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Introduction
Uraemic Cardiomyopathy (UC) is classically characterised by 
diastolic dysfunction in association with left ventricular hyper-
trophy (LVH) and myocardial fibrosis in patients with chronic 
kidney disease (CKD).1 Patients with underlying end-stage 
renal disease (ESRD) and resultant myocardial remodelling 
often have associated high levels of cardiovascular morbidity and 
mortality.2,3 Whilst the pathophysiology of UC is traditionally 
multifactorial, there is emerging research in this area which may 
help expand therapeutic options for this patient population.4,5 

There is growing evidence to suggest that cardiovascular death 
among these patients are increasingly secondary to LVH and its 
sequela of congestive cardiac failure (CCF), rather than purely 
atherosclerotic heart disease, highlighting the mechanistics 
behind this entity.3,6-8 Appropriate screening for these patients 
requires a multimodality imaging approach with transthoracic 
echocardiogram (TTE) and Cardiac Magnetic Resonance 
Imaging (CMRI) with current interventions centred around 
appropriate cardiac-specific pharmacotherapy, haemodialysis 
as well as renal transplantation3 See Graphical Abstract
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Epidemiology
The burden of cardiovascular disease (CVD) in patients with 
ESRD is significant, with mortality from CVD approximately 
15 to 30 times higher than the general population.9 The phe-
notypic hallmark of LVH which characterises UC is found in 
over 70% of patients with ESRD.10 In patients with ESRD on 
dialysis, sudden cardiac death (SCD), usually indicative of an 
underlying cardiomyopathy, accounts for roughly 40% of all 
deaths.5 There are predictions that the number of patients 
receiving dialysis for ESRD in the United States (US) will 
increase from a total of 320,000 in 2003 to 2 million by 2030, 
illustrating both the current and future burden of disease.3,10

Pathophysiology
The pathogenesis of UC remains complex and multifaceted 
with many implicative factors. These factors include anaemia, 
haemodynamic overload, hypertension, alterations in mineral 
metabolism, endothelial dysfunction, insulin resistance and 
cardiotonic steroids as well as several circulating uraemic 
toxins.1,5 See Table 1. However recently there has been an 
emergence of the pathophysiological role of Chronic Kidney 
Disease-Mineral and Bone Disorder (CKD-MBD) in UC 
with hyperphosphatemia, high FGF-23 levels and reduced 
serum levels of Klotho integral in the process of abnormal 
myocardial remodelling and resultant cardiac sequelae.1,2,11

UC may manifest as a result of pressure overload, volume 
overload and a systemic uremic state.3 Left ventricular (LV) 
pressure overload may occur as a result of hypertension, arte-
riosclerosis and aortic stenosis whilst LV volume overload 
can occur in the setting of haemodynamic overload and 
anaemia.3,15 LV pressure overload mediates hypertrophy 
through increasing of LV wall thickness with minimal change 
in chamber size whereas LV volume overload results in 
increased chamber size but regular LV wall thickness.15 Whilst 
LV hypertrophy (LVH) initially is a compensatory adaptative 
response, continual LV overload leads to cardiomyocyte death.3 
This acute or chronic loss of cardiomyocytes will eventually 
lead to systolic heart failure.16 This process with increased pas-
sive stiffness and fibrosis will eventually lead to the develop-
ment of diastolic dysfunction, a characteristic hallmark of 
UC.16 It is also increasingly being recognised that the degree of 
myocardial fibrosis correlates strongly with the development of 
arrythmias and sudden cardiac death.17

The uraemic state also contributes to LVH through the 
accumulation of substances such as endothelin, parathyroid 
hormone (PTH), tumour necrosis factor alpha (TNF- α), 
interleukin 1 alpha (IL- 1α) and IL-6.18,19 Another example of 
such hypertrophic substances are endogenous cardiotonic ster-
oids classed as cardenolides (oubain and digoxin) and bufadie-
nolides (marinobufagenin and proscillaridin A).20 These 
substances interact with the α-subunit of the Na, K-ATPase 
transmembrane protein on the surface of cardiomyocytes, and 
whilst their exact mechanism is unknown, they are thought to 
be vital in the molecular pathogenesis of UC.3,21-23

