org/10.1016/j.ymeth.2013.03.035
https://doi.org/10.1016/j.ymeth.2013.03.035
https://doi.org/10.1080/10408363.2023.2254390
https://doi.org/10.1080/10408363.2023.2254390


Clinical and Experimental Medicine          (2025) 25:236 	 Page 15 of 15    236 

postmarketing evaluations of COVID-19 vaccines. Am J Epide-
miol. 2022;191(5):800–11. https://​doi.​org/​10.​1093/​aje/​kwac0​15.

	24.	 Chang CH, Lin CH, Lane HY. Machine learning and novel bio-
markers for the diagnosis of Alzheimer’s disease. Int J Mol Sci. 
2021. https://​doi.​org/​10.​3390/​ijms2​20527​61.

	25.	 Dritsas E, Trigka M. Supervised machine learning models to iden-
tify early-stage symptoms of SARS-CoV-2. Sensors. 2022. https://​
doi.​org/​10.​3390/​s2301​0040.

	26.	 Rehman MU, Naseem S, Butt AUR, Mahmood T, Khan AR, 
Khan I, et al. Predicting coronary heart disease with advanced 
machine learning classifiers for improved cardiovascular risk 
assessment. Sci Rep. 2025;15(1):13361. https://​doi.​org/​10.​1038/​
s41598-​025-​96437-1.

	27.	 Sarica A, Cerasa A, Quattrone A. Random forest algorithm for 
the classification of neuroimaging data in Alzheimer’s disease: a 
systematic review. Front Aging Neurosci. 2017;9:329. https://​doi.​
org/​10.​3389/​fnagi.​2017.​00329.

	28.	 Iwendi C, Bashir AK, Peshkar A, Sujatha R, Chatterjee JM, Pasu-
puleti S, et al. COVID-19 patient health prediction using boosted 
random forest algorithm. Front Public Health. 2020;8:357. https://​
doi.​org/​10.​3389/​fpubh.​2020.​00357.

	29.	 Danieli MG, Paladini A, Longhi E, Tonacci A, Gangemi S. A 
machine learning analysis to evaluate the outcome measures in 
inflammatory myopathies. Autoimmun Rev. 2023;22(7):103353. 
https://​doi.​org/​10.​1016/j.​autrev.​2023.​103353.

	30.	 Zimmerman RK, Nowalk MP, Bear T, Taber R, Clarke KS, 
Sax TM, et al. Proposed clinical indicators for efficient screen-
ing and testing for COVID-19 infection using classification and 
regression trees (CART) analysis. Hum Vaccin Immunother. 
2021;17(4):1109–12. https://​doi.​org/​10.​1080/​21645​515.​2020.​
18221​35.

	31.	 Dicu T, Cucoş A, Botoş M, Burghele B, Florică Ş, Baciu C, et al. 
Exploring statistical and machine learning techniques to identify 
factors influencing indoor radon concentration. Sci Total Envi-
ron. 2023;905:167024. https://​doi.​org/​10.​1016/j.​scito​tenv.​2023.​
167024.

	32.	 Chen Y, Chen X, Liang Z, Fan S, Gao X, Jia H, et al. Epide-
miology and prediction of multidrug-resistant bacteria based on 
hospital level. J Glob Antimicrob Resist. 2022;29:155–62. https://​
doi.​org/​10.​1016/j.​jgar.​2022.​03.​003.

	33.	 Vályi-Nagy I, Matula Z, Gönczi M, Tasnády S, Bekő G, Réti 
M, et al. Comparison of antibody and T cell responses elicited 
by BBIBP-CorV (Sinopharm) and BNT162b2 (Pfizer-BioN-
Tech) vaccines against SARS-CoV-2 in healthy adult humans. 
Geroscience. 2021;43(5):2321–31. https://​doi.​org/​10.​1007/​
s11357-​021-​00471-6.

	34.	 Nesamari R, Omondi MA, Baguma R, Höft MA, Ngomti A, Nkayi 
AA, et al. Post-pandemic memory T cell response to SARS-CoV-2 
is durable, broadly targeted, and cross-reactive to the hypermu-
tated BA.2.86 variant. Cell Host Microbe. 2024. https://​doi.​org/​
10.​1016/j.​chom.​2023.​12.​003.

