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Abstract

The high prevalence of the Fusarium mycotoxins, deoxynivalenol (DON) and zearalenone (ZON) in animal
feeds in mild climatic zones of Europe and North America results in considerable economic losses, as these
toxins affect health and productivity particularly of pigs from all age groups. The use of mycotoxin
adsorbents as feed additives is one of the most prominent approaches to reduce the risk for mycotoxicoses
in farm animals, and to minimise carry-over of mycotoxins from contaminated feeds into foods of animal
origin. Successful aflatoxin adsorption by means of different substances (phyllosilicate minerals, zeolites,
activated charcoal, synthetic resins or yeast cell-wall-derived products) has been demonstrated in vivo and
in vitro. However, attempts to adsorb DON and ZON have been less encouraging. Here we describe the
adsorption capacity of a variety of potential binders, including compounds that have not been evaluated
before, such as humic acids. All compounds were tested at realistic inclusion levels for their capacity to bind
ZON and DON, using an in vitro method that resembles the different pH conditions in the gastro-intestinal
tract of pigs. Mycotoxin adsorption was assessed by chemical methods and distinct bioassays, using specific
markers of toxicity as endpoints of toxicity in cytological assays. Whereas none of the tested substances was
able to bind DON in an appreciable percentage, some of the selected smectite clays, humic substances and
yeast-wall derived products efficiently adsorbed ZON (>70%). Binding efficiency was indirectly confirmed
by the reduction of toxicity in the in vitro bioassays. In conclusion, the presented test protocol allows the
rapid screening of potential mycotoxin binders. Like other in vitro assays, the presented protocol com-
bining chemical and biological assays cannot completely simulate the conditions of the gastro-intestinal
tract, and hence in vivo experiments remain mandatory to assess the efficacy of mycotoxin binders under
practical conditions.
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Introduction

The term mycotoxin refers to a large number of
chemically diverse toxic secondary metabolites
formed by fungi imperfecti growing on agricultural
commodities. Contamination of cereals and grains
and related products with mycotoxins causes food-
and feed-borne intoxications (mycotoxicoses) in

man and livestock. In animal husbandry, myco-
toxicoses impair animal health, welfare and
productivity causing important economic losses
[1]. Moreover, accumulation of mycotoxins in
animal tissues may result indirectly in exposure to
humans consuming products of animal origin, as
demonstrated for aflatoxin B1 and its metabolite
aflatoxin M1 that is excreted with dairy milk [2].
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Among the more than 300 mycotoxins described
as yet, aflatoxin B1 and the group of fumonisins
are the toxins of major concern in tropical and
sub-tropical regions. In contrast, in Europe and
other parts of the Northern Hemisphere, prehar-
vest contamination with mycotoxins product by
various members of the genus Fusarium, including
deoxynivalenol (DON) (mostly produced by
F. graminearum and F. sporotrichoides) and zea-
ralenone (ZON) (produced by F. graminearum and
F. culmorum among others), are of major concern
particularly in pig production, as pigs are partic-
ularly sensitive to the adverse effects of these tox-
ins [3]. DON leads to symptoms like vomiting,
diarrhoea, lower weight gain and feed intake, and
causes immunosuppression [4]. ZON exerts
remarkable oestrogenic effects and impairs fertility
and reproduction in pigs and other farm ani-
mals [5].