Oxidative stress and inflammation, and endothelial 
dysfunction

Endothelial dysfunction represents a characteristic finding in 
patients with ESRD who have high rates of heart failure and 
cardiovascular mortality.24 Intricately intertwined with this is 
the role of oxidative stress and inflammation, often seen in 
CKD.25 For instance, CKD often results in a persistent inflam-
matory state, which may result in endothelial dysfunction and 
worsen atherosclerosis. Such inflammatory effects may also 
have other detrimental effects, such as vascular calcification, 
erythropoietin (EPO) resistance, increased hepcidin and 
decreased iron absorption.25 In turn, anaemia itself contributes 
to cardiac dysfunction, evident in the CKD population.26

Soluble α-Klotho and Vitamin D also help maintain 
endothelial integrity, with their declining concentrations in 
ESRD contributing to the dysfunction of the endothelial 
lining.27 The subsequent increase in circulating FGF-23 and 
phosphate further damage the endothelial lining.27 The under-
lying renal dysfunction also leads to an excess of inflammatory 
mediators and uraemic toxins that inhibit the recovery of the 
damaged endothelial lining.27 There is evidence to suggest that 
this impaired endothelial function correlates with abnormal 
left ventricular structure and function as well as cardiovascular 
mortality in CKD.27,28 Endothelial dysfunction can be further 
analysed through microvascular or macrovascular endothelial 
dysfunction. Macrovascular endothelial dysfunction does not 
have a significant association with increased LV mass in 
ESRD.24 Contrastingly, microvascular endothelial dysfunction 
has been shown to be associated with LV diastolic dysfunction, 
RV systolic dysfunction and RV diastolic dysfunction in 
ESRD.24 The clinical significance of this is still unknown, with 
the lack of an established causal relationship between endothe-
lial function and cardiac function, however it illustrates the 
need for trials of novel endothelial therapies to determine the 
possibility of regression of LVH and cardiac failure in patients 
with ESRD.24

Carnitine deficiency

One postulated contributing factor for uraemic cardiomyopa-
thy is the role of carnitine, which plays an important part in 
myocardial energy metabolism, given its role in beta-oxidation 

Table 1.  Implicated factors in uraemic cardiomyopathy.1,5,12-15

Traditional factors Uraemic factors

Diabetes
Hypertension
Hyperlipidemia
Older age
Physical inactivity
Smoking

Uraemic toxins
  Indoxil sulfate
  P-cresyl sulfate (pCS)
  β2-microglobulin
  Homocysteine
CKD-MBD
  Anaemia
  Inflammation
  Cardiotonic steroids
  Endothelial dysfunction
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of fatty acids. Carnitine deficiency is often observed in uraemic 
patients, particularly those on haemodialysis, given that it can 
be lost through dialytic membranes.29 While some studies have 
shown that cardiac hypertrophy may develop without altera-
tion in myocardial metabolism in renal dysfunction,30 there is a 
growing amount of evidence that suggests a positive role for 
carnitine supplementation in terms of improving cardiac func-
tion, exemplified by a case report by Kaneko et al whereby a 
haemodialysis patient’s cardiac dysfunction improved follow-
ing the administration of L-carnitine.31

Insulin resistance

Insulin resistance, which may commonly occur in patients with 
CKD, represents an independent risk factor for cardiac disease 
in CKD.31-37 One explanation to the increased prevalence of 
insulin resistance in CKD is the interruption in the intracellu-
lar insulin pathway that occurs because of increased angioten-
sin II, inflammation, metabolic acidosis and uremic toxins.37 
The phosphoinositide-3 kinase (PI3K)-Akt pathway is of 
particular interest in the development of LVH, myocardial 
fibrosis, cellular apoptosis and metabolic dysfunction with 
insulin resistance conferring maladaptive alterations within 
this pathway.38 Akt1 and Akt2 are also predominantly found 
in the heart, with imbalance of these substances resulting in a 
cardiac phenotype similar to the uraemic heart.38,39 In insu-
lin-resistant states, an Akt2 defect produces a compensatory 
hyperinsulinemia and upregulation of Akt1 signalling, produc-
ing a cardiac hypertrophy associated with fibrosis.39 This is 
particularly important as there are therapies which have been 
shown to target the Akt pathway. Rapamycin, a mTOR target 
downstream of Akt, has shown to reduce cardiac hypertrophy 
and fibrosis in uraemic mice whereas Glitazones have been 
shown to reduce cardiac hypertrophy in mice.40,41 Thus, 
through our understanding of insulin resistance and its altera-
tions in the Akt pathway, we can understand its cardiac effects 
and devise potential therapeutic options.

