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Background: Osteoclasts, which are multinucleated cells formed by monocyte fusion,
play a key role in bone resorption. Hypoxia-inducible factor (HIF)-1a is vital for the
development of osteoclasts in hypoxic environments and during bone resorption.
However, additional research is required to further study the HIF-1a-dependent
regulation of osteoclast differentiation at the genetic level.

Methods: In our study, RNA sequencing (RNA-seq) was used to identify the expression
profiles of long noncoding RNAs (IncRNAs) and mRNAs in conditional HIF-1a-knockout
osteoclasts.

Results: A total of 1,320 mRNAs and 95 IncBNAs were differentially expressed. The
expression of INcRNAs MSTRG.7566.12 and MSTRG.31769.2 were strongly negatively
correlated with that of Mmp9, Ctsk, etc.

Conclusion: Our research provides a basis for further understanding the role of mMRNAs
and INcRNAs in conditional HIF-1a-knockout osteoclasts, and many of these molecules
may be potential targets for treating bone diseases related to HIF-1a.

Keywords: osteoclast, IncRNA, mRNA, HIF-1a, condyle

1 INTRODUCTION

Bone is a highly vascularized tissue that has a rich blood supply that maintains its nutrient and
oxygen concentrations. However, bone fracture or inflammation may disrupt this circulation,
leading to hypoxia of adjacent bone and marrow (Knowles, 2017). As the core molecule that
senses and responds to the local oxygen environment, hypoxia-inducible factor (HIF)-1a plays a
certain role in bone metabolism. Bone metabolism mainly involves bone formation and bone
resorption (Weivoda et al., 2020). Osteoclasts are giant multinucleated cells derived from the fusion
of bone marrow mononuclear macrophage (BMM) precursors. After fusion and maturation, BMMs
differentiate into osteoclasts which play a vital role in the bone resorption process (Miron and
Bosshardt, 2018). The main function of osteoclasts is to absorb bone tissue by secreting acid and
collagen-degrading enzymes. Receptor activator of nuclear factor-« B Ligand (RANKL) is a signalling
factor in the differentiation of osteoclasts, and RAW264.7 cells as an alternative can be induced to
form osteoclasts by RANKL (Fujisaki et al., 2007). Differentiated and mature osteoclasts secrete large
amounts of substances, such as hydrogen ions and CTSK, tartrate-resistant acid phosphatase
(TRAP), MMP9, and other proteins (Arnett and Orriss, 2018; Weivoda et al., 2020). HIF-1a is
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vital for the development of osteoclasts in hypoxic environments
and during bone resorption and functions by regulating nutrient
and energy sensors (Knowles, 2015). In recent decades, an
increasing number of regulatory factors have been shown to
be involved in the differentiation of osteoclasts, including
cytokines, signalling pathway molecules, and natural
compounds (Chambers, 1985; Roodman, 1999; Ono and
Nakashima, 2018). Whether during osteoclast differentiation
or maturation, osteoclasts are ready to respond to hypoxia. It
has been reported that HIF-la participates in osteoclast
differentiation by regulating nutrient and energy sensors
(Dirckx et al., 2018; Tang et al., 2019). additional research is
required to further study the HIF-la-dependent regulation of
osteoclast differentiation at the genetic level.

Long non-coding RNAs (IncRNAs) are RNAs that do not
encode proteins and are greater than 200 nucleotides in length
(Ransohoff et al, 2018). Many non-coding genes have
traditionally been considered junk DNA. With the increase in
the number of gene sequencing studies, IncRNAs have been
shown to play an important role in many biological activities,
such as dose compensation, epigenetic regulation, cell cycle
regulation and cell differentiation regulation (Ferre et al., 2016;
Quinn and Chang, 2016; Chatterjee and Sengupta, 2019), and
IncRNAs have become a research hotspot in genetics. Some
articles have reported the role of IncRNAs in osteoclast
differentiation (Dou et al., 2016; Liu et al., 2020), but the HIF-
la-independent regulation of osteoclast differentiation at the
genetic level still needs to be further investigated.