To combat animal mycotoxicoses, different
physical and chemical methods have been recom-
mended for the detoxification of mycotoxin-con-
taminated feedstuffs [6–9]. Among them, the use of
mycotoxin adsorbents as feed additives is one of
the most promising and widely used approaches to
reduce the risk for mycotoxicoses in farm animals,
and to minimise carry-over of mycotoxins from
contaminated feeds into animal-derived products
[10, 11]. Successful adsorption of aflatoxins by
different substances, including phyllosilicate min-
erals, zeolites, activated charcoal, synthetic resins
or yeast cell-wall-derived products, has been
demonstrated in vitro and in vivo [12–17]. The
efficacy of the compounds to adsorb ZON and
DON has been investigated as well, but the results
were less encouraging. An efficient adsorption of
ZON by certain zeolites, yeast-wall derived prod-
ucts and polymeric adsorbents has been demon-
strated in vitro [12, 18–22]. In vivo experiments, in
which the ZON contaminated feed was supple-
mented with a mineral clay product, showed an
improved female reproductive performance in
minks, but failed to reduce the signs hyperestrog-
enicity [23]. The inclusion of a commercial product
containing esterified glucomannan did also not
reverse the increase in the uterine weight of female
minks exposed to ZON [24], whereas fibre addition
to the diet of rats appeared to decrease the toxicity
of ZON [25]. A quaternary ammonium anion
exchange resin, cholestyramine, has been shown to
reduce ZON toxicity in the pre-pubertal mouse

uterine weight bioassay [26]. Regarding DON,
only in vitro adsorption by activated charcoal [27,
28] and to a lesser extend by yeast-derived prod-
ucts [29] has been reported. However, in feeding
experiments with weaned piglets, Döll et al. (2005)
[30] failed to demonstrate any beneficial effect of a
modified aminosilicate product added to a diet
that was naturally contaminated with Fusarium
toxins, particularly with DON and ZON.

Since the polarity of the b-dicarbonyl group
of aflatoxins is considered to play a pivotal role
in their chemical adsorption to phyllosilicate
clays (HSCAS) [31], it has been hypothesised
that the lower polarity of ZON and DON is the
reason for their lower binding affinity to these
materials [32]. Subsequently, chemical modifica-
tion of phyllosilicate clays with organic cations
have been developed to improve ZON or DON
adsorption. For example, Lemke et al. (1998)
[33] developed an organophilic montmorillonite
able to effectively bind ZON in vitro. However,
when applied in vivo in the mouse uterine weight
bioassay, an enhanced toxicity of ZON was
observed, presumably due to the surfactant
properties of desorbed quaternary ammonia
which increased the rate of absorption of ZON
[34]. These findings demonstrate that in the first
screening of potential toxin binders, bioassays
indicating a potential enhance absorption and
toxicity should be included.

In consideration of these findings we developed
a test protocol, which includes as a first step a
conventional incubation procedure, indicating the
binding capacity of new test compounds. As a
second step we used specific bioassays, in which
the aqueous phase of the incubation mixture was
tested for toxin-specific effects in cell cultures.

In these combined assay, 20 different binders,
including 6 commercial products, belonging to the
following chemical classes were tested: smectites
[35], humic substances [36, 37] and yeast cell-walls
[38–40]. Activated charcoal served as reference
compound, as it was shown to bind several myc-
ototoxins, including aflatoxins, patulin, fumoni-
sins, ochratoxin A, ZON and DON [10, 19–21].
The practical application of activated charcoal in
feedstuffs, however, is restricted due to technical
(dust formation and dark colour) and nutritional
(adsorption of minerals, vitamins and other
nutrients) limitations. The obtained findings were
compared with those of commercial products
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containing various mineral clays, yeast products
and plant extracts, as indicated.

Materials and methods

Materials

Three mineral clays (described in Table 1), six
humic substances (described in Table 2), four
yeast cell-wall derived products, six commercial
’mycotoxin binders’ and activated charcoal were
obtained from various companies in Europe,
Asia and South America. The yeast cell wall-
derived products consisted of: natural yeast cell-
wall (Yeast1), modified yeast cell-wall (Yeast2),
purified b-glucans (Yeast3) and purified manno-
proteins (Yeast4). The composition of the com-
mercial products as stated in the commercial
brochures was as follows: Product 1: mixture of
clay and yeast-cell wall; Product 2: yeast cell-
wall; Product 3: combination of yeast cell-wall,
clay and plant extracts; Product 4: HSCAS
(Hydrated Sodium Calcium Aluminum Silicate);
Product 5: kaolinite, micaceous mineral, feldspar,
quartz and carbonaceous material; and, Product
6: modified HSCAS.

