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Nonlocal single particle steering 
generated through single particle 
entanglement
L. M. Arévalo Aguilar 

In 1927, at the Solvay conference, Einstein posed a thought experiment with the primary intention 
of showing the incompleteness of quantum mechanics; to prove it, he employed the instantaneous 
nonlocal effects caused by the collapse of the wavefunction of a single particle—the spooky action at 
a distance–, when a measurement is done. This historical event preceded the well-know Einstein–
Podolsk–Rosen criticism over the incompleteness of quantum mechanics. Here, by using the Stern–
Gerlach experiment, we demonstrate how the instantaneous nonlocal feature of the collapse of the 
wavefunction together with the single-particle entanglement can be used to produce the nonlocal 
effect of steering, i.e. the single-particle steering. In the steering process Bob gets a quantum state 
depending on which observable Alice decides to measure. To accomplish this, we fully exploit the 
spreading (over large distances) of the entangled wavefunction of the single-particle. In particular, 
we demonstrate that the nonlocality of the single-particle entangled state allows the particle to 
“know” about the kind of detector Alice is using to steer Bob’s state. Therefore, notwithstanding 
strong counterarguments, we prove that the single-particle entanglement gives rise to truly nonlocal 
effects at two faraway places. This opens the possibility of using the single-particle entanglement for 
implementing truly nonlocal task.

Einstein efforts to cope with the challenge of the conceptual understanding of quantum mechanics has been a 
source of inspiration for its development; in particular, the fact that the quantum description of physical reality 
is not compatible with causal locality was critically analized by him. In 1927 Einstein posed a simple thought 
experiment where a single-particle experiencing diffraction by a single slit—hence generating an expanding 
spherical wavefunction—reaches a screen; as a result, “the particle must be considered as potentially present with 
almost constant probability over the whole area of the screen; however, as soon as it is localized, a peculiar action-at-
a-distance must be assumed to take place which prevents the continuously distributed wave in space from producing 
an effect at two places on the screen”1–3. That is to say, the wavefunction must collapse at the point where the 
particle is detected, hence, different points situated far away must instantaneously be unable to detect the particle. 
Notice that it was at the Solvay conference where, as far as we know, the phrase “a peculiar action-at-a-distance” 
was used for the first time by Einstein but in the context of a single-particle only, besides it is important to notice 
that this phrase has not been used in the Einstein-Podolsky-Rosen analysis. Additionally, in a letter written in 
1947 to Born, Einstein used the phrase spooky action at a distance4. Hence, it would be worth quoting Einstein’s 
words: “...I admit, of course, that there is a considerable amount of validity in the statistical approach...I cannot 
seriously believe in it because the theory cannot be reconciled with the idea that physics should represent a reality 
in time and space free from spooky actions at a distance4,” in this sentence Einstein talk about whether or not the 
wavefunction describes the Born probability for a single particle, i.e. the phrase spooky actions at a distance refers 
also to a single particle. Then, historically, by using this thought experiment Einstein was able to put the nonlocal 
effects of quantum mechanics and the collapse of the wavefunction as a distinctness of quantum mechanics that 
should be investigated. Some years later from the Solvay coference, in a letter to Schrödinger written in 1935, 
Einstein reframe this thought experiment in terms of boxes, although as a classical analogy  only3.

Meanwhile, de Broglie gave his own version for this though experiment in  19623, see also  refernce5, by using 
the box thought experiment in which a single particle was situated and where its wave function was given by 
�1(x, t) ; afterwards the box is divided into two boxes, one of them carried to Paris, by Bob, say. The other one 
carried by Alice to Tokyo. Hence after this division the wavefunction is given by �2 = φParis(x)+ φTokyo(x) , 
see Fig. 1. Consequently, if Bob opened his box in Paris and found the particle in it, the wave function would 
collapses to �f = φParis(x) . Besides, de Broglie call attention to the astonishing nonlocal effect of Alice opening 
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her box in Tokyo and finding nothing inside, but nevertheless producing the collapse of the wavefunction; in this 
case the wavefunction �2 = φParis(x)+ φTokyo(x) also collapses to �f = φParis(x) in Paris.