In this study, we explored the IncRNA-mRNA expression
profiles associated with HIF-la-knockout mouse osteoclast
differentiation by RNA sequencing (RNA-seq) and confirmed
these expression profiles by quantitative real-time polymerase
chain reaction (QRT-PCR). Moreover, Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
et al., 2021)analyses were used to predict the potential cellular
functions of the differentially expressed mRNAs and IncRNAs. In
addition, path net analysis and co-expression networks were used
to predict the gene regulatory networks of osteoclast
differentiation. Our study provides a new understanding of the
regulation of osteoclast differentiation by IncRNAs.

2 MATERIALS AND METHODS

2.1 Animals and Ethics Statement

All the mice were purchased from the Jackson Laboratory.
Osteoclast-specific conditional HIF-1a-knockout mice (Cko:
HIF-1aflox/flox; Ctsk cre+) were generated by intercrossing
mice homozygous for a floxed HIF-l1a allele with mice
harbouring the Cre gene in the Cathepsin K locus (Ctsk
cre+). We compared Cko mice with wild-type controls
(Ctrl: HIF-laflox/flox; Ctsk cre-) (n = 5 for each group).
These methods were the same as those in our previous
study (Tian et al., 2020). All methods were performed in
accordance with the revised Animals (Scientific Procedures)
Act 1986 in the UK and Directive 2010/63/EU in Europe. The
Animal Ethics Committee of the Stomatological Hospital
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Affiliated to Tongji University approved all the procedures
involving animals.

2.2 Cell Culture, Staining and Bone

Resorption Assay

RAW 264.7 cells were purchased from the Cell Bank of the
Chinese Academy of Medical Sciences. Bone marrow monocytes
(BMMs) isolated from Cko and Ctrl mouse femurs and tibias
were treated with 100 ng/ml receptor activator of nuclear factor-
kB ligand (RANKL; R&D Systems) and 30ng/ml mouse
macrophage colony-stimulating factor (M-CSF; R&D Systems)
for 6 days. All the serum- or supplement-containing media were
replaced every 2days. Cells were exposed to hypoxia by
incubation under 2% O, and 5% CO, conditions with
balanced N, in the Invivo2 Hypoxia Workstation (Rushkinn,
Waltham, MA). BMMs were treated under hypoxic conditions
for the last 48 h. The cells were stained with a TRAP staining kit,
toluidine blue staining kit (Solarbio) and FITC phalloidin (Sigma-
Aldrich). Osteoclasts were identified by TRAP staining, and
TRAP-positive osteoclasts were counted in multiple sections.
For the bone resorption assay, BMMs were seeded on bone
slices in 24-well plates and cultured with osteoclastogenic
medium for 14 days. The medium was aspirated, and sodium
hypochlorite was used to bleach the samples three times. Those
methods are the same as our previous study (Tian et al., 2020).

2.3 X-Ray and Micro-computed
Tomography

X-ray and computed tomography were used to quantify bone
remodelling by using a micro-CT system (Micro-CT 50, Scanco
Medical, United States) and the related analysis software. We
selected the entire bone defect region for analysis, and 40 Z planes
were imaged. Five male mice from the Ctrl or Cko group were
euthanized by 1% pentobarbital sodium i.p. at 8 weeks, and the
mandibles were collected for micro-CT analysis. Statistical
analysis of condylar head width and bone volume fraction was
conducted.

2.4 Staining

Sections were stained with an H&E Staining Kit (KeyGen) and
TRAP staining kit (Sigma-Aldrich). An alkaline phosphatase
(ALP) staining kit (Jiancheng) was utilized to detect bone
formation. For immunofluorescence staining, the primary
antibodies used were rabbit anti-HIF-1a (1:200; Abcam) and
mouse anti-CTSK (1:200; BBI). Then, the slides were incubated
with DyLight 488-conjugated goat anti-mouse IgG (1:500;
Abbkine) or DyLight 594-conjugated goat anti-rabbit IgG (1:
500; Abbkine) followed by DAPI (1:800; Sigma-Aldrich).