Zearalenone (ZON), deoxynivalenol (DON)
and MTT [(3-4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolim bromide] were supplied by SIGMA
(St. Louis, MO, U.S.A). Alamar blue (AB) was
purchased from BioSource International (Cama-
rillo, CA, USA). MCF-7 cells were obtained from
(ECACC) European Collection of Cell Culture.
Dulbecco’s Modified Eagle’s Medium (DMEM),
phosphate buffered saline (PBS), foetal calf serum
(FCS) and L-glutamine were purchased from In-
vitrogen (Breda, The Netherlands). All solvents
used in chromatography were of HPLC grade; all
other reagents were of analytical grade.

Assessment of pH-dependent adsorption

The tested products were suspended in PBS solution
(CaCl2� 2H2O, 1.2 mM; KCl, 2.7 mM; KH2PO4,
1.5 mM; MgCl2� 6H2O, 1.1 mM; NaCl, 138 mM;
Na2HPO4� 2H2O, 8.1 mM; pH = 6.5) to reach
final concentrations of 5, 2.5 or 1 mg of product/
ml. Either DON or ZON were added to
this suspension at a final concentration of 1 mg/l
(1 ppm). Two types of negative controls were
included: (1) PBS solution with mycotoxin
without adsorbent and (2) PBS solution with
adsorbent without mycotoxin. The pH of the

Table 1. Composition of the natural mineral phyllosilicates investigated

Sample Composition Physico-chemical propertiesa Dry granulometry (%)

C.E.C.

(meq/ 100 g)

S.A.

(m2/g)

CaCO3

(%)

Moisture

(%)

% Water

Absorption

pH Bulk

density

(g/l)

Ash

(%)

>125

lm
75

lm
45

lm
>45

lm

Mineral1 Smectite (93%),

Quartz (5%),

Dolomite (1),

Feldspar (1%) and

traces of plaster,

ilite and kaolinite

45.4 60 4.0 7.74 77 7.4 820 9.23 4.8 12.9 18.9 63.5

Mineral2 Smectite (95%),

Quartz (1%),

Feldspar (1%)

and mica (traces)

144.3 51 2 15.24 191 9 829 4.06 13.7 17.1 21.4 47.9

Mineral3 Smectite (96%),

Quartz (1%) and

traces of plaster,

ilite and kaolinite

41.4 114 2 7.18 121 8 844 7.09 4.5 16.8 23.6 55.2

a C.E.C. = Cation Exchange Capacity.
S.A. = Surface Area.
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mixtures were adjusted to 2.5 with HCl (1 M)
and incubated at 37�C for 1 h under constant
agitation to simulate the pH conditions during
gastric passage in monogastric animal. After this
first incubation step, a sample was taken for
further analysis. The incubations were continued
in the same flask by raising the pH of to pH 8.0
with NaOH (1 M) and leaving the incubation
mixture for 3 h under constant agitation at 37�C
to simulate the pH conditions during intestinal
passage of a monogastric animal. After this time,
a second sample was taken. Both samples were
immediately filtered (Minisart-GF with a reten-
tion efficiency of 98% for 0.7 lm spherical par-
ticles; Sartorious, Gottingen, Germany) to
separate the binder from the aqueous phase and
stored at )20�C until analysis.

DON analysis by HPLC

One millilitre (1 ml) of each filtrated aliquot was
cleaned-up using DON inmunoafinity columns
(DONtestTM HPLC; VICAM, Watertown, USA).
The final methanol effluent was evaporated under
a nitrogen stream and the obtained residue re-
dissolved in 250 ll of the mobile phase, of which
50 ll were injected in the HPLC system. HPLC
analyses were performed using a AS300 Thermo
Separation Products HPLC system (Spectra-
Physics, USA). A C18 ChromSpher, stainless steel,
5 lm column (100� 3.0 mm, Chrompack, The
Netherlands) was connected to SpectraSeries P100
Isocratic pumps set at a flow rate of 0.2 ml/min.
The mobile phase consisted of acetonitril : water
(10:90 v:v). A UV150 detector set at 218 nm and
linked to a Data Jet Integrator was used as
detection system. The limit of quantification
(LOQ) was estimated to be 0.05 mg DON/l.