CKD-MBD

The role of CKD-MBD in UC is now increasingly being rec-
ognised following advancements in dialysis and resultant cor-
rection of uraemia-related abnormalities.42-44 In order to fully 
appreciate the role of CKD-MDB in the development of car-
diomyopathy, it is important to analyse the role of parathyroid 
hormone (PTH), phosphate, FGF-23 and Klotho.5 Current 
literature states the role of high PTH levels and its correlation 
with LV mass and degree of diastolic dysfunction, with these 
effects reversible post treatment of hyperparathyroidism.5,45-47 
Vitamin D deficiency, especially in the setting of secondary 
hyperparathyroidism has been associated with LV dysfunction 
and increased risk of cardiac events, including CCF.48 
Phosphate plays a central role in the CKD-MDB and phos-
phate toxicity can contribute to cardiovascular mortality.5,43 

Hyperphosphatemia has been directly associated with increased 
LV mass and diastolic dysfunction.49-51 It can promote LVH, 
potentially through changes in arterial stiffness or by directly 
acting on the myocardium.49-52

FGF-23

There is now increasing data to support the contributions of 
FGF-23 and Klotho to uraemic cardiomyopathy in a coadju-
tant manner.11 FGF-23 regulates phosphate and Vitamin D 
metabolism and binds FGF receptor/Klotho co-receptor com-
plexes, with the net result of stimulating phosphate excretion, 
inhibiting PTH secretion and decreasing active Vitamin D.11,53 
FGF-23 has been shown to directly induce hypertrophic 
growth of the cardiac myocytes, with this process requiring the 
presence of FGR-4.54 FGF-23 can activate FGR-4 in cardiac 
myocytes, resulting in stimulation of the phospholipase Cγ 
(PLCγ)/calcineurin / nuclear target of activated T cells (NFAT) 
signalling pathway and subsequent cardiac hypertrophy in a 
blood-pressure and αKlotho independent manner.5,11,54 
Although significant exploration of the role of FGF-23 and 
FGR-4 has taken place in rat models, there is still support for 
its role in humans, if not direct causal evidence.39 A recent ret-
rospective study has shown that in children with ESRD, FGR4 
expression levels have been associated with cardiac hypertro-
phy, with another study showing that lowering serum FGF-23 
levels in CKD patients is associated with reduced cardiovascu-
lar events and mortality.55,56 There is also increasing evidence 
that FGF-23 stimulates cardiac fibrosis through the TGF-β 
and β-catenin pathways via activation of FGR-4, which has 
been demonstrated in mice models.19,57 Thus, it is evident that 
increased FGF-23 levels contribute to UC, with myocardial 
FGR4 representing a promising therapeutic target.5,11

Klotho

Klotho acts as a co-receptor for FGF-23 and helps mediate 
its’ role in the regulation of phosphate haemostasis.11 Klotho 
exists in a deficient state in CKD.5 The Klotho gene encodes 
the αKlotho protein which is expressed in tissues and organs 
including the kidneys and parathyroid glands.58 Although 
the mechanism by which αKlotho acts is poorly understood 
and the myocardium does not express αKlotho, it is known 
that FGF23 does not seem to induce myocardial hypertro-
phy in the presence of normal levels of soluble αKlotho.59-62 
There is some evidence of a mechanism of αKlotho inhibit-
ing TRPC 6, a calcium permeable cation channel that helps 
modulate cardiac remodelling and induces cardiac hypertro-
phy through the calcineurin/NFAT pathway.11,63 Xie et  al 
also demonstrated in a mice model, that soluble Klotho pro-
tects against UC independent of FGF-23 and phosphate.60,61 
In patients with ESRD, as the kidney is the main source of 
systemic αKlotho, it may represent the primary alteration in 
CKD-MBD.5
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Thus, the pathogenesis of UC and its complexities are evi-
dent. There is a significant role of CKD-MBD in UC with the 
evolving understanding of elevated FGF-23 and αKlotho defi-
ciency in particular pivotal to the development of appropriate 
targeted therapy in the future.