2.5 RNA Isolation and qRT-PCR

BMMs were seeded in 6-well plates as previously described and
replicated three times. Then, RNA was isolated from cultured
cells or mandibular tissue with TRIzol Reagent (TaKaRa, Japan)
according to the manufacturer’s instructions. The purity and
concentration of the RNA samples were determined with a
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NanoDrop 2000 spectrometer (NanoDrop Technology,
United States). First-strand c¢cDNA was transcribed from
1,000ng RNA with the PrimeScript RT reagent Kit with
gDNA Eraser (TaKaRa, Japan). qRT-PCR was performed in
triplicate with Applied Biosystems QuantStudio 6 and a SYBR
Premix Ex Taq II kit (TaKaRa). The primer sequences are shown
in Supplementary Table S1. The amplification conditions were
as follows: 30 s at 95°C, followed by 45 cycles of 10 s at 95°C and
35 s at 62°C. The primers used for QRT-PCR were purchased from
Sango Biotech (Shanghai, China). B-Actin expression was used
for normalization, and mRNA expression was calculated using
the 2-AACT method.

2.6 RNA-Seq Analysis

Total RNA was extracted from Cko and Ctrl mouse bone marrow
macrophages after the cells were treated with RANKL (100 ng/
ml) and M-CSF (30 ng/ml) for 6 days. The RNA-seq analysis was
performed by Personalbio Co. (Shanghai, China) used by
Mlumina HiSeq. The first-strand cDNA was synthesized using
RNA as a template, using 6-base random primers and reverse
transcriptase, and the second-strand ¢cDNA was synthesized
using the first-strand cDNA as a template. After the library
was constructed, PCR amplification was used to enrich the
library fragments, and then the library was selected according
to the fragment size, and the library size was 450bp. After RNA
extraction, purification, and library construction of the samples,
the next-generation sequencing technology was used to perform
paired-end (PE) sequencing on these libraries based on the
Ilumina HiSeq sequencing platform. To obtain IncRNAs, we
screened transcripts with a length greater than or equal to 200 bp
and the number of exons greater than or equal to 2. Next, we
screen for transcripts whose Class_code is x/u/i (x refers to the
anti-strand of the reference transcript, u represents the unknown
transcript, and i is completely in an intron of the reference
transcript). Finally, we screened the IncRNAs that appeared in
the same sample more than 3 times, and finally obtained
IncRNAs. Based on the expression profiles of 6 groups of
samples (including three control groups and three CKO
groups), we used the DEseq R package to perform differential
analysis of gene expression, and the screening criteria were set as |
log2(Fold change) |>1 and p-value< 0.05). After predicting the
target genes of IncRNA, we used Cytoscape to construct a co-
expression network of IncRNA-mRNA and select the key
IncRNAs. According to the target genes of key IncRNAs, we
constructed a protein interaction network through the STRING
database and visualized it with Cytoscape. Topological analysis
can identify the core proteins in the protein interaction network
and provide directions for future research.