ZON analysis by HPLC

One and a half millilitres (1.5 ml) of each filtrated
aliquot were extracted with 7.5 ml of chloroform.
The water phase was discarded and the chloroform
evaporated under a nitrogen stream. The obtained
residue was re-dissolved in 200 ll of mobile phase
fromwhich 50 ll were injected in theHPLC system.
A C18 Luna II, stainless steel, 5 lm column
(150� 4.6 mm; Phnomenex, The Netherlands) was
connected to two high precision pumps (Gynkotek
model 300) set at a flow rate of 0.7 ml/min and
controlled by a Chromeleon-Gynkotec HPLC
software (Softron). The mobile phase consisted of
methanol / water (70:30 v:v). Fluorescence detection
was performed with a FP 920 fluorescence detector
(Jasco, Japan) set at 236 nm excitation wavelength
and 418 nm emission wavelength. The limit of
quantification was estimated to be 0.04 mg ZON/l.

Bioassay for the evaluation of trichothecene
cytotoxiciy

Various authors have described that trichothec-
enes exert a typical cytotoxicity (42) and hence an
established fibroblast cell line was used to measure
the residual bioactivity of DON in the incubation
samples. In brief, 5 ml of each filtrated aliquot
were lyophilised using a Freezemobile 6 unit
(Virtis Company, USA). The residue was re-dis-
solved in 2 ml of cell culture medium. This con-
sisted of DMEM medium with phenol red
supplemented with 10% bovine calf serum, 1%
penicillin (100 units/ml), streptomycin (100 lg/
ml), 1% L-glutamine, 1% sodium pyruvate
(1 mM). A monolayer culture of NIH/3T3-
LNCX, a cell line originating from mouse fibro-
blasts, was sub-cultured in DMEM medium and
incubated at 37�C in a humidified atmosphere

Table 2. Composition of the natural humic substances investigated

Sample Composition Physico-chemical properties Dry granulometry (%)

Moisture (%) % Water

Absorption

pH Bulk density (g/l) >125 lm 75lm 45 lm > 45lm

Humic1 Leonardite 18.5 56 3.9 663 9.3 19.5 26.1 45.1

Humic2 Humic substances mixture 14.6 44 7.1 661 52.6 16.5 12.6 18.4

Humic3 Humic substances mixture 54.9 82 9.4 568 26.9 9.8 18.6 44.7

Humic4 Humic substances mixture 2.0 55 7.8 799 8.1 9.0 19.9 63.0

Humic5 Lignosulfonate 7.4 soluble 8.2 434 5.4 12.5 48.2 33.9

Humic6 Lignosulfonate 8.0 soluble 6.2 481 6.6 41.5 28.5 23.4
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containing 5% CO2 for 72 to 96 h. After this time,
the cells were detached and seeded into 96 well
culture plates at a density of 104 cells/well with
200 ll medium/well. After 24 h of incubation, the
medium was removed and medium containing the
lyophilised residue of the toxin-binder incubations
and dilutions thereof were added. Incubation
medium without DON was used as control. After
24 h of incubation, the Alamar Blue (AB) reduc-
tion assay was performed as previously described
[41]. Briefly, the medium was removed and fresh
medium containing AB was added. Following 3 h
of incubation, AB was measured fluorometrically
at 530 nm (excitation) and 590 nm (emission).
Data were expressed as relative absorbance in
comparison to parallel incubations conducted with
DON at the given concentration without any
binding substance.