The Einstein’s boxes resemble the nolocality of single photons, first addressed by Tan et al.6 and further used by 
Hardy to rule out local hidden  variables7, see also the work of  Peres8. The nonlocality of single photons has raised 
great debate which includes their experimental  demonstration9, new theoretical and experimental proposal to test 
 it10–14 and  criticism15–17. It is worth mentioning that the nonlocal character of the collapse of the wavefunction 
was experimentally demonstrated by Fuwa et al.18, see also  references19–21. In  reference20 an experiment testing 
the collapsing time of a single-photon state was carried out and in  reference21 an experimental demonstration 
of the Einstein’s thought experiment of 1927 at the Solvay conference was demonstrated. The single-photon 
steering was experimentally demonstrated in a detection loophole free scenario by Guerreiro et al.22, the name 
single-photon steering was stated by N.  Brunner23.

In the same spirit, the nonlocality phenomenon was also considered in the single-particle entanglement 
(or intraparticle entanglement), where the entanglement occurs with at least two degree of freedom of a single 
 particle24. It has been addressed, for example, with  electrons25. However, the single-particle entanglement faced 
critical comments over its possible nonlocality  properties17,26,27; this criticism claims that the entanglement of a 
single-particle is contextual only, denying nonlocal effects in it. Interestingly, in some of this works the Einstein’s 
phrase over the peculiar action-at-a-distance is only used for the multi-particle entanglement case and ruling 
out its applicability to the sinlge-particle entanglement  situation26–29; however, as it was already stated, the first 
time that Einstein himself used that phrase was for the single-particle case and without considering entangle-
ment. Here, we shown that the single-particle entanglement in the SGE possesses truly nonlocal properties by 
showing how Alice can steer Bob’s states.

On the other hand, before Einstein raised his doubts at the Solvay conference held in 1927, in 1921 Stern 
proposed an experiment with the aim of testing the Bohr quantization rule of the orbital angular  momentum30. 
Stern conducted that experiment in 1922 with the help of Gerlach. Meanwhile, in 1925 Uhlenbeck and Goudsmit 
proposed the idea of the existence of the internal spin to explain the fine structure phenomena in the espectral 
 emission31. However, it was until 1927 that the scientific community began to realize that what the Stern–Ger-
lach experiment (SGE) really proved was the existence of the internal  spin31. From then on, the SGE has been a 
fundamental tool for the development of quantum mechanics; which, as it was explained in  references32,33, it is an 
entanglement device. In fact, the quantum attributes of the SGE and a new explanation for how it works and has 
been given in many papers, see for example  reference34; in particular, in  references32,33,35 the Schrödinger equation 
for this experiment has been solved and the violation of local realism was proved in  reference36. It is well worth 
mentioning that recent experimental evidence confirms the existence of the superposition of the  wavepackets37,38. 
As it was stated in the previous paragraph, in this work we demonstrated that the quantum properties of the SGE 
together with the nonlocality of the wavefunction can be used to tailor the steering effect, a process which we 
can call single-particle steering. Steering is a different nonlocal property of quantum mechanics that is stronger 
that noneparability and weaker that Bell  nonlocality39–45, which allow Alice to realise many nonclassical task like 
steering nonclassicality, where she steer Bob’s state into a nonclassical state, this process was named nonclassical 
steering 46. Nonlocality depends on the uncertainty  principle47 and the  steering48–50.

The physics of the Stern–Gerlach experiment
Here, we analyze how the Stern–Gerlach experiment works in a quantum mechanical way when we send indi-
vidual atoms one by one. As it was demonstrated in  references32,33 the evolution of the wave function in the 
Stern–Gerlach experiment is given by:
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Figure 1.  A single particle with wavefunction given by �1(x, t) is hold in the original Box. After that, the 
original Box is divide in two Boxes, one of them carried to Paris by Bob and the other one carried to Tokyo by 
Alice, therefore the wavefunction after the splitting is given by �2 = φParis(x)+ φTokyo(x).
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where

and

Now, in order to analize in detail the physics given by this equation: First, notice that what Eq. (1) tell us is 
that the SGE is an entanglement device, contrary to the usual understanding that considers the SGE as a spin 
measurement device. That is, there is not any wavefunction collapse in the SGE as it is required by the collapse 
postulate of quantum mechanics when a measurement is done (Fifth Postulate in  reference51), instead what the 
SGE produces is the entangled state given by Eq. (1). In fact, it was shown that the entangled state given by Eq. 
(1) violates the Bell’s Clauser–Horne–Shimony–Holt kind  inequality36.