2.7 Protein Extraction and Western Blotting
Assay

RAW 264.7 cells were seeded in 60-mm dishes and incubated
with PBS or in a hypoxic environment for 24 h. The cells were
washed three times with PBS and then harvested in RIPA buffer
with protease inhibitors on ice. The supernatants were collected,
stored at —80°C, and then centrifuged at 12,000 rpm for 10 min at
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4°C. The protein concentrations were determined by a BCA
protein assay kit (Thermo, United States). The protein samples
were separated by 6%-10% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and then
transferred to polyvinylidene fluoride (PVDF) membranes
(Sigma-Aldrich, United States). The PVDF membranes cut
prior to hybridisation with antibodies. The PVDF membranes
were incubated for 1hour with 5% non-fat milk to block
nonspecific binding. Then, the PVDF membranes were
incubated with primary antibodies against HIF-1a and B-actin
at 4°C overnight. After washing 3 times with TBST for 10 min, the
membranes were incubated with HRP-conjugated anti-rabbit or
anti-mouse antibodies at 37°C for 1 h followed by washing with
TBST 3 times for 10 min. Then, the membranes were visualized
with the Super-signal West-Pico chemiluminescent substrate
(Thermo Scientific, United States). The band intensities were
analysed by a Smart ChemTM Image Analysis System
(Sagecreation, China). The protein bands were scanned and
quantified by Image] software. Those methods are the same as
our previous study (Tian et al., 2020).

2.8 GO and KEGG Pathway Analyses

GO analysis was performed using KOBAS 3.0 software (available
online: http://kobas.cbi.pku.edu.cn), and the analysis included
three domains: cellular component (CC), molecular function
(MF) and biological process (BP). GO analysis provides label
classification of gene function and gene product attributes (http://
www.geneontology.org). KEGG pathway analysis identified the
significant enrichment of different pathways with KOBAS 3.0
software (http://www.genome.jp/kegg) (Kanehisa et al., 2021).
We used red lines show the important part concerning of
osteoclasts.

2.9 Co-expression Network Construction
Based on the expression profiles of 6 groups of samples (including
three control groups and three CKO groups). The co-expression
network was established by calculating the Pearson correlation
coefficient and p-value between multiple genes. In this study, the
transcripts were filtered using a COR of >0.85 and a p-value of
<0.05. The co-expression network was illustrated using
Cytoscape software.

2.10 Statistical Analysis

Statistical analysis was conducted with SPSS 22.0 software
(Chicago, IL, United States). Student’s t test was used for
comparisons between two groups. A p-value of <0.05 was
considered significant.

3 RESULTS

3.1 HIF-1a Increased Osteoclastogenesis

and Bone Resorption

Induced by RANKL, RAW264.7 cells could differentiate into
multinucleated TRAP-positive osteoclasts and they were capable
of resorbing bone. To determine the function of HIF-la in
osteoclasts during osteoclastogenesis and bone resorption, a
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FIGURE 1 | HIF-1a increased osteoclastogenesis and bone resorption. (A)The expression of ctsk, trap, mmp9, hif-1a mMRNA in RAW264.7 cells. RAW264.7 cells
were treated with hypoxia in the presence or absence of siRNA transfection. (B)The expression of hif-1a protein in RAW264.7 cells. RAW264.7 cells were treated with
hypoxia in the presence or absence of siRNA transfection. Representative images of western blot: Hif-1a protein expression and analysis. The blots cut prior to
hybridisation with antibodies. (C) The staining of Trap, HIF-1a, Phalloidin, Tolucine blue in RAW264.7 cells that were treated hypoxia in the presence or absence of
SiRNA transfection. And the images of bone absorption. (D) Statistical analysis of number of osteoclasts the area of Trap, HIF-1a, Phalloidin, Tolucine blue and bone
absorption. Bars = 50 um*, p < 0.05, **, p < 0.01. Data represent mean + SEM.
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FIGURE 2 | The phenotype of knock out HIF-1a in osteoclast. (A)Model mouse breeding pattern diagram of conditional knockout HIF-1a in osteoclast. (B) The
gene identification of Ctrl and Cko mouse. (C)Typical phenotype after knock out HIF-1a in osteoclast:the 3D construction and X-ray of condyle dysplasia. Statistical
analysis of condyle head width and Bone volume fraction (BV/TV), (n = 5). Bars = 1.0 mm*, p < 0.05, **, p < 0.01. Data represent mean + SEM. (D). The representative
staining images of HE, Trap of condyle dysplasia. Bars = 100 um. (E) The representative staining images of HE, Trap, HIF-1a, Phalloidin, bone absorption in Ctrl
osteoclasts and Cko osteoclasts. Bars = 100 pm.
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FIGURE 3 | Expression profiles of mRNAs in knock out HIF-1a osteoclast and pathway analysis. The up-regulated and down-regulated number of mRNA (A)
Cluster heat map shows differentially expressed mRNAs (B) in osteoclast differentiation. The names of the sample groups are on the x-axis and the different profiles are
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hypoxic environment was used to increase HIF-1a expression,
and siRNA was used to decrease HIF-1a expression. Osteoclast-
related gene (ctsk, trap, mmp9) transcription was quantified by
qRT-PCR, and HIF-1la protein expression was quantified by
western blotting (Figures 1A,B). Increased expression of HIF-
la was accompanied by increased expression of osteoclast-related
genes. In addition, osteoclast-related gene expression was
decreased when the expression of HIF-la was inhibited by
siHIF. However, HIF-la mRNA and protein expression did
not change after cells were incubated with or without RANKL.
In addition, phalloidin staining and toluidine blue staining
showed that under hypoxic conditions, the number of
osteoclasts increased, the efficacy of siHIF decreased, and the
area of HIF-1a expression increased. These results indicated that
HIF-1a was involved in osteoclast activation (Figures 1C,D). To
explore the role of HIF-1a in bone resorption, RAW 264.7 cells
were seeded onto bone slices. The results showed no bone
absorption without RANKL treatment. Compared with the
control, after osteoclastogenesis, the absorbed area increased
under hypoxic conditions and decreased with siHIF treatment
(Figures 1C,D). These results confirmed that HIF-1a played a
key role in osteoclast bone resorption in vitro.

