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Abstract

The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants highlights the importance
of monitoring immune responses to guide vaccination strategies. Although neutralizing antibodies (NAbs) have garnered
increasing attention, T-cells are crucial for conferring long-lasting immunity, especially their resilience against viral muta-
tions. However, assessing T-cell responses clinically has been hindered by cost and complexity. In this study, we recruited
a cohort of 134 healthy adults, who had been immunized with three doses of the SARS-CoV-2 inactivated vaccine. Cellular
immunity elicited by a comprehensive array of overlapping peptides covering the entire sequence of the virus’s structural
proteins was assessed by intracellular cytokine staining (ICS). Additionally, a dataset including demographic information,
routine blood indices, and immune cell indicators comprising 32 variables was collected. Multivariate analysis revealed age
and days post-vaccination as key factors influencing the strength of the T-cell response. Importantly, random forest (RF) and
classification and regression tree (CART) algorithms were employed, along with 8 easily accessible indicators to formulate
predictive models for the SARS-CoV-2-specific CD4* and CD8* T-cell responses. Besides, these models demonstrated sub-
stantial accuracy (r>0.9) in both the training and testing sets. Our findings offer an efficient and economical methodology
for evaluating the T-cell reactions in healthy adults following inactivated SARS-CoV-2 vaccination, which is visualizable
and easy to use, providing a novel strategy for assessing cellular immunity after vaccination.
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RDW-SD Standard deviation of red blood cell
distribution width

PLT Platelet absolute count

MPV Mean platelet volume

PCT Platelet count

PDW Platelet distribution width

% IncMSE Increase in Mean Square error

IncNodePurity Increase in Node Purities

RMSE Root mean squared error

R2 Coefficient of determination

RCS Restricted Cubic Spline
GLR General Linear Regression
Background

Emerging at the close of 2019, the coronavirus disease 2019
(COVID-19), triggered by the zoonotic severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), has profoundly
affected global society [1]. According to the World Health
Organization (WHO), by December 2024, the disease had
led to over 776 million infections and claimed more than
7 million lives [2]. The onset of COVID-19 spurred an
unprecedented worldwide scientific endeavor encompassing
all aspects of SARS-CoV-2 biology, resulting in the rapid
development of vaccines [3]. Despite the shift of COVID-
19 from pandemic to endemic status and a waning sense
of urgency, the swift dissemination and mutation of novel
SARS-CoV-2 strains continue to bring substantial threats to
public health [4, 5].

The severity of COVID-19 is influenced by a complex
interaction of factors, including the pathogenicity of dif-
ferent SARS-CoV-2 variants and the strength of the indi-
vidual’s antiviral immune system. The immune response,
initiated by vaccination or exposure to the virus, encom-
passes B cells, CD4" T-cells, and CD8* T-cells, all are cru-
cial for virus clearance and the development of long-lasting
immunological memory [6, 7]. Studies have highlighted the
essential function of CD8" T-cells in combating the infec-
tion during its acute phase. Concurrently, CD4% T-cells
and neutralizing antibodies (NAbs) produced by B cells are
acknowledged for their contributions to limiting viral dis-
semination and facilitating pathogen clearance [8].

Nonetheless, numerous studies indicate that immune
reaction intensity diminishes with time. Koerber et al.
observed a rapid decrease in the levels of virus-specific
NAbs among patients who had recovered from COVID-
19. Conversely, polyfunctional T-cells have demonstrated
a sustained level of functionality [9, 10]. Furthermore,
the protective efficacy of NAbs, particularly those target-
ing the spike protein’s receptor-binding domain (RBD),
appears to be diminishing in the face of continuous viral
evolution [11, 12]. However, the relative conservation of
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SARS-CoV-2 T-cell epitopes limits the impact of viral
mutations on the specificity of T-cell responses [13, 14].
This intrinsic stability underscores the critical role of
cellular immunity in providing sustained protection, par-
ticularly against severe illness and mortality [15]. Given
these findings, the need for continuous immune surveil-
lance in vaccinated individuals is becoming increasingly
evident. The rising incidence of breakthrough infections
among vaccinated populations worldwide underscores this
necessity. Such surveillance is essential for determining
the requirement and optimal timing for booster vaccina-
tions, which are critical for enhancing and prolonging both
individual and public immunity.

Currently, various techniques are available for detecting
SARS-CoV-2 specific IgA, IgM, and IgG antibodies, such
as chemiluminescent immunoassay, enzyme-linked immu-
nosorbent assay, and lateral flow immunoassay [16—18].
Regarding cellular immunity, while the enzyme-linked
immunospot assay is capable of quantifying T-cell responses
specific to SARS-CoV-2 [19], it lacks the capacity to offer
insights into cytokine-producing cell types. Intracellular
cytokine staining (ICS) is a more sophisticated technique
that can indicate specific cell subpopulations and detect pol-
yfunctional cells. In our previous research, we employed the
ICS method to characterize the SARS-CoV-2 specific T-cell
responses before vaccination and after the first, second, and
third doses of BBIBP-CorV [20]. However, the substantial
financial expenditure required to construct antigen peptide
pools, along with the considerable time commitment and
procedure complexity, have collectively acted as barriers
to its broader clinical application [21]. Therefore, despite
the extensive use of SARS-CoV-2 serology in identifying
individuals with previous infections or active disease and
in evaluating vaccine effectiveness [22, 23], routine assess-
ments of CD4" and CD8* T-cell responses have not been
conducted. Achieving a rapid and direct evaluation of T-cell
responses remains a considerable challenge.