Diagnostics
As UC is a heterogeneous disease process, the accurate diagno-
sis incorporates the use of both imaging and non-imaging 
modalities. The non-imaging diagnostic tools include labora-
tory investigations and electrocardiography (ECG), whereas 
imaging tools involve a multi-modality approach with non-
invasive investigations such as transthoracic echocardiography 
(TTE), cardiac CT and cardiac magnetic resonance imaging 
(CMRI). Furthermore, invasive diagnostics, whilst rarely 
performed, involve myocardial biopsy with histological 
assessment. These tools continue to evolve in the 21st century, 
providing additional prognostic information and guidance on 
selected therapeutics.

Electrocardiography

Bedside ECG is the most readily available test for rapid assess-
ment of presence of LVH in this patient demographic. UC is 
known to ubiquitously manifest with signs of LVH, as fulfilled 
by Sokolov-Lyon criteria on ECG.64 In early stages of the dis-
ease process, LVH manifests as an eccentric hypertrophy with 
a subsequent concentric hypertrophy and progressive worsen-
ing of CKD.64 Other important ECG findings in UC include 
the presence of Q waves, dynamic ST segment changes, pro-
longed QRS duration, tachycardia and left and right atrial 
enlargement as shown by Shafi et  al.65 These findings may 
assist in prompt diagnosis and quantification of burden of UC, 
allowing for directed pharmacotherapy.

Electrocardiography may also have a role in SCD and mor-
tality stratification in patients with ESRD on dialysis.66 There 
is association between the ECG parameters of QT interval, 
spatial QRS-T angle, signal averaged ECG, heart rate variabil-
ity and T-wave alternans with increased rates of mortality and 
SCD in patients on haemodialysis, however it is unclear if 
these are independent risk factors or whether they predispose 
to structural cardiac disease such as LVH that may predispose 
patients to SCD.66

Echocardiography

Cardiac remodelling is a fundamental process that occurs in 
UC, affecting all chambers through intricate mechanisms 
involving pressure and volume overload. TTE is a non-inva-
sive and readily accessible imaging modality that provides 
detailed geometric and functional assessment of the cardiac 
structures throughout systole and diastole.67 Its utility also 
lies in that we know echocardiographic cardiovascular disease 
is already present in a high proportion of patients starting 

ESRD therapy and are independent mortality factors.68 In a 
trial of approximately 600 patients on HD without sympto-
matic cardiac disease or cardiac dilatation, there was progres-
sion of LVH, with LVMI (LV Mass Index) 114 g/m2 at 
baseline increasing to 128 g/m2 at 96 weeks.69 LVH also por-
tends significant all-cause and CV mortality with (HR 2.9) 
and (HR 2.7) respectively.70 In addition to presence of LVH as 
determined by LVMI, there is also evidence of direct impair-
ment in LV systolic function, and this correlates with cardio-
vascular mortality as shown by Kramann et  al.71 However 
there has been conflicting data on whether patients undergoing 
renal replacement therapy have progression of LVH and LV 
systolic dysfunction, with Shi et al demonstrating the mainte-
nance of stable LV structure and systolic function in a cohort 
of 40 patients on peritoneal dialysis (PD).72 Furthermore, 
peak global longitudinal strain is also an independent risk fac-
tor for cardiovascular mortality and circumferential early dias-
tolic strain rate is an independent risk factor for all-cause 
mortality.71 Other studies have shown similar findings, as 
assessed by 2-dimensional speckle tracking echocardiography 
(2D-STE), demonstrating impaired LV longitudinal strain in 
patients with CKD when compared to controls (P < .001), 
highlighting significant subclinical systolic dysfunction.72 
These findings highlight the importance of echocardiography 
and speckle-tracking echocardiography for sensitive assess-
ment of LV systolic function in this population group for 
diagnosis and prognostication.