3.2 CKO Mouse Identification and

Osteoclast Phenotype Assessment

After HIF-1a flox and Ctsk cre gene identification (Figures
2A,B), we allocated HIF-1aflox/flox; Ctsk cre + mice to the
CKO group and the other mice to the Ctrl group. First, we
compared the hard tissues using micro-CT. Interestingly, we
found that the condylar dysplasia (Figure 2C) and condylar
head width of the CKO mice were twice as wide as those of the
Ctrl mice, and the bone volume fraction (BV/TV) in the CKO
mice was also higher. These results indicated that HIF-1a
played an essential role in osteoclast bone resorption in
vivo. With HE staining, we found that the shape of the
condyles of the CKO mice changed from oval to flat, and
TRAP staining showed that the number of osteoclasts
decreased significantly (Figure 2D). Then, to determine the
phenotype of HIF-1a-knockout osteoclasts and the function of
HIF-la in osteoclasts during osteoclastogenesis and bone
resorption, we used M-CSF and RANKL to induce BMMs
extracted from Cko and Ctrl mouse bone marrow to
differentiate  into  osteoclasts. =~ There were more
multinucleated and TRAP-positive cells in the Ctrl group
than in the Cko group (Figure 2E). As expected, the areas
of phalloidin staining, HIF-1a expression and bone resorption
were smaller in the Cko group. These results confirmed that
HIF-1a was vital for osteoclast bone resorption in vitro.

3.3 mRNA Expression Profiles in
HIF-1a-Knockout Osteoclasts and Pathway

Analysis

To explore the changes in mRNA expression after HIF-la
expression was knocked out in osteoclasts, mRNA expression
in Cko or Ctrl osteoclasts was analysed by RNA-seq. A total of
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1,320 mRNAs were changed (Figure 3A), and 480 mRNAs were
more highly expressed in the Ckogroup. Moreover, 840 mRNAs
were expressed at lower levels in the Cko group, as shown in the
heatmap (Figure 3B) and the volcano plot (Figure 3C). The top
ten up- or downregulated mRNAs are shown in Supplementary
Table S2. The top 30 significantly enriched GO terms are
presented in Figures 3D,E. GO analysis showed that typical