E-screen bioassay assessing estrogenic activity

This bioassay is based on the method of Soto et al.
[42] and detects even small amounts of estrogenic
activity associated with residual amounts of ZON
and its metabolites. The assay was conducted with
minor modifications as described previously [43].
Briefly, 5 ml of each filtrated aliquot were lyophi-
lised using a Freezemobile 6 unit (Virtis Company,
USA). The residue was re-dissolved in 5 ml of the
cell culture medium. This consisted of DMEM
medium without phenol red supplemented with
10% stripped bovine calf serum (estrogen-free),
1% penicillin (100 units/ml), streptomycin
(100 lg/ml), 1% L-glutamine, 1% sodium pyru-
vate (100 mM), and 0.1 % bovine insulin
(0.001 M). After sterilising by filtration (0.25 lM;
Corning, Germany), a 106 dilution of the medium
was prepared. A monolayer culture of human
breast cancer cells (MCF-7) was sub-cultured in
DMEM medium and incubated at 37�C in a
humidified atmosphere containing 5% CO2 for 72
to 96 h. After this time, the cells were detached
and seeded into 96 well culture plates at a density
of 104 cells/well with 200 ll medium/well. After
24 h of incubation, the medium was removed and
medium containing the lyophilised residue of the
toxin binder incubations and dilutions thereof
were added. Normal medium was used as control.
After 6 days of incubation, the cell proliferation
was assessed using the MTT (dimethylthiazol
diphenyl tetrazolium bromide) test as described

originally by Denizat and Lang (1986) [44], with
minor modifications. Briefly, the medium was
discarded and fresh medium containing 0.6 mg
MTT/ml was added to the cells. After 3 to 4 h of
incubation, the medium was removed and the
reaction stopped by adding HCl/Iso-propanol 2:98
(v/v). Formazan, a product formed by the mito-
chondrial enzyme succinate dehydrogenase in
viable cells, was measured at 590 nm. Data were
expressed as relative absorbance in comparison to
control incubations conducted with ZON at the
given concentrations without any binding
substance.

Calculation of the DON and ZON adsorption
capacity per substance

Two figures are given to express the DON and
ZON adsorption capacity of each adsorbent.
Figure 1, called acidic adsorption (Ac), is based on
the analyses of the aliquots taken after the first
incubation at low pH. Figure 2, called alkaline
adsorption (Ak), is based on the analyses of the
aliquots taken after the second incubation con-
ducted at alkaline pH. Both, Ac and Ak, are
calculated in percentage to the positive control
(toxins without any adsorbent).

Results

In order to assess the mycotoxin binding capacity
of the adsorbents, an in vitro system designed to
mimic the temperature, pH and passage time
through the stomach and the gut of a monogastric
animal was applied. The DON and ZON adsorp-
tion after the acidic (Ac) and the alkaline (Ak)
phases was assessed chemically (HPLC analysis)
or biologically (cell assays) of the remaining, non-
absorbed mycotoxin in the filtered aliquot.

CH3

O

O
H H

OH
CH3

OH

OH

O

Figure 1. Structural formula of deoxynivalenol.
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DON adsorption

DON (1 ppm) adsorption was assessed by HPLC
analysis of the unbound fraction in the filtrate of
the incubation mixture. In addition, the same fil-
trate was applied in a standard cytotoxicity assay
with NIH/3T3-LNCX cells. Aliquots from poor
binders (high concentration of unbound DON)
reduce the cell viability, whereas those from potent
binders did not. DON adsorption (Ac and Ak)
exhibited by the mineral clays, humic substances
and yeast-derived products tested at a concentra-
tion of 5 mg/ml are presented in Table 3. The
positive control, activated charcoal, was found to
bind approximately 90% of DON in both assays.
In contrast, all other products exerted a rather low
DON adsorption, which was not significantly

different from control incubation without any
binder, neither following HPLC analysis nor
according to the results of the bioassay. This
implies that most of the substances had an Ac and
Ak lower than 10%. Mineral1 and Humic5
achieved the highest Ak, which reached 21%
(HPLC determination). The mineral and yeast
products tended to exhibit higher Ak values as
compared to the Ac values. These differences
between Ac and Ak, however, were not significant
(p<0.050) as for all the other tested products.
The adsorption capacity of these products
decreased when tested at a higher toxin concen-
tration of 2.5 mg/ml (data not shown). The indi-
vidual DON adsorption values obtained for the
commercial ’mycotoxin binders’ tested at a con-
centration of 2.5 mg binder per ml, which resem-
bles the recommended concentrations to be used in
feeds, are presented in Table 4. The obtained val-
ues were also very low (<15%) for all the inves-
tigated products.