	35.	 Perez-Saez J, Lauer SA, Kaiser L, Regard S, Delaporte E, Gues-
sous I, et  al. Serology-informed estimates of SARS-CoV-2 
infection fatality risk in Geneva, Switzerland. Lancet Infect Dis. 
2021;21(4):e69–70. https://​doi.​org/​10.​1016/​s1473-​3099(20)​
30584-3.

	36.	 Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course 
and risk factors for mortality of adult inpatients with COVID-
19 in Wuhan, China: a retrospective cohort study. Lancet. 
2020;395(10229):1054–62. https://​doi.​org/​10.​1016/​s0140-​
6736(20)​30566-3.

	37.	 Dietz LL, Juhl AK, Søgaard OS, Reekie J, Nielsen H, Johansen IS, 
et al. Impact of age and comorbidities on SARS-CoV-2 vaccine-
induced T cell immunity. Commun Med. 2023;3(1): 58. https://​
doi.​org/​10.​1038/​s43856-​023-​00277-x.

	38.	 Muus C, Luecken MD, Eraslan G, Sikkema L, Waghray A, Heim-
berg G, et al. Single-cell meta-analysis of SARS-CoV-2 entry 
genes across tissues and demographics. Nat Med. 2021;27(3):546–
59. https://​doi.​org/​10.​1038/​s41591-​020-​01227-z.

	39.	 Sette A, Crotty S. Pre-existing immunity to SARS-CoV-2: the 
knowns and unknowns. Nat Rev Immunol. 2020;20(8):457–8. 
https://​doi.​org/​10.​1038/​s41577-​020-​0389-z.

	40.	 Moss P. The T cell immune response against SARS-CoV-2. 
Nat Immunol. 2022;23(2):186–93. https://​doi.​org/​10.​1038/​
s41590-​021-​01122-w.

	41.	 Law H, Venturi V, Kelleher A, Munier CML. Tfh cells in health 
and immunity: potential targets for systems biology approaches 
to vaccination. Int J Mol Sci. 2020. https://​doi.​org/​10.​3390/​ijms2​
12285​24.

	42.	 Elzein SM, Zimmerer JM, Han JL, Ringwald BA, Bumgard-
ner GL. CXCR5(+)CD8(+) T cells: a review of their antibody 
regulatory functions and clinical correlations. J Immunol. 
2021;206(12):2775–83. https://​doi.​org/​10.​4049/​jimmu​nol.​21000​
82.

	43.	 Réda C, Kaufmann E, Delahaye-Duriez A. Machine learning 
applications in drug development. Comput Struct Biotechnol J. 
2020;18:241–52. https://​doi.​org/​10.​1016/j.​csbj.​2019.​12.​006.

	44.	 Shah P, Kendall F, Khozin S, Goosen R, Hu J, Laramie J, et al. 
Artificial intelligence and machine learning in clinical devel-
opment: a translational perspective. npj Digit Med. 2019;2:69. 
https://​doi.​org/​10.​1038/​s41746-​019-​0148-3.

	45.	 Telenti A, Hodcroft EB, Robertson DL. The evolution and biology 
of SARS-CoV-2 variants. Cold Spring Harb Perspect Med. 2022. 
https://​doi.​org/​10.​1101/​cshpe​rspect.​a0413​90.

	46.	 Elkashlan M, Ahmad RM, Hajar M, Al Jasmi F, Corchado JM, 
Nasarudin NA, et al. A review of SARS-CoV-2 drug repurpos-
ing: databases and machine learning models. Front Pharmacol. 
2023;14:1182465. https://​doi.​org/​10.​3389/​fphar.​2023.​11824​65.

	47.	 Bukhari SNH, Jain A, Haq E, Mehbodniya A, Webber J. Machine 
learning techniques for the prediction of B-cell and T-cell epitopes 
as potential vaccine targets with a specific focus on SARS-CoV-2 
pathogen: a review. Pathogens. 2022. https://​doi.​org/​10.​3390/​
patho​gens1​10201​46.