up-regulated genes GO terms were Mononuclear cell

differentiation, Receptor complex and Immune receptor
activity. Typical down-regulated genes GO terms were
Extracellular ~ matrix  organization,  Collagen-containing

extracellular and Extracellular matrix structural constituent.
GO terms of multicellular organismal process, system
development and developmental process changed distinctively,
and HIF- la might be key for bone metabolism in osteoclasts.
KEGG analysis showed that 279 KEGG terms were changed in
HIF-1a-knockout osteoclasts. The top 10 significantly enriched
KEGG terms are presented in Figures 3F,G. Of the pathways
affected by changes in mRNA expression after HIF-1a expression
was knocked out, the focal adhesion and ECM-receptor
interaction pathways might be the most important. Vinculin
(Fukunaga et al., 2014) which plays a key role in focal
adhesion pathways, had been confirmed drive the osteoclast
phenotype.

3.4 LncRNAs Expression Profiles in
HIF-1a-Knockout Osteoclasts and Pathway

Analysis

To identify the changes in IncRNA expression after HIF-1a
expression was knocked out in osteoclasts, IncRNAs expression
in Cko or Ctrl osteoclasts was analysed by RNA-seq. A total of
95 IncRNAs were differentially expressed (Figure 4A), and 61
IncRNAs were expressed at higher levels in the Cko group.
Moreover, 34 IncRNAs were downregulated in the Cko group,
as shown in the heatmap (Figure 4B) and the volcano plot
(Figure 4C). The top ten up- or downregulated IncRNAs are
shown in Supplementary Table S3. GO analysis showed that
typical up-regulated genes GO terms were Mononuclear cell
differentiation, Receptor complex and Immune receptor
activity. Typical down-regulated genes GO terms were
Axonogenesis, Collagen-containing extracellular matrix and
Extracellular matrix structural constituent. The top 30
significantly enriched GO terms are presented in Figure 4D
E. KEGG analysis showed that a total of 99 KEGG terms were
differentially expressed in HIF-la-knockout osteoclasts, and
many genes enriched in the MAPK pathway changed after
knockout of HIF- la in osteoclasts. The top 10 significantly
enriched KEGG terms are presented in Figures 4F,G. Of the
pathways affected by changes in IncRNA expression after HIF-
la expression was knocked out, the PI3K-Akt signaling
pathway and MAPK signaling. The MAPK pathway (Lin
et al., 2021) has been confirmed to be inseparable for
osteoclast development and maturation. Thus, MAPK
pathway might be the most important after knockout of
HIF-1a, and these pathways might drive the osteoclast
phenotype.
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3.5 Construction of a IncRNA-mRNA
Co-expression Network

To explore the potential interactions between mRNAs and
IncRNAs, a IncRNA-mRNA co-expression network was
established. By searching for protein-coding genes within
10 KB upstream and downstream of LncRNA genes, thirteen
IncRNAs were selected from the differentially expressed IncRNAs
and further built as 416 pairs of co-expressed IncRNAs-mRNAs
(Figure 5A). In the co-expression network, the two IncRNAs with
the two highest numbers of interactions were IncRNA
MSTRG.31769.2 and MSTRG.7566.12. The expression of
IncRNA MSTRG.7566.12 was confirmed by qRT-PCR, and its
correlations with the expression levels of other molecules were
analysed by Pearson correlation coefficient (Figures 5B,C). The
protein-protein interaction network results showed that IncRNA

MSTRG.7566.12 expression had a strong negative correlation
with Mmp9 and Ctsk expression (Figure 5D). The expression of
IncRNA MSTRG.31769.2 was confirmed by qRT-PCR, and its
correlations with the expression levels of other molecules were
analysed by Pearson correlation coefficient (Figures 5E,F). The
protein-protein interaction network results showed that
MSTRG.31769.2 expression had a strong negative correlation
with Mmp9 and Ctsk expression (Figure 5G). The protein
interaction network and potential location in osteoclasts are
shown in Figure 6. In the secreted part, Fnl and Mmp9 were
dramatically enriched, which indicated that after knocking out
HIF-1a, these proteins would eventually be affected by many
upstream proteins. These results indicated that HIF-1a knockout
changed the IncRNA-mRNA interaction networks and regulated
osteoclast metabolism.
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4 DISCUSSION