Second, the wavefunction given in Eq. (1) consists of two Gaussian functions—that are entangled with the 
spin of the particle—which are separating one from another in the z axe; at time t the Gaussians are centred, 

respectively, at position z = ± t2µcb
2m  , and they are moving at a speed µcbt

2m  in opposite directions, which in turn 

imply a constant acceleration of µcb
2m  . Consequently, these Gaussians represent the movement of the external 

degrees of freedom and correspond to the possible values that these degree of freedom get when measurements 
are done. To see a recent demonstration that in quantum mechanics the first Newton law is ruled out see the 
work of  Hofmann52.

Measuring the position observable. If a screen is placed for measuring the possible positions (nowadays 
an alternative is a device which measure the position by sensing the cloud of electrons that is released when the 
particle hit it, see Arévalo Aguilar, On the Stern–Gerlach experiment, to be published) in the z axe, as it was done 
in the original experiment, two different spots are got. We recall that there exist a connection between physical 
properties and measurements formulated in the form of a self-adjoint  operator53; this connection is realized in 
the combination of the eigenstate of the operator with a corresponding  eigenvalue53. Hence, taking into account 
that the z position is being measured, then the wavefunction given by Eq. (1) collapses (with 50% of probability) 
towards the eigenstate associated with the eigenvalue of the operator z that was obtained:

for the upper spot, where |Z+� is an eigenket of the operator z, and �z|Z+� = δ

(

z + t2µcb
2m

)

 is the Dirac delta 

function, i.e. the wavefunction in z collapses to a well definite position at z ≈ t2µcb
2m  and Ci

0 is normalization coef-
ficient derived from C0 , here i = 1 and below i = 2, 3, 4, 5, 6, 7, 8 . Notice that this spot is still uncertain about the 
x and y positions and about the momentum pz , in fact the uncertainty in pz is maximun. The wavefunction given 
by Eq. (4) possesses a definite spin |↑z� and definite position in z. However, notice that in this case we are meas-
uring the z position, not the spin, and by detecting the particle at the position eigenstate �z|Z+� = δ

(

z + t2µcb
2m

)

 
we can infer the spin value and the collapsed spin state, i.e. �/2 and |↑z� respectively.

At the lower spot the wave function collapses to:

where |Z−� is an eigenket of the operator z, and �z|Z−� = δ

(

z − t2µcb
2m

)

.

Measuring the spin observable. On the other hand suppose that Alice wants to measure the spin degree 
of freedom, by using a device that measure the spin (in other words, suppose that a device that measure the spin 
exists), then the wavefunction given by Eq. (1) collapses (with 50% of probability) towards the eigenstate associ-
ated with the value of the obtained eigenvalue (i.e. +�/2 ) of the operator σ̂z:

It is important to highlight that according to the measurement postulate of quantum mechanics what really 
collapses is the wavefunction associated with the spin degree of freedom (which is what Alice is really measur-
ing), the external degree of freedom in z still is a Gaussian. Also, notice that this wavefunction is still uncertain 
about the x, y and z positions and about the momentum pz . Hence, this spin’s measurement is quite different to 
measure the position as it was done in Eqs. (4) and (5). It is worth mentioning that this gives additional evidence 
to support the statement that the Stern–Gerlach apparatus is not a measurement device, but it is an entangle-
ment device instead.

Similar considerations apply if the eigenvalue −�/2 is obtained after the measurement of the spin degree of 
freedom. In this case, the collapsed wavefunction will be given by:
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Eintein’s boxes with single-particle entanglement
The de Broglie’s version of the Einstein boxes was given in terms of one particle without single-particle entan-
glement. Consider now the same thought experiment but now think over that during the splitting process the 
particle develops single-particle entanglement between the internal and the external degree of freedom. In 
mathematics: suppose that the initial state of the original box is given by |�1(x)� = c0|ϕ�(|↑� + |↓�) where 
�x|ϕ� = ϕ(x) is the x representation of the external degree of freedom, |↑� and |↓� are the internal spin and c0 is 
a constant. Hence, after the original box’s division into two boxes, one in Paris with Bob and the other one in 
Tokyo with Alice, the wavefunction is given by |�2� = c0

(

|ϕParis�|↑� + |ϕTokyo�|↓�
)

 . Consequently, the wave-
fucntion will collapse depending on what observable Alice decided to measure. For example, if Alice decided 
to measure the spin observable (and got the value −�/2 ), then the wave function would collapse to |ϕTokyo�|↓� , 
where �x|ϕTokyo� = ϕTokyo(x) . On the other hand, if she decided to measure the position observable (and she 
found the particle at Tokyo), then the wavefunction would collapse to |δTokyo�|↓� , where �x|δtokyo� = δ(x − xTokyo) 
is the Dirac delta function in x.