Over recent years, the domain of artificial intelligence,
particularly with the rise of deep learning and machine
learning (ML) algorithms, has garnered significant inter-
est. Characterized by their nonlinearity properties, robust-
ness to errors, and ability to operate in real time, these
algorithms are highly suitable for addressing intricate
healthcare challenges [24]. The medical field has notably
benefited from ML, particularly in the realm of predic-
tive analytics for a spectrum of diseases and facilitating
the early identification of chronic health issues, includ-
ing acute liver failure, cardiovascular diseases, chronic
kidney disease, hypertension, and diabetes [25, 26].
According, we sought to expand upon our previous study
of individuals who had received three doses of vaccine by
recruiting a sufficient number of additional participants.
By collecting relevant data from these subjects, we aim to
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utilize machine methods to efficiently predict the levels
of T-cell responses following SARS-CoV-2 vaccination.

Among the array of ML algorithms, such as random
forest (RF), LASSO, classification and regression tree
(CART), and XGBoost. RF and CART have demonstrated
exceptional precision across a multitude of scientific
fields. The RF excels over other methodologies due to its
adeptness at handling complex, nonlinearly datasets, its
straightforward calibration, resilience against noise, and
its capability for rapid parallel processing [27]. Iwendi
et al. employed a comprehensive dataset that integrated
patient health profiles, demographic details, and geo-
graphical information to predict the severity and clinical
outcomes of COVID-19 cases using the RF methodol-
ogy [28]. Besides, CART is recognized for its versatility
in both classification and regression tasks, particularly
due to its adaptability to a wide range of data types and
sensitivity to minor data changes [29]. Zimmerman and
colleagues used the CART model to increase the efficacy
of COVID-19 screening and detection by differentiating
between individuals with confirmed laboratory diagno-
ses and non-cases [30]. However, there are a few stud-
ies on predictive models that measure the specific cel-
lular responses of T-cells post-SARS-CoV-2 vaccination,
which is the primary focus of our research.

In our research, we assessed the responses of SARS-
CoV-2-specific CD4* and CD8* T-cells among adults
aged between 18 and 60 years who had been adminis-
tered three doses of inactivated vaccines. The cellular
immunity reaction stimulated by an array of overlapping
peptide pools that covered the full sequence of the spike
(S), nucleocapsid (N), membrane (M), and envelope
(E) proteins, as well as their combined total pool (T),
were measured using the Intracellular cytokine staining
(ICS) method. Concurrently, a comprehensive dataset
comprising 32 variables for the study participants was
assembled. With this dataset, we employed the RF and
CART algorithms to identify predictive indicators and
to develop models that are capable of predicting specific
cellular immunity with precision and efficiency. Our
research presents a cost-effective and rapid method for
assessing the intensity of T-cell responses in individuals
vaccinated with inactivated SARS-CoV-2 vaccines. This
method does not necessitate advanced laboratory equip-
ment, thereby broadening its use for assessing immune
status against SARS-CoV-2 and determining the need for
booster vaccinations across various healthcare settings,
from hospitals to community clinics. Additionally, these
models developed in this study offer innovative meth-
ods and insight for evaluating post-vaccination immune
responses against multiple infectious diseases.

Methods
Study population and data collection

In this research, we enrolled a cohort of 134 healthy adults
aged 18 to 60 years. All participants had no history of
SARS-CoV-2 infection, as confirmed by negative results
from pharyngeal swab nucleic acid tests. Moreover, none
of the participants had received any COVID-19 vaccines
other than the inactivated SARS-CoV-2 vaccine BBIBP-
CorV. Each individual had completed a three-dose regimen
of the BBIBP-CorV between November 2021 and Septem-
ber 2022, with the first and second doses spaced 1 month
apart, followed by a 6-month interval before the third dose.
A compilation of demographic information, a set of 26
routine blood examination results, along with immune
cell markers, are presented in Table 1. The data encom-
passes a variety of parameters including age, sex, days
post-vaccination, antibody binding titers to the RBD of
both the wild-type (WT) Wuhan-Hu-1 strain and the Omi-
cron variants. The proportions of T-cells (CD3*%, CD4*,
CDS8™") in the total blood and the CD4*/CD8* T-cells ratio
were obtained through flow cytometry. The remaining
parameters, including white blood cell (WBC), neutro-
phil granulocyte (NEU and NEU%), monocyte (MONO
and MONO%), lymphocyte (LYM and LYM%), basophil
granulocyte (BASO and BASO%), eosinophil granulo-
cyte (EOS and EOS%), hemoglobin (HGB), red blood
cell (RBC), mean corpuscular hemoglobin (MCH), mean
corpuscular volume (MCV), the standard deviation of red
blood cell distribution width (RDW-SD), red cell volume
distribution width (RDW-CV), hematocrit (HCT), platelet
count (PCT), mean platelet volume (MPV), platelet distri-
bution width (PDW), and platelet absolute counts (PLT),
were derived from routine blood examination results.