The severity of UC also parallels grades of diastolic dys-
function (elevated E/e’, P < .001), highlighting a direct corre-
lation between renal failure, volume overload and impaired 
relaxation.73 LA indices are a surrogate for diastolic impair-
ment in many cardiac pathologies. Patel et al. have shown that 
an elevated LA volume indexed (LAVI) correlates with poor 
survival in patients on haemodialysis, and that LAVI and 
LVF portend similar correlations with death on multivariate 
analysis.74 In addition, Zapolski et al have shown evidence of 
reverse atrial remodelling in patients post renal transplanta-
tion with significant reductions in LAVI from a mean of 34.63 
to 27.57 after 3 years.75 These findings highlight the significant 
association of left atrial dysfunction and prognosis in these 
patients. In essence, a correction of the underlying pathology 
and subsequent haemodynamics results in reversal of LA 
myocyte dysfunction.

However, despite its immense utility, there are limitations to 
TTE in UC. A meta-analysis of 73 studies by Badve et al in 
2016, which investigated whether LVM could be used as a sur-
rogate end point for all-cause and cardiovascular mortality in 
CKD, particularly in the context of pharmacologic or nonphar-
macologic interventions, suggested that there was no consist-
ent association between intervention-induced LVM change 
and mortality.76 Therefore, while TTE has a role in assessment 
of cardiac function, clinicians should be cognisant of its limita-
tions within such contexts. 
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Cardiac MRI

The role of cardiac MRI in quantification of myocardial fibro-
sis in UC is a growing field of expertise, specifically as the 
extent of fibrosis is a strong biomarker for cardiovascular 
death.67 This fibrotic process can be demonstrated non-inva-
sively on CMR by T1 mapping; a technique that quantifies the 
relaxation time of protons on inversion recovery prepared 
images (T1 times) by using analytical expression of image-
based signal intensities.77 T1 relaxation times increase with 
interstitial expansion due to oedema, infarction, infiltration and 
fibrosis.10 Patients on haemodialysis have been shown to have 
higher global T1 (ms) (1171 vs 1154), LV mass indexed (g/m2) 
(69.8 vs 55), LVH (%) (42.4 vs 3.6) and a lower peak GLS (%) 
(−17.7 vs 21.8) when compared to healthy controls.78 In the 
group of patients on haemodialysis, the peak GLS significantly 
correlated with LV mass indices (R = 0.426) as well as galec-
tin-3, a biomarker of cardiac fibrosis.78 This highlights the 
presence of findings consistent with myocardial fibrosis on 
CMRI and a potential relationship with structural and func-
tional abnormalities.78 In perspective, Charytan et  al showed 
12% increase in myocardial fibrosis in stage 3 to 4 CKD 
patients and a 77% increase in stage 5 CKD when compared to 
healthy controls.79 In addition to myocardial fibrosis, myocar-
dial oedema as demonstrated by dynamic changes in T1 and 
T2 mapping values with volume-removal on HD can help dif-
ferentiate between UC and other hypertrophic phenotypes.80 
Kotecha et  al demonstrated both native T1 and T2 values 
reduce significantly post HD with these changes suggestive of 
reduction in myocardial water content rather than regression of 
LVH.81 These findings elucidate the importance of this under-
lying fibrotic process and myocardial oedema as a key mecha-
nism in the pathophysiology of UC.

Myocardial biopsy

Myocardial biopsy is an invasive diagnostic modality that 
may be of use in undifferentiated pathologies or for guidance 
of appropriate treatment. Studies on myocardial biopsy show 
that many subjects with ESRD have myocardial appearances 
resembling the dilated phase of hypertrophic cardiomyo-
pathy (HCM) with severe myocyte hypertrophy and myocyte 
disarray.82 In severe cases, there is evidence of diffuse myocar-
dial fibrosis (DMF) and replacement fibrosis with significant 

increases in volume of extracellular matrix.83 Whilst the iden-
tification of myocardial fibrosis has historically been done 
with myocardial biopsy, its role is limited by sampling error in 
addition to significant morbidity and mortality associated 
with the procedure.17 Hence myocardial biopsy could be cau-
tiously considered in conjunction with cardiac MRI to assist 
quantification of fibrosis and in the diagnosis of UC where 
imaging modalities alone are indefinite.