ZON adsorption

ZON adsorption was assessed by HPLC analysis
of the unbound fraction in the incubation filtrates
from 3 individual experiments with varying con-
centrations of the binder of 5 mg/mg, 2.5 mg/ml
and 1 mg/ml, respectively. The incubations con-
ducted with 2.5 mg/ml adsorbent where in parallel
assessed in a bioassay with MCF-7 cells, assessing
the estrogenic activity of the unbound toxin frac-
tion. Table 5 presents the results of ZON adsorp-
tion (Ac and Ak) exhibited by the smectites, humic
acids and yeast cell wall materials. The reference
material, activated charcoal, exhibited a near to
100% adsorption of ZON at all concentrations
tested. The most effective compound (Ak and
Ac>70% at an inclusion rate of 2.5 mg/ml) was
Mineral1, followed by Humic1, Humic2, Humic4
and Yeast3. The other binding materials had Ac
and Ak values that were considerably lower. For
various products, notable differences were
observed between individual Ac values and the
corresponding AK values, for example for the
compounds Mineral3, Humic3, Humic5 and
Yeast3. These differences suggest the existence of
an optimal concentrations of the binder and may
serve a guidance for forthcoming in vivo studies
Yeast4 showed a negligible adsorption rate when
assessed by HPLC analysis but, surprisingly,

O

O

OOH

HO

CH3

Figure 2. Structural formula of zearalenone.

Table 3. In vitro percentage adsorption of DON by different
mineral clays, humic substances and yeast cell-wall derived
products as assessed by chemical and biological methods*

Producta HPLCb BIOASSAYc

Ac Ak Ac Ak

Mineral1 8±7 21±11 5±3 11±8

Mineral2 9±8 9±10 15±5 10±3

Mineral3 5±6 9±14 10±4 15±11

Humic1 5±7 9±11 9±7 6±5

Humic2 5±10 11±17 4±9 18±7

Humic3 10±5 10±17 3±8 5±1

Humic4 8±4 3±3 5±2 4±3

Humic5 13±4 21±1 9±9 17±5

Humic6 10±3 0 11±10 8±76

Yeast 1 1±1 5±7 10±11 10±6

Yeast 2 3±6 12±13 8±7 9±6

Yeast 3 8±5 16±13 6±10 15±7

Yeast 4 11±7 15±19 13±9 19±11

Charcoal 88±7 93±8 70±6 80±10

*Values are means±SD of three independent experiments.
Ac = acidic adsorption. Ak = alkaline adsorption.
aAll products were included at a concentrations of 5 mg/ml;
bDetection limit: 0.05 mg/l; cCytotoxicity Bioassay.
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appeared to exert a quite considerably decrease in
estrogenic activity (Ac = 30% and Ak = 69%)
when tested in the bioassay. The results obtained
with the commercial products are presented in
Table 4. These products were tested only at an
inclusion rate of 2.5 mg/ml, which corresponds to
the concentration recommended by the distribut-
ing commercial companies. The best product here
was Product6 exhibited a binding activity of
>97% for Ac and Ak in both assays.

Discussion

Supplementing animal feeds with non-nutritive
adsorbents has proven to substantially reduce the
detrimental effects ofAFB1 in farm animals [45] and
the carry-over of AFB1 in milk [13]. Subsequently,
various compounds have been tested for their
potential to bind and sequester DON and ZON.
However, efficient binders of AFB1 often do not
adsorbDONorZON to any appreciable degree due

Table 4. In vitro percentage adsorption of DON and ZON by different mineral clays, humic substances and yeast cell wall derived
products as assessed by chemical and biological methods*