This research was conducted under the Declaration of
Helsinki, and approved by the Ethics Review Committee
of the Eighth Affiliated Hospital of Sun Yat-sen Univer-
sity, with the reference number 2021-005-01. Besides,
written informed consent was obtained from all subjects
involved in the study.

Assessment of SARS-CoV-2-specific CD4* and CD8*
T-cell responses

The evaluation of the T-cell responses was conducted
according to the methods previously reported [20]. In sum-
mary, peripheral blood mononuclear cells (PBMCs) were
separated from venous blood samples by centrifugation,
employing Ficoll-Hypaque (TBDscience, CHN), and then
re-suspended in RPMI 1640 culture medium (Gibco, USA)
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Table 1 Baseline table of the 134 participants

Variables Total (n=134)
Age 36.21 +8.15
Sex, n (%)

Female 73 (54.48%)

Male 61 (45.52%)

Days post-vaccination 89.00 (65.00, 145.00)

Serology (AU/ml)
NAb (WT) 16.80 (4.93, 46.56)
NAb (Omicron) 4.16 (0.00, 12.99)
Immune cell indicators
CD3" T-cell% 70.25 (63.28, 75.65)

CD4" T-cell%

CD8" T-cell%

CD4*"/CD8* T-cell
Routine blood indicators

52.42+9.34
30.90 (26.57, 36.08)
1.68 (1.32, 2.10)

WBC 6.01 (5.25, 7.00)
NEU 3.33(2.75, 4.03)
NEU% 56.15 (51.23, 59.90)
LYM 2.16+£0.52
LYM% 34.95 (30.92, 39.53)
MONO 0.34 (0.28, 0.43)
MONO% 5.82+1.23
EOS 0.12 (0.07,0.21)
EOS% 2.05 (1.30, 3.10)
BASO 0.03 (0.02, 0.04)
BASO% 0.50 (0.30, 0.60)
RBC 4.94 (4.62,5.42)
HGB 143.00 (133.25, 159.00)
MCV 90.10 (87.93, 92.27)
MCH 29.50 (28.52, 30.30)
MCHC 327.00 (322.00, 331.00)
HCT 0.44 (0.41, 0.49)
RDW-CV 12.80 (12.43, 13.17)
RDW-SD 40.90 (39.90, 41.80)
PLT 258.50 (237.00, 302.25)
MPV 9.81+£0.98
PCT 0.25 (0.23, 0.29)
PDW 16.10 (15.90, 16.40)

NAb (WT) and NAb (Omicron): antibody binding titers to the RBD
of the wild-type (WT) Wuhan-Hu-1 strain and Omicron variants;
Data are meanz+standard deviation or medians (1st Quartile, 3rd
Quartile) and depend on the test for normality

supplemented with 1% penicillin—streptomycin (Gibco)
and 10% fetal bovine serum (Gibco). A comprehensive
pool of 324 peptides (18-mer), each with a six-amino-acid
overlap, were crafted to encompass the entire S, N, M,
and E proteins of the SARS-CoV-2 Wuhan-Hu-1 strain,
with a purity exceeding 90% (ChinaPeptides, CHN). The
PBMCs were distributed into 96-well plates at a density
of 1x10° cells/well and were exposed to a mixture of S,
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N, M, E, and T peptide pool for 5 h at a concentration of
1.5 pM, along with GolgiStop (Becton Dickinson, USA).
Cells treated with DMSO served as the negative control,
while cells stimulated with PMA (50 ng/ml, DARKEWE,
CN) and ionomycin (lug/ml, DARKEWE, CN), were used
as the positive control. PBMCs were later harvested, and
dead cells were labeled by LIVE/DEAD Zombie Viabil-
ity (BioLegend). After washing with PBS, cells were col-
lected and incubated with a panel of surface antibodies,
including anti-CD3, anti-CD4, and anti-CD8. Following
PBS washing, cells were fixed with 4% paraformaldehyde
and were permeabilized using permeabilization wash
buffer (Becton Dickinson), followed by intracellular stain-
ing with an anti-IFN-y antibody and an isotype control
mouse IgG1. All antibodies used in this study are showed
in Table S1. The flow cytometry data were captured using
the FACSCanto II LSRFortessa (Becton Dickinson), with
background signals being subtracted prior to analysis.

NAb assay

To assess SARS-CoV-2 NAb levels, we employed the
iFlash-2019-nCoV NAD kit, consistent with our previous
methodology [20]. In brief, serum was mixed with RBD-
coated microparticles, and then acridinium-ester-labeled
ACE2 was added to bind the unoccupied RBD sites. Non-
specifically bound materials were removed with a wash
buffer, and chemiluminescent signals, indicative of antibody
presence, were quantified as relative light units (RLUs) upon
introducing a signal buffer. NAb titers were then calculated
from RLU values using a calibration curve.