	48.	 Schreiber HA, Loschko J, Karssemeijer RA, Escolano A, Meredith 
MM, Mucida D, et al. Intestinal monocytes and macrophages are 
required for T cell polarization in response to Citrobacter roden-
tium. J Exp Med. 2013;210(10):2025–39. https://​doi.​org/​10.​1084/​
jem.​20130​903.

	49.	 Liu J, Quan ZR, Zhu TH, Zhong YP, Jiang RH, Yang BN, et al. 
Allele and haplotype frequencies of 17 HLA-related loci in Shen-
zhen Chinese population by next-generation sequencing. Hla. 
2025;105(4):e70148. https://​doi.​org/​10.​1111/​tan.​70148.

	50.	 Liu S, Li Y, Song T, Zhang J, Zhang P, Luo H, et al. The pathogen 
adaptation of HLA alleles and the correlation with Autoimmune 
Diseases in the Han Chinese. Genomics Proteomics Bioinform. 
2025. https://​doi.​org/​10.​1093/​gpbjnl/​qzaf0​38.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/aje/kwac015
https://doi.org/10.3390/ijms22052761
https://doi.org/10.3390/s23010040
https://doi.org/10.3390/s23010040
https://doi.org/10.1038/s41598-025-96437-1
https://doi.org/10.1038/s41598-025-96437-1
https://doi.org/10.3389/fnagi.2017.00329
https://doi.org/10.3389/fnagi.2017.00329
https://doi.org/10.3389/fpubh.2020.00357
https://doi.org/10.3389/fpubh.2020.00357
https://doi.org/10.1016/j.autrev.2023.103353
https://doi.org/10.1080/21645515.2020.1822135
https://doi.org/10.1080/21645515.2020.1822135
https://doi.org/10.1016/j.scitotenv.2023.167024
https://doi.org/10.1016/j.scitotenv.2023.167024
https://doi.org/10.1016/j.jgar.2022.03.003
https://doi.org/10.1016/j.jgar.2022.03.003
https://doi.org/10.1007/s11357-021-00471-6
https://doi.org/10.1007/s11357-021-00471-6
https://doi.org/10.1016/j.chom.2023.12.003
https://doi.org/10.1016/j.chom.2023.12.003
https://doi.org/10.1016/s1473-3099(20)30584-3
https://doi.org/10.1016/s1473-3099(20)30584-3
https://doi.org/10.1016/s0140-6736(20)30566-3
https://doi.org/10.1016/s0140-6736(20)30566-3
https://doi.org/10.1038/s43856-023-00277-x
https://doi.org/10.1038/s43856-023-00277-x
https://doi.org/10.1038/s41591-020-01227-z
https://doi.org/10.1038/s41577-020-0389-z
https://doi.org/10.1038/s41590-021-01122-w
https://doi.org/10.1038/s41590-021-01122-w
https://doi.org/10.3390/ijms21228524
https://doi.org/10.3390/ijms21228524
https://doi.org/10.4049/jimmunol.2100082
https://doi.org/10.4049/jimmunol.2100082
https://doi.org/10.1016/j.csbj.2019.12.006
https://doi.org/10.1038/s41746-019-0148-3
https://doi.org/10.1101/cshperspect.a041390
https://doi.org/10.3389/fphar.2023.1182465
https://doi.org/10.3390/pathogens11020146
https://doi.org/10.3390/pathogens11020146
https://doi.org/10.1084/jem.20130903
https://doi.org/10.1084/jem.20130903
https://doi.org/10.1111/tan.70148
https://doi.org/10.1093/gpbjnl/qzaf038

	Predicting SARS-CoV-2-specific CD4+ and CD8+ T-cell responses elicited by inactivated vaccines in healthy adults using machine learning models
	Abstract
	Background
	Methods
	Study population and data collection
	Assessment of SARS-CoV-2-specific CD4+ and CD8+ T-cell responses
	NAb assay
	Random forest model to predict and evaluate cellular immunity
	Tenfold cross-validation
	Visualization models for assessing T-cell responses through the CART algorithm
	Data analysis

	Results
	Descriptive statistics of the cohort and basic exploratory data analysis
	Correlation analysis
	Linear and nonlinear regression analysis
	The prediction model established by RF algorithms
	Quantitative predictive T-cell responses using the CART model

	Discussion
	Conclusions
	Acknowledgements 
	References