Producta DON ZON

HPLCb Bioassayc HPLCd Bioassaye

Ac Ak Ac Ak Ac Ak Ac Ak

Product1 8±8 9±6 5±3 4±8 17±7 35±7 30±10 40±12

Product2 4±4 5±10 2±3 3±3 38±8 32±8 51±13 24±16

Product3 7±10 12±9 5±3 4±3 40±8 23±5 60±14 34±11

Product4 11±15 18±8 6±5 10±3 25±5 11±8 39±12 33±15

Product5 13±15 12±5 10±5 12±6 2±4 1±2 36± 13 50± 15

Product6 7±8 10±11 11±6 13±8 97±0 99±0 98±2 97±2

Charcoal 88±7 93±8 70±6 80± 10 93±8 100 100 100

*Values are means±SD of three independent experiments. Ac = acidic adsorption. Ak = alkaline adsorption.
aAll products were included at a concentrations of 2.5 mg/ml; bDetection limit: 0.05 mg/l; cCytotoxicity bioassay; dDetection limit:
0.04 mg/l;e Cell Proliferation bioassay.

Table 5. In vitro percentage adsorption of ZON by different mineral clays, humic substances and yeast cell-wall derived products as
assessed by chemical and biological methods*

Producta 5 mg/ml 2.5 mg/ml 1 mg/ml

HPLCb HPLC BIOASSAYc HPLC

Ac Ak Ac Ak Ac Ak Ac Ak

Mineral1 92±3 88±6 71±9 74±2 83±2 74±3 63±10 43±1

Mineral2 36±4 6±11 8±7 4±7 5±6 1±2 7±9 2±2

Mineral3 47±11 15±11 8±7 4±7 25±15 7±14 13±5 5±4

Humic1 88±2 67±3 69±7 68±10 66±2 56±5 61±3 57±9

Humic2 90±1 88±4 69±13 65±12 78±15 78±13 68±2 61±5

Humic3 48±9 16±5 38±2 13±11 33±15 21±17 22±5 17±1

Humic4 98±8 95±2 94±3 92±1 87±10 90±11 56±11 47±15

Humic5 9±8 38±15 7±8 15±1 15±6 17±6 10±12 17±3

Humic6 9±8 6±12 2±4 14±2 11±8 20±4 4±4 7±13

Yeast 1 71±5 68±6 55±8 48±1 68±8 52±12 46±23 30±5

Yeast 2 67±1 59±7 50±7 39±4 58±13 39±15 39±11 27±5

Yeast 3 88±5 77±1 69±11 55±4 85±16 72±11 63±7 33±9

Yeast 4 3±4 6±5 0 2±3 30± 13 69± 17 0 4±5

Charcoal 100 100 99±1 100 100 100 97±1 98±2

*Values are means±SD of three independent experiments. Ac = acidic adsorption. Alkaline = alkaline adsorption.
aAll products included at the three indicated concentrations: 5, 2.5 and 1 mg/ml; b Detection limit: 0.04mg/l; cCell Proliferation
Bioassay.
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to the entirely different chemical structure of these
Fusario-toxins. Therefore, various attempts have
been made to identify new compounds, which effi-
ciently bind DON and/or ZON. For the rapid
screening of such new substance, a protocol for
in vitro incubations at different pH level is pre-
sented, including chemical analysis of the unbound
fraction, as well as cell-based bioassays. Compara-
ble in vitro system consisted of a simple incubation
series at different pH values according to the chan-
ges of the pHalong the gastro-intestinal tract of pigs
have been used before [18, 46] and were sometime
completed by the addition of enzymes and bile fluid,
to more closely resemble the conditions in the gas-
tro-intestinal tract [22]. In these assays, the binding
capacity of a given compound is usually measured
by chemical analysis of the unbound toxin fraction
that remains in the aqueous phase. We used a
comparable experimental design for the incubations
at different pH values as present in the gastrointes-
tinal tract of pigs to assess the binding affinity at an
acidic as well as an alkaline pH, and added cell-
based bioassays to the evaluation protocol. These
biological assays are considered to be a valuable
addition to the common chemical analysis of the
unbound fraction, as they would detect unpredict-
able tenside-like activities of binders affecting the
permeability of cell membranes and resulting in an
increased cellular uptake and increase toxicity of the
tested mycotoxins [33]. Given the differences in the
mechanism of action of the two selected toxins,
DON activity was tested in a cytotoxicity assay,
whereas the biological activity of ZENwas tested in
a proliferation assay with estrogen-dependent
MCF-7 cells. Both assays have been used previously
to compare the effects of trichothecenes (including
DON) and estrogenic compounds (including ZEN)
[42, 47].