Random forest model to predict and evaluate
cellular immunity

The dataset was randomly segregated, allocating 70%
for the training set and the remaining 30% designated for
the testing set. The RF algorithm was then applied to the
training subset to evaluate the influence of diverse indica-
tors on cellular immunity against SARS-CoV-2. The RF
model assessed multivariate significance by systematically
eliminating predictor variables from individual trees within
the forest, subsequently measuring the resultant accuracy
changes to determine the importance of these variables.
Variables importance was ascertained by quantifying and
ranking based on the Increase in Node Purities (IncNodePu-
rity) and percentage of Increase in Mean Square error (%
IncMSE), both of which are tied to the loss function, with
the optimal loss function selected through the most effec-
tive segmentation. To enhance the RF model’s stability and
accuracy and reduce the risk of overfitting, several strat-
egies have been employed. These steps involved increas-
ing the number of trees (n_estimators) to 500 for enhanced
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predictive averaging and variance reduction, limiting the
variables considered at each split (max_features) to three to
foster tree diversity and minimize correlation, and applying a
maximum depth limit (max_depth) to avoid the model from
becoming overly complex with the training dataset.

For the predictive model, variables were selected based
on the criteria of maximized coefficient of determination
(R?) and minimized root mean squared error (RMSE) val-
ues [31]. The model’s predictive efficacy was then validated
using the test set. Predictive accuracy was evaluated by
comparing the predicted values with the actual experimen-
tal data, employing scatter plots and Spearman correlation
analysis for both the training and testing datasets.

Tenfold cross-validation

To enhance model reliability and assess generalizability, we
performed tenfold cross-validation using the caret package
in R. The predictor variables were the eight features selected
based on variable importance from the initial random for-
est model. Model performance was evaluated across each
fold using root mean square error (RMSE), R-squared (Rz),
and mean absolute error (MAE). The optimal number of
variables tried at each split (mtry) was selected based on the
lowest average RMSE.

Visualization models for assessing T-cell responses
through the CART algorithm

The RF methodology is an ensemble learning method that
integrates multiple CARTSs and combines their predictions
to generate a final output. A single CART utilizes the entire
feature set to determine the optimal split at each node,
employing various thresholds and nodes to assess and cal-
culate the value of the predicted variable. Factor variables
can be categorical for classification trees or continuous vari-
ables for regression trees [32]. In our study, we performed a
regression tree analysis to assess the quantitative interrela-
tions among a range of variables and to predict the extent of
cellular immunity across different conditions.

Data analysis

Variables that adhered to a normal distribution were
depicted using the mean =+ standard deviation, and non-
normally distributed continuous variables were described
as medians (interquartile ranges, i.e., upper and lower
quartiles). Categorical data were presented as counts and
percentages (%). Correlations between the two variables
were assessed using Spearman’s correlation. In addition,
General Linear Regression (GLR) was applied to examine

linear relationships between the independent and depend-
ent variables, while Restricted Cubic Spline (RCS) analy-
sis was used for nonlinear relationships.

Statistically significant was set at the P value threshold
of less than 0.05. For the construction of models based
on ML, R software, version 4.2.3 (The R Project for Sta-
tistical Computing, Vienna, Austria), was employed. The
specific R packages employed for these methodologies
included the rms package for RCS analysis, the rpart and
rpart.plot packages for the CART model, and the random
Forest package for the random forest.

Results

Descriptive statistics of the cohort and basic
exploratory data analysis

A total of 134 healthy participants, aged between 18 and
60 years old, who had completed the three-dose schedule
of inactivated SARS-CoV-2 vaccines and had not been
infected with SARS-CoV-2, were enrolled in this study.
Table 1 provides an overview of the demographic and
baseline characteristics of these participants. The volun-
teers had an average age of 36 years, and 61 individu-
als (comprising 45.52% of the study cohort) being men.
Serum NAbs against both the Wuhan-Hu-1 and Omicron
strains of SARS-CoV-2 were quantified, with median titers
being16.80 AU/ml and 4.16 AU/ml, respectively.

In this study, we developed a comprehensive set of 324
18-mer overlapping peptides that encompass the complete
sequences of the SARS-CoV-2 four structural proteins.
PBMCs were extracted and exposed to the S« N. M. E
and T peptide pool, respectively. The specific cellular
responses to SARS-CoV-2 were then evaluated employing
ICS assays. The gating strategy is detailed in Figure S1A,
and the representative fluorescence-activated cell sorting
(FACS) plots are presented in Figure S1B, depicting the
expression of IFN-y by CD4* and CD8* T-cell (as indi-
cated on the y-axis), following stimulation with the five
peptide pools or the negative control. Table 2 illustrates
the quantitative results of specific CD4* and CD8" T-cell
responses to the S, N, M, E, and T pools, highlighting that
certain individuals exhibit notably elevated response lev-
els. The T pool, in particular, triggered the highest median
and average levels of T-cell responses among the study
participants. Additionally, the incidence of individuals
with T-cell reactions to the T pool notably surpassed the
response rate to any one of the four individual structural
proteins, with a positive response rate reaching 85.82%
for both CD4* and CD8™" T-cells, as detailed in Table 3.