In our study, by changing the expression of HIF-1a in RAW 264.7
cells, we found that HIF-1a could promote the differentiation of
these cells into osteoclasts. When HIF-1a was expressed at low
levels in RAW 264.7 cells, there were fewer multinucleated TRAP
+ osteoclasts. Moreover, the bone resorption function of RAW
264.7 cells was also weak. All these results indicated that HIF-1a
was involved in the differentiation of osteoclasts and the bone
resorption function of osteoclasts in vitro (Sun et al., 2015). Then,
we attempted to determine whether HIF-1a was related to the
differentiation of osteoclasts and the bone resorption function of
osteoclasts. In vivo, we bred HIF-1aflox/flox; Ctsk cre + mice to
specifically knock out HIF-1a in osteoclasts. We found that the
condyle was abnormal, and this phenotype was thoroughly
studied in our previous work (Tian et al, 2020; Tang et al,
2020). In this study, we isolated and cultured monocytes from
CKO and Ctrl mice to induce osteoclast differentiation. We found
that there was fewer multinucleated TRAP + osteoclasts in the
CKO cultures than in the Ctrl cultures. Moreover, the bone
resorption area of osteoclasts in the CKO group was smaller
than that in the Ctrl group. Through RNA-seq analysis, a large
number of differentially expressed IncRNAs and mRNAs were
identified in HIF-la-knockout osteoclasts. Then, the cellular
events and biological pathways in HIF-1la-knockout osteoclasts
were identified with GO and KEGG analysis. Christian et al.
verified that osteoclasts ensured remodelling of the bone and its
haematopoietic niche (Jacome-Galarza et al, 2019). We also
found that GO terms of multicellular organismal process,
system development and developmental process changed
distinctively, and HIF- la might be key for bone metabolism
in osteoclasts. The MAPK pathway has been confirmed to be
inseparable for osteoclast development and maturation (Koga
et al., 2019; Kumar et al., 2021). Our experiments showed that
many genes enriched in the MAPK pathway changed after
knockout of HIF- la in osteoclasts. In addition, the co-
expression network revealed interactions between mRNAs and
IncRNAs, as well as the core regulator, in HIF-la-knockout
osteoclasts. Eventually, two IncRNAs (MSTRG.31769.2 and
MSTRG.7566.12) were identified that might play a central role
in HIF-la-knockout osteoclasts, and these IncRNAs might
influence HIF-la  expression and regulate osteoclast
metabolism. Li et al. (2017) reported that ROR1-HER3-
IncRNA could regulate bone metastasis. Our study provides a
basis for further understanding the role and mechanism of
IncRNAs (MSTRG.31769.2 and MSTRG.7566.12) in HIF-la-
knockout osteoclasts, and many of these molecules are
potential targets for treating bone metabolism diseases, such as
condylar dysplasia. As the Ras signalling pathway was distinctly
enriched, the HIF-1la- Ras -IncRNA axis might regulate bone
metabolism. Prediction of the IncRNA and protein-protein
interaction network indicated that IncRNAs might influence
the csfl, ctsk and mmp9 proteins which are indispensable for
osteoclast function. We speculated that IncRNA MSTRG. 7566.12
and IncRNA MSTRG.7566.12 had potential significance for
osteoclast function. After knockout HIF-la, some key

Expression Profiles After HIF Knockout

functional proteins of osteoclasts, such as csfl, ctsk and mmp9
will be affected.