Management
The management of UC is multi-faceted and involves a com-
prehensive approach in a multi-disciplinary (cardiologist, 
nephrologist, dialysis team) setting with a complete under-
standing of the underlying pathophysiological disease states (see 
Table 2). Specifically, overactivity of the underlying sympa-
thetic nervous system (SNS) and renin-angiotensin activating 
system (RAAS) require directed treatment approach.84

Pharmacological

There are several derived pharmacological treatment approaches 
for management and reversal of this disease process, 
which includes beta-blockade, angiotensin receptor blockers, 
mineralocorticoid antagonists and HMG-CoA reductase 
inhibitors.84

Carvedilol has been shown to improve symptoms, LV End-
Diastolic Pressure (LVEDP), LV End-Systolic Volume 
(LVESV) (74-62 ml/m2) and LVEF (26.3%-34.8%) along with 
a reduction in all-cause cause mortality and hospital admissions 
in patients on haemodialysis with dilated cardiomyopathy.85

The role of renin-angiotensin system (RAS) blockade in 
patients with CKD with and without diabetic nephropathy is 
well known. RAS blockade was associated with a decreased 
risk of heart failure in patients with diabetic nephropathy 
(0.78, 95%CI 0.66-0.92, P = .03) and without diabetic 
nephropathy (0.74, 95%CI 0.58-0.95, P = .02) when com-
pared to placebo in addition to a reduction in the risk of myo-
cardial infarction and total CV outcomes.86 Spironolactone, 
when used in patients with stage II-III CKD has been shown 
to reduce LV mass (−14 ± 13 g vs +3 ± 11 g) and arterial 
stiffness when compared to placebo.87 However, within the 
haemodialysis population, there appears to be a more limited 
benefit with Spironolactone; for instance, a study by Hammer 
et al suggested that in comparison to placebo, Spironolactone 

Table 2.  Treatment of uraemic cardiomyopathy.

Pharmacological84-87,90 Renal dialysis99-101,104 Surgical therapies105,106

Angiotensin-converting enzyme inhibitors Short daily haemodialysis Renal transplantation

Beta-blockade
Mineralocorticoid antagonists
Vitamin D
Erythropoietin

Nocturnal home haemodialysis
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did not improve left ventricular mass index in the haemodi-
alysis population,88 and this was also supported by a study by 
Charytan et al which compared Spironolactone to placebo in 
the haemodialysis population, and they too did not find an 
improvement in cardiovascular function or structure in the 
Spironolactone group.89 There has also been significant 
concern with Angiotensin Converting Enzyme-Inhibitors 
(ACE-I), Angiotensin Receptor Blockers (ARB) and 
Spironolactone causing hyperkalaemia, which is not limited 
to the population with ESRD.1

The SHARP trial has shown that the addition of simvasta-
tin plus ezetimibe in patients with CKD has resulted in a 
reduction of first major atherosclerotic events.90 However, it is 
worth noting that the 4D and AURORA investigators found 
that in the haemodialysis population, statins, in comparison to 
placebo, did not reduce the risk of cardiovascular events in the 
AURORA study and did not improve the composite primary 
end point of cardiovascular death, nonfatal myocardial infarc-
tion, and stroke in the 4D study.91,92 On the other hand, in the 
renal transplant population, the ALERT study, which com-
pared Fluvastatin to placebo, suggested an improvement in car-
diac deaths and non-fatal myocardial infarction in those treated 
with Fluvastatin; however, it is worth nothing that Fluvastatin 
did not generally reduce rates of mortality or coronary inter-
vention procedures.93 Therefore, the beneficial role of statins 
may be dependent on the context of the population managed.

The role of Vitamin D is also increasingly being explored, 
with a study by McGonigle et al demonstrating that the addi-
tion of Vitamin D in patients on HD resulted in a significant 
reduction in PTH, increase in LV fibre fraction shortening and 
an increase in mean velocity of LV fibre shortening. These 
findings highlight the importance of targeted pharmacother-
apy in this population group.94

The role of erythropoietin in treatment of anaemia in CKD 
and its effect of mortality has been a controversial area but is 
best exemplified by several studies. The CHOIR investigation 
explored whether EPO treatment to a higher haemoglobin 
(Hb) target of 13.5 grams (g) per decilitre (dL) compared to 
Hb target of 11.3 g/dL would be beneficial, and found that this 
higher target was not associated with additional improvement 
in quality of life and in fact was associated with increased 
harm.95 The CREATE investigators investigated the role of 
EPO in CKD stage 3 and 4 in early and complete correction of 
anaemia versus partial correction of anaemia, and found that 
cardiovascular events were not reduced in those with early and 
complete correction.96 This was supported by the TREAT 
investigators, who found that the use of darbepoetin alfa in 
CKD patients not undergoing dialysis with co-morbid type 2 
diabetes and moderate anaemia to a target of 13 g/dL, com-
pared to placebo (albeit with rescue darbepoetin alfa when the 
Hb was less than 9 g/dL), resulted in an increased risk of stroke 
and did not confer a survival benefit.97 Therefore, while correc-
tion of anaemia with EPO may be required in such 

populations, clinicians need to be cognisant of its potential 
adverse effects.