@ Springer
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Table 2 Quantitatiye Structural Min 1stQu Median Mean 3rdQu Max

assessment of specific CD4* .

and CD8™ T-cell response protein

again.st SARS-CoV-2 structural CD4* T-cell response level (%)

proteins S 0.000 0.000 0.000 0.072 0.069 1.200
N 0.000 0.000 0.035 0.101 0.115 1.222
M 0.000 0.000 0.000 0.027 0.019 0.570
E 0.000 0.000 0.000 0.028 0.022 0.680
T 0.000 0.000 0.078 0.269 0.220 2.130

CD8* T-cell response level (%)

S 0.000 0.000 0.101 0.315 0.444 2.240
N 0.000 0.000 0.035 0.358 0.269 4.855
M 0.000 0.000 0.000 0.068 0.058 0.860
E 0.000 0.000 0.000 0.092 0.026 1.424
T 0.000 0.103 0.372 0.933 1.456 5.510

S: Spike protein peptide pool; N: Nucleocapsid peptide pool; M: Membrane protein peptide pool; E: Enve-
lope protein peptide pool; T: the total of four structural protein peptide pool

Table3 SARS-CoV-2 structural proteins specific CD4" and CD8*
T-cell responses rate

Structural protein CD4* T-cell response ~ CD8* T-cell
rate n (%) response rate
n (%)
S, n (%)
No 46 (34.33) 46 (34.33)
Yes 88 (65.67) 88 (65.67)
N, n (%)
No 52 (38.81) 61 (45.52)
Yes 82 (61.19) 73 (54.48)
M, n (%)
No 97 (71.64) 92 (68.66)
Yes 38 (28.36) 42 (31.34)
E, n (%)
No 94 (70.15) 92 (68.66)
Yes 40 (29.85) 42 (31.34)
T, n (%)
No 19 (14.18) 19 (14.18)
Yes 115 (85.82) 115 (85.82)

S: Spike protein peptide pool; N: Nucleocapsid peptide pool; M:
Membrane protein peptide pool; E: Envelope protein peptide pool; T:
the total of four structural protein peptide pool; data are presented as
medians (1st Quartile, 3rd Quartile)

Correlation analysis

To determine the connections between various variables and
the T-cell response, we initially conducted a Spearman’s cor-
relation analysis, with the findings presented in Table S2 and
Table S3. Considering the comprehensive coverage of pep-
tides derived from the four structural proteins by the T pool
and the fact that the proportion of individuals manifesting
cellular responses to each of the four individual structural
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proteins is markedly less than the proportion responding
to the T pool, the T pool specific T-cell responses were
selected as the targets for evaluation and prediction in this
research. The findings indicated that T-specific CD4* and
CD8* T-cell responses were correlated with age, days post-
vaccination, and NAb (WT) (P <0.05). Additionally, there
was a statistically significant correlation between the levels
of NAb (Omicron) and the T-specific CD8* T-cell responses
(P <0.001). Nonetheless, the overall correlation strength
was moderate, with a correlation coefficient below 0.5, as
depicted in Fig. 1.

This heatmap illustrates the correlation coefficients
between the CD4* and CD8" T-cell responses and several
variables, including age, the number of days post-vaccina-
tion, and the levels of NAb (WT) and NAb (Omicron). The
intensity of the correlation is indicated by the color spectrum
located on the side. NADb, neutralizing antibody; WT, wild
type, referring to the SARS-CoV-2 Wuhan-Hu-1 strain.

Linear and nonlinear regression analysis

In our investigation of the linkage between the magnitude
of SARS-CoV-2-specific CD4" and CD8* T-cell response
magnitudes and three highly related indicators—age, days
post-vaccination, and NAb—both GLR and RCS analysis
were utilized. Our findings indicated that age, after adjusting
for days and NADb as covariates, exhibited a statistically sig-
nificant positive linear correlation with the response levels
of both CD4* and CD8™ T-cell responses (P <0.05, Fig. 2A
and B). In contrast, days post-vaccination, when adjusted for
age and NAb, demonstrated a statistically significant lin-
ear negative relationship with the T-cell response (P <0.05,
Fig. 2C and D). According to the univariate RCS analysis,
an ‘L’-shaped nonlinear relationship between NADb levels
and the response levels of both CD4" and CD8* T-cells,
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indicating a threshold effect where T-cell responses plateau
beyond a certain NAb titer (P <0.05, Figure S2). However,
upon multivariate adjustment for days since vaccination and
age, these nonlinear relationships dissipated, suggesting that
the initial ‘L’-shaped pattern was influenced by the con-
founding effects of days post-vaccination and age (P> 0.05,
Fig. 2E and F). These findings indicate that age and days
post-vaccination are the predominant factors influencing
T-cell response levels, and the impact of NAb was signifi-
cant only in univariate analysis and not after multivariate
adjustments.