The smectites, humic acids and yeast cell wall
materials were added to the buffer system at con-
centrations of 1, 2.5 and 5 mg/l, respectively,
whereas the commercial binders were tested only at
a concentration of 2.5 mg/ml. These concentrations
were chosen in consideration of the common prac-
tice, where inclusions rates exceeding 5 kg per
metric ton of feed are avoided as they would impair
the caloric and nutritional value of feeds, due to
dilution and unspecific binding of essential feed
ingredients such as traceminerals and vitamins. The
toxin concentrations used in the assays were set at
1 mg/l (corresponding to 1 ppm in feed) for DON

and ZON, respectively. This toxin level is very
common forDON inmixed feeds, whereas exposure
to ZEA is often lower. However, as ZEA can be
present in bulk feeds such as corn silage as well as in
concentrates, the same concentration was used in
the described model experiments.

In this complex model new candidate binders,
such as humic compounds, and previously used
compounds were compared. According to our
results, none of the tested products, except activated
charcoal (which was included as positive control),
appears to bind DON efficiently. In contrast, one
mineral clay, three humic substances and one yeast-
derived product showed considerably high ZON
adsorption, which makes the products candidates
for further testing.

The results of the bioassay suggest a low toxicity
of all binders tested, as no cytotoxicty was observed
in the control incubations without the toxins.
Moreover, the results of the bioassay exclude sig-
nificant changes in the cellular uptake of the toxins,
or possible mycotoxin-binder complexes. However,
it should bementioned that the latter possibility can
not be entirely excluded, as only the overall reduc-
tion of the biological effects was measured, but not
the actual intra-cellular concentration of the toxin.
This would be only possible when radio-labelled
toxins are used in the experiments. With one new
compound, Yeast4, a considerable difference was
found between the chemical and the biological
assay. This product contains small-size purified
manno-proteins, which may bind to ZON, but by-
pass the filtration. This would imply that the
binding affinity of this product is underestimated in
chemical analytical techniques that measure only
the free, non-bound toxin fraction.

The comparison of all obtained results indicates
that various compounds are effective in adsorbing
ZEN, whereas none of the test compounds or
commercial products was able to bind DON to an
appreciable degree. These differences might be
associated with typical characteristics in the chem-
ical structures of the tested mycotoxins, as ZON
exhibits a certain polarity in the –O–CO– group,
whereas DON lacks any comparable polar group.
The presented results also show that within the
tested classes of compounds such as smectite clays,
humic substances and yeast-wall derived products,
individual difference in the ability to adsorb ZON
exist, demanding that only individual compounds
and not classes ofmolecules can be tested, as long as
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the specific physico-chemical properties essential
for the binding of ZON are elucidated.

An interesting finding is the good binding
capacity of humic substances.As alreadymentioned
in the introduction, polymeric humic substances
contain various binding sites, and have been intro-
duced into human medicine as compounds to
reduce the absorption and systemic availability of
bacterial endotoxins [48–50]. This latter effect
would be highly beneficial in the protection of pig
health as well, and hence these compounds deserve
further in vivo testing.

A number of relevant factors occurring in vivo,
such as interactions of toxins with feed compo-
nents and the effect of digestive enzymes, which
may cleave again the formed complexes between
binders and toxins, are not reflected in the pre-
sented in vitro model. The obvious advantage of
in vitro models, however, is the possibility to rap-
idly screen the effect of high numbers of different
substances, enabling a pre-selection of products.
Moreover, in vitro testing of the incubation media
by means of bioassays will identify possible toxic
reaction products (formed between binders and
toxins) as well as significant toxic effects of the
binders as such. In needs to be stressed, however,
that any potential mycotoxin binders should be
thoroughly assessed in in vivo experiments to
demonstrate the capability in reducing mycotoxi-
cosis in farm animals under field conditions.
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