Intertwined with the administration of EPO in CKD 
patients, the PIVOTAL investigators explored the role of high 
dose versus lose dose intravenous iron supplementation in CKD 
patients recently initiated on haemodialysis with ferritin con-
centrations less than 400 μg/L and a transferrin saturation of 
less than 30% who were receiving an EPO agent. They found 
that the high dose supplemental group had fewer major adverse 
cardiovascular events and lower risk of death.98 Interestingly, 
this high dose regimen group also required fewer blood trans-
fusions and lower doses of EPO, which as mentioned previ-
ously could potentially be associated with adverse effects.

Dialysis

An important treatment for UC in the setting of ESRD is 
haemodialysis (HD). There is evidence to suggest it is associ-
ated with a reduction in LVH, and reversal of systolic dysfunc-
tion (LVEF change (%) 31–50).99,100 Short daily HD (~2 hours 
daily) in comparison to conventional HD has also been 
shown to reduce LVH (LVMI change: 120.1 ± 60.4 g/m(2)) 
and antihypertensive use.101 Therefore, frequent dialysis with 
close maintenance of euvolemia largely potentiates reverse 
cardiac remodelling. Similarly, nocturnal home HD has also 
shown to reduce LVMI by 22% compared to a 6% progression 
on conventional HD in a cohort of patients with ESRD asso-
ciated cardiomyopathy.102 However, despite many studies that 
have shown HD can potentiate and reverse some of the clini-
cal sequelae of UC, there is conflicting data from other stud-
ies. In 2015, Foley et al demonstrated in a population of 596 
HD patients with no symptomatic cardiac disease or dilatation 
that there was progressive concentric LVH and hyperkinesis.72 
This suggests the interplay of other factors such as hyperten-
sion that may influence the role of HD on UC. There is data to 
suggest that PD may portend increased mortality in patients 
with UC which increases with the length of follow up and has 
increased requirement of anti-hypertensives.3,103 Important 
complications to monitor for with HD include dialysis-induced 
myocardial stunning, resulting in further hypotension, which 
may compound the underlying cardiomyopathy.104

Renal transplantation

Renal transplantation can partially reverse the underlying dis-
ease state and confers a significant survival advantage com-
pared to the other treatment modalities described. Dzemidzić 
et al have shown that renal transplantation dramatically reduces 
the proportion of patients with LVH from 67% to 37% with 
correlations in improved creatinine clearance and in reduction 
of the serum creatinine values; as well as values of parathyroid 
hormone.105 Additionally, Wali et al have shown that 70% of 
patients with a baseline LVEF <40% prior to renal 
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transplantation, recovered at follow-up at 6 months with LVEF 
>50% on ventriculography-gated blood pool. Normalization 
of LVEF was associated with improvement in NYHA class 
and was the only significant factor associated with reduced 
hazard for CCF hospitalization and death (RR 0.90).106 Native 
T1 measurements, a method of assessment of myocardial fibro-
sis in CMRI without gadolinium contrast, was explored by 
Contti et al where it was found that 6 months following renal 
transplantation, the native myocardial T1 time decreased, sug-
gestive of regression of reactive fibrosis.107 These findings dem-
onstrate significant reverse cardiac remodelling as a result of 
renal transplantation in this high-risk population group.

Conclusion
UC remains a complex and multifaceted disease with high 
associated morbidity and mortality. Amongst existing thera-
pies, haemodialysis and kidney transplantation are instrumen-
tal in halting disease progression.3 The role of non-invasive and 
invasive diagnostic tools alongside our growing understanding 
of the pathophysiology of UC remains vital in illuminating the 
path for future medical and surgical therapies. Thus, a struc-
tured approach which utilises existing therapies in addition to 
ongoing research on a cellular level may represent the best 
opportunity of reducing the burden of UC.
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