(A-B) After adjusting for the number of days post-vac-
cination and NAb levels as covariates, a linear positive
association was identified between age and the responses
of CD4" T-cell (left panel) and CD8" T-cell (right panel)
responses was observed. (C-D) The linear negative correla-
tion between number of days post-vaccination and the T-cell
responses, with adjustments for age and NAb as covariates.
(E-F) The ‘L’-shaped nonlinear relationship between the
T-cell responses and the levels of NAb became statistically
insignificant (P> 0.05) after applying a multivariate adjust-
ment for age and days post-vaccination. The y-axis () rep-
resents the partial effect size (regression coefficient) of age
on log-transformed CD4*/CD8* T-cell response, estimated
from a generalized additive model adjusted for days post-
vaccination and neutralizing antibody (NAb) levels.

The prediction model established by RF algorithms

The RF model encompassed a comprehensive set of
32 variables as detailed in Table 1, to identify the key
determinants of T-cell response magnitudes. Importance
analysis was conducted to screen these variables, with the
outcomes ranked by the % IncMSE to spotlight the most
impactful variables on T-cell response levels. The predic-
tion model was then constructed, comprising the top 8
predictors, selected based on their higher R? values and
lower RMSE values. Alongside the strongly correlated
variables- age, days post-vaccination, and NAb (WT)-the
proportions of CD3", CD4*, and CD8* T-cells were found
to be significantly predictive of the CD4* T-cell response
(Fig. 3A). Conversely, for the CD8* T-cell response,
MONO, MONO%, MCV, NAb (Omicron), and NEU
emerged as pivotal predictors (Fig. 3B). The importance
metrics are detailed in Tables S4 and S5.

The impact of the 32 candidate variables listed in Table 1
on the levels of SARS-CoV-2-specific T-cell response was
assessed. The top 8 determinants for CD4" T-cell (left panel)
and CD8™" T-cell responses (right panel) are displayed in
descending order relative to their contribution based on the
% IncMSE. MONO, monocyte; NEU, neutrophil granulo-
cyte; MCV, mean corpuscular volume; % IncMSE, percent-
age of Increase in Mean Squared Error.
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Fig.2 Analysis of variables’ impact on SARS-CoV-2 specific T-cell response via multivariate linear and nonlinear regression

The dataset was divided, with 70% (n=94) allocated to
the training subset and the remaining 30% (n=40) desig-
nated for the testing set. Subsequently, the predictive models
were subjected to verification against the test set to assess
their accuracy. An analysis comparing the alignment of the
predicted values with the actual data from both the training

@ Springer

and testing datasets revealed a high degree of correlation.
Specifically, the predictive model for the CD4% T-cell
response demonstrated r values above 0.95 for both sets
(Fig. 4A and B). Similarly, the model for the CD8% T-cell
response achieved an r value greater than 0.94 (Fig. 4C and
D). These findings suggest that the random forest model
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Fig.3 Ranking of the 8 most influential variables determined by the random forest (RF) model

offers a high level of precision in predicting the responses
of SARS-CoV-2-specific T-cells in healthy adults aged
18-60 years, who have received three doses of inactivated
vaccines.

(A-B) The scatter plot shows the alignment between the
predicted values for the CD4* T-cell response and the actual
values from both the training and testing datasets. (C-D)
The scatter plot illustrates the verification of the alignment
between the predicted values for the CD8* T-cell response
and their actual values from the training and testing datasets.

In the tenfold cross-validation, the random forest model
showed stable predictive performance for CD8* T-cell
responses (T8), with R? ranging from 0.315 to 0.675 and
MAE from 0.0044 to 0.0084, indicating good model fit. In
comparison, the CD4* T-cell response (T4) model exhibited
greater variability, with R? ranging from 0.0065 to 0.796.
However, its overall RMSE and MAE remained low, sug-
gesting that despite inconsistent explanatory power, the
model retains reasonable predictive value (Table S6 and S7).

Quantitative predictive T-cell responses using
the CART model

CART models were built for the accurate prediction and evalu-
ation of T-cell responses specific to SARS-CoV-2. Variables

including days post-vaccination, age, the proportion of CD3*
and CD4* T-cells, and LYM% were screened by the CART
model for predicting the specific value of the CD4" T-cell
response, identified to range from 0.0723% to 1.3% (Fig. SA).
In parallel, the specific value of the CD8" T-cell response was
determined using days post-vaccination, MCV, MPV, and
HGB, with values ranging from 0.17% to 3.8% (Fig. 5B). For
example, considering a 50-year-old individual received the
SARS-CoV-2 vaccine 100 days prior, and the proportion of
CD3" T-cells is 50% of the total T-cell count, the model esti-
mates that the SARS-CoV-2-specific CD4* T-cell response
rate is likely to be around 0.34%.