Osteoclasts are multinucleated cells that absorb calcified
matrix by secreting acid and collagen-degrading enzymes
(Roodman, 1996). HIF-1a plays a crucial role in key stages of
metastatic dissemination, including angiogenesis, epithelial-
mesenchymal transition, invasion, cancer stem cell
maintenance, tumour cell dormancy, extracellular vesicle
release, and pre-metastatic niche generation (Semenza et al,
1991; Lee et al.,, 2004; McGettrick and O’Neill, 2020). HIF-1a
also affects bone cells, such as osteoblasts, chondrocytes and
osteoclasts, and immune cells, which also perform vital functions
in supporting bone metastasis (Devignes et al., 2018; Stegen et al.,
2018; Stegen et al,, 2019). Over the decades, numerous studies
have confirmed that HIF-1la plays a crucial role in osteoclast
development and bone resorption by regulating nutrient and
energy sensors. For example, osteoclast-mediated bone
destruction is enhanced in the hypoxic synovial
microenvironment in rheumatoid arthritis (Knowles, 2019).
The increase in bone resorption in rheumatoid arthritis is
driven by the hypoxia-inducible transcription factor HIF-1la.
Inactivation of HIF-la can antagonize bone loss
ovariectomized (Ovx) mice and osteoclast-specific oestrogen
receptor a-deficient mice (Miyauchi et al., 2013). An oral HIF-
la inhibitor exerts a protective effect on osteoclast activation and
bone loss in Ovx mice. In addition, HIF-la promotes the
expression of RANKL in MLO-Y4 cells by activating the
JAK2/STAT3 pathway and enhances the osteoclast-mediated
differentiation of osteoclasts (Zhu et al., 2019). Hypoxia-
induced glycolysis in osteoclasts is an adaptive mechanism of
alveolar bone remodelling after mandibular osteotomy.

Moreover, an increasing number of studies have demonstrated
that osteoclast differentiation is precisely regulated by IncRNAs,
such as IncRNA ENSG00000257764.2 (Liu et al., 2020), IncRNA
Nron (Zhang et al., 2020a), and IncRNA Neatl (Zhang et al.,
2020b). Recently, many studies have focused on a regulatory
feedback loop between HIF-la and several IncRNAs. For
instance, a HIF-la-specific IncRNA can directly regulate the
stability of HIF-la mRNA and thus confer poor prognosis in
lung cancer (Hua et al., 2020). LncRNAs indirectly regulate HIF-
la expression by interfering with the proteasome degradation
mechanism that regulates HIF-1a expression (Barth et al., 2020).
HIF-1a stable long non-coding RNA (HISLA) enhances aerobic
glycolysis and apoptosis resistance in breast cancer cells (Chen
etal, 2019). HISLA inhibits the hydroxylation and degradation of
HIF-1a by blocking the interaction between PHD2 and HIF-1a.
In turn, the lactic acid released by glycolytic tumour cells
upregulates HISLA expression in macrophages, forming a
feed-forward loop. Our study carefully examined HIF-1a,
IncRNAs and osteoclasts. We tried to determine the
relationship between HIF-la and IncRNAs in osteoclasts,
especially whether IncRNAs play a role in the regulation of
HIF-1a protein levels. This study provides a new opportunity
for an in-depth understanding of the mechanism by which
IncRNAs interact with HIF-1a, which might play a key role in
condyle development and bone metabolism.
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In summary, we explored IncRNA-mRNA expression patterns in
the differentiation of osteoclasts by RNA sequencing and identified
possible regulatory mechanisms by analysing biological data. The
aim was to clarify the role of IncRNA in both bone differentiation
and osteoblast anomalies. Our results may help create a potential
target for abnormal bone metabolism and shed light on the
mechanism of osteoclasts differentiation. However, our study still
has some limitations, including a lack of studies on IncRNA function
to indicate these differences. Further research is needed to examine
the role of these differentially expressed IncRNAs in osteoclast
differentiation.
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