(A) Variables including days post-vaccination, age, the
percentages of CD3* T-cell and CD4* T-cell, and LYM were
screened by the CART model to predict the CD4* T-cell
response quantitatively. (B) For the prediction of CD8" T-cell
responses, the CART model incorporated variables including
days post-vaccination, MCV, MPV, and HGB. LYM, lympho-
cyte; MPV, mean platelet volume; HGB, hemoglobin; MCV,
mean corpuscular volume.
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Fig.4 RF model for predicting the responses of SARS-CoV-2-specific CD4" and CD8* T-cells

Discussion

For this study, we enrolled a group of 134 healthy donors
aged 18-60 years who had received three doses of the inac-
tivated SARS-CoV-2 vaccine. Then, the T-cell responses

@ Springer

specific to the S, N, M, E, and T pools were detected using
the ICS method. As anticipated, the result showed a higher
proportion of participants displayed T-cell responses to the
T pool compared to the individual structural proteins, owing
to the T pool’s comprehensive coverage of peptides from all
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four structural proteins. Consequently, the T pool-specific
T-cell response offers a more comprehensive representation
of the cellular immune response against SARS-CoV-2. Thus,
our study concentrates on the analysis and predictive mod-
eling for the response of T pool-specific T-cells.
Vaccination elicits both cellular and humoral immune
responses, which collectively mediate immune protection.

While inactivated vaccines primarily confer protection by
inducing NAbs that block viral entry into host cells, their
titers tend to wane significantly over time and exhibit
reduced efficacy against variants bearing mutations in the
spike protein. Nevertheless, previous studies have confirmed
that BBIBP-CorV can also induce significant SARS-CoV-
2-specific T-cell responses [33]. These T-cell responses,
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which target conserved viral epitopes, can endure for sev-
eral years, thereby offering long-term protection against viral
infections and variants [34]. Therefore, the magnitude of
T-cell responses to SARS-CoV-2 within a population may
serve as an indicator for resistance to SARS-CoV-2, and the
potential need for booster immunization.

The findings revealed associations between responses
of SARS-CoV-2-specific CD4* and CD8* T-cells and fac-
tors including age, days post-vaccination, and NAb (WT).
Additionally, a correlation was identified between the lev-
els of NAb (Omicron) and CD8" T-cell responses. Albeit,
the overall correlation was relatively weak. Notably, age
demonstrated a statistically significant positive linear cor-
relation with SARS-CoV-2-specific cellular immunity
(P <0.05), which might seem counterintuitive considering
the increased disease severity and mortality with older age
in COVID-19 patients [35, 36]. Besides, Dietz et al. reported
that adaptive immune responses, particularly spike-specific
responses, decline with age [37]. However, Dietz and col-
leagues assessed post-vaccination immunity across groups
aged > 65, 65-74, and > 75 years. In contrast, our study
focused on healthy adults within the 18 to 60 age range, with
an average age of 36 years (1st Quartile:30; 3rd Quartile:
42), indicating that the impact of aging within this cohort
is quite minimal. What’s more, a meta-analysis of 31 lung
single-cell RNA-sequencing uncovered cell type-specific
connections between age and the expression levels of recep-
tors and proteases crucial for SARS-CoV-2 entry, including
TMPRRSS2, ACE2, and CTSL [38]. This provides insight
into the increased symptom severity in older COVID-
19 patients. Additionally, cross-reactive T-cell immunity
against SARS-CoV-2 has been observed in individuals with
no prior exposure to the virus, which is thought to be due
to the partial homology of T-cell epitopes between SARS-
CoV-2 and common cold coronaviruses like HKU1, OC43,
229E, and NL63 [39]. Given the recurrent nature of com-
mon cold coronaviruses, elderly individuals may have more
frequent encounters with these viruses, which could account
for the stronger cellular immune responses post-vaccination
observed in the older participants in our study.

Days post-vaccination maintained a linear negative
impact on T-cell responses, even after the analysis was
adjusted for age and NAb. This finding aligns with numer-
ous studies indicating that SARS-CoV-2-specific T-cell
responses decrease as time progresses [40]. Additionally, the
nonlinear, ‘L’-shaped increase in specific T-cell responses
with NADb levels was observed, potentially attributable to
the combined effect of CD4" and CD8" T-cells in neutral-
izing antibody production [41, 42]. However, after adjusting
for age and days post-vaccination, the correlation between
specific T-cell responses and NAb became statistically insig-
nificant. This suggests that the initial ‘L’-shaped pattern
observed is likely influenced by the confounding effects of
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time since vaccination and the age of participants. Notably,
while the CD4* T-cell response showed an apparent stabi-
lization after approximately day 100, this nonlinear pattern
was not statistically significant (P for nonlinearity =0.068).
This observation may reflect limited sample density at
longer follow-up intervals or individual heterogeneity. In
summary, the responses of T-cells targeting SARS-CoV-2
were predominantly influenced by age and duration follow-
ing vaccination, with the impact of NAb being significant
in univariate analysis but not after multivariate adjustments.

Al-driven technologies have proven instrumental in refin-
ing clinical decision-making processes, accelerating the evo-
lution of pharmaceuticals, enhancing diagnostic procedures
for a spectrum of diseases, and strengthening health surveil-
lance systems [43, 44]. ML has adeptly been deployed to
craft early alert systems for monitoring emerging SARS-
CoV-2 strains [45], pinpoint possible neutralizing agents
[46], and predict epitopes for B cells and T-cells that could
be targeted in vaccine development [47]. However, the appli-
cation of ML in predicting the level of cellular immunity
post-vaccination remains limited. Such predictive capabili-
ties are crucial for assessing the necessity for booster vac-
cinations, which are pivotal for reinforcing and maintaining
individual and public immunity.

In this study, we collected an array of datasets encom-
passing epidemiological information, routine blood indices,
and immune cell parameters, totaling 32 distinct variables.
Through the assessment of the % IncMSE, variables with
the most substantial influence were identified. Besides age,
days post-vaccination, and NAb, MONO was also identified
as a key predictor for the T-cell response, possibly because
of their ability to produce mediators that influence T-cell
polarization [48]. The proportions of CD3*, CD4*, and
CD8™* T-cells were essential for predicting the responses of
CD4* T-cells, potentially owing to their foundational role
in driving T-cell reactions. However, the underlying rea-
sons for the importance of the MCV and NEU in predicting
CD8* T-cell responses warrant further investigation. Sub-
sequently, variables were chosen for the predictive model
based on their higher R? value and lower RMSE values. The
model’s validation against both training and testing datasets
confirmed its predictive efficacy, with a high degree of align-
ment observed between predicted and actual values. This
substantiates the random forest model’s high precision in
predicting T-cell responses.

In our initial analysis, the model demonstrated a high
Pearson’s correlation coefficient on the training dataset
derived from a 70/30 split. While this result suggests excel-
lent predictive accuracy, it likely reflects overfitting, as the
model was evaluated on data it had already seen during
training. To obtain a more robust estimate of model per-
formance and generalizability, we applied tenfold cross-
validation across the entire dataset. This approach yielded
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a lower but more realistic correlation, indicating moderate
predictive power when applied to unseen data. The differ-
ence between the two results underscores the importance of
cross-validation, especially when working with small data-
sets, to prevent overestimation of model accuracy and ensure
more reliable conclusions.

To address the limitations of generalized linear models
in capturing complex, nonlinear relationships, we further
employed a CART model. This model provides an inter-
pretable, nonlinear approach to quantitatively predict T-cell
responses. Utilizing the CART algorithm, we developed
visualization models to evaluate the response levels of CD4*
and CD8* T-cell responses. Notably, the day of the peak in
the linear relationship graph for CD4* T-cells with the days
post-vaccination corresponds precisely with the first branch-
ing condition in the CART decision tree. This congruence
between the two analytical methods underscores the depend-
ability of our data analysis and further supports the validity
of our findings.

However, this study also has several limitations. Although
the 32 variables included in this study were mostly easily
obtained from clinical sources, the number of variables
was limited, and the participant’s sample size was modest.
Moreover, the absence of data from participants with break-
through infections, coupled with the fact that the maximum
duration of vaccination considered for our volunteers was
297 days, and participants who received types other than
inactivated ones were not included, may restrict the predic-
tive model’s generalizability to those vaccinated for over
297 days, recipients of alternative vaccine types, or individ-
uals with breakthrough infections. Furthermore, our study
was conducted within a population cohort from Shenzhen,
China. Given the substantial heterogeneity in HLA genotype
distribution across different geographical regions, caution
should be exercised when extrapolating these findings to a
global context [49, 50].

While our model demonstrates strong predictive per-
formance through internal validation, external validation
remains an important goal. However, our predictive frame-
work is based on a multi-dimensional feature set—including
not only age and time post-vaccination, but also detailed
immunological markers (e.g., CD3*, CD4", and CD8*
T-cell percentages), neutralizing antibody levels (WT and
Omicron), and routine clinical laboratory indicators (e.g.,
MONO, NEU, and MCYV). To date, few external datasets
provide this full set of predictors alongside matched T cell
response outcomes. Nevertheless, future work will aim to
identify partial external cohorts to validate model compo-
nents and further test generalizability.

Despite these limitations, we proposed an economi-
cal and efficient model capable of evaluating the levels of
SARS-CoV-2-specific T-cell responses following vaccina-
tion. This approach requires no sophisticated laboratory

facilities, thereby expanding its applicability for evaluat-
ing SARS-CoV-2 immune status and assessing the need for
booster vaccination across a range of healthcare settings,
from large hospitals to local community clinics. While the
direct applicability of our model is limited by the specificity
of our cohort, it provides a foundation for future research. By
incorporating more diverse populations and additional data
sources, future models can address the global circulation of
SARS-CoV-2 and its variants, enhancing the generalizability
and applicability of immune response prediction. Moreover,
these methodologies are well-suited for multicenter studies
and may prove instrumental in predicting adaptive immunity
after vaccination with a variety of vaccines targeting various
pathogens. Additionally, the framework of our model, which
currently focuses on predicting T-cell responses-a clinically
challenging measurement-could be adapted to forecast anti-
body dynamics using similar input features. This adaption
could potentially enable low-cost monitoring of humoral
immunity in rescore-limited settings.

Conclusions

In this research, multivariate analysis revealed that age and
the number of days post-vaccination were the most signifi-
cant factors affecting the responses of SARS-CoV-2-specific
T-cells. Utilizing the RF and CART algorithms, we have
crafted predictive models that employ readily available
data, including age, days post-vaccination, NAb, and routine
blood parameters, to predict the levels of T-cell responses
with remarkable precision and efficiency. This visualizable
and easy-to-use methodology also has the potential for appli-
cation in the evaluation of other vaccines and offers clinical
utility.
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