Additionally, in the case of the SGE, suppose that just one atom is sent by Alice, and that Alice is in Tokyo 
and Bob is in Paris. Also, suppose that Alice has automatized the SGE (which is located at suitable place) in such 
a way that she is able to turn it on (and with the ability to choice whether to send a single atom or N atoms one 
by one) sending a classical communication, as shown in Fig. 2.

The sep-up of Fig. 2 is a scheme of the Einstein’s boxes with single-particle entanglement; to perceive this, 
notice that: 

1. If Alice measured the position then (we would recall that Alice is sending a single particle), if her position 
measuring device registered the particle’s position, then the eigenfunction of the particle would collapse to 
the one given by Eq. (5), i.e. |ψ(t)� = C2

0M(x, y)|Z−�|↓z�.
2. However, if her position measuring device registered nothing, then the eigenfunction of the particle would 

collapse—at Bob’s location in Paris—to the one given by Eq. (4), i.e. |ψ(t)� = C1
0M(x, y)|Z+�|↑z�.

3. On the other hand, when Alice decide to measure the spin σ̂z , we have: If her spin measuring 
device registered the eigenvalue −�/2 , then the wavefunction would collapses towards Eq. (7), i.e. 
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Still there are more alternatives: different spin basis. If Alice decided to measure in a different spin 
basis, for example σ̂x , she could be able to steer a different state. In this case, rewriting Eq. (18) in the σ̂x basis, 
we have:

where
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(8)|ψ(t)� = C0M(x, y)
{

[�z|ϕ+� + �z|ϕ−�]|↑x� + [�z|ϕ+� − �z|ϕ−�]|↓x�
}

Alice
Tokyo

Bob
Paris

Oven

Magnet

Classical
communication
between 
Alice and
Bob

Classical communication which allow 
Alice to turn on the SGE

Figure 2.  SGE featuring the Einstein’s boxes. Where the red box is the oven, the blue box represents the magnet, 
the red dot represents the fact that there is not classical trajectories, see  references32,33. Alice could communicate 
with Bob by using the classical channel in magenta. Moreover, Alice is in full control of the SGE by using the 
classical channel in green, and she possess the ability to turn it on and to chose between a single or N atoms.
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and

Therefore the following alternatives arise: 

1. If her spin σ̂x measuring device registered the eigenvalue �/2 , then the wavefunction would collapse towards 

 where [�z|ϕ+� + �z|ϕ−�] is a superposition state of “being” in Paris and Tokyo at the same time.
2. If her spin σ̂x measuring device registered the eigenvalue −�/2 , then the wavefunction would collapse towards 

 where [�z|ϕ+� − �z|ϕ−�] is a superposition state of “being” in Paris and Tokyo at the same time.

Still there are more alternatives: momentum. If Alice decided to measure the momentum p̂z , then 
the wave function would collapse to the eigenfunction associated with the eigenvalue ( −pz ) of p̂z obtained at 
her momentum measuring device in Tokyo (with the associated spin |↓z� ); but if her momentum measuring 
device detected noting, then the wavefunction would collapse, at a different location—i.e. at Bob’s place in Paris-, 
towards an eigenfunction of the momentum, i.e. the one associated with the eigenvalue +pz (with the associated 
spin |↑z�).

About measurement and nonlocalilty
In the previous subsections we analysed the nonlocal effects from the point of view of steering, i.e. meas-
urements that produce assemblages like σa|x = trA{ρAB(Aa|x ⊗ I)}54,55. As it has been proved, this approach 
establishes a one to one relation between steering and joint  measurability54,55; that is to say, a set of observa-
bles is not jointly measurable only if they are useful to produce steering. In this case, Alice can demonstrate 
entanglement by measuring two incompatible operators, for example σ̂z and σ̂x . Notice that in the original 
EPR argument the entangled wavefunction was given by ψ(x1, x2) =

∫∞
−∞ ψp(x2)up(x1)dp , where, according 

to EPR, the wavefunction ψp(x2) = e−
ip
�
(x2−x0) is an eigen-function of the observable p̂2 with eigenvalue −p , 

whereas up(x1) = e
ip
�
x1 is an eigen-function of the observable p̂1 with eigen-value p, see  reference56 for details; 

hence, the wavefunction ψ(x1, x2) represent an entangled state between eigen-functions of the momentum 
observables p̂1 and p̂2 . In the Bohm’s spin 1/2 representation of the EPR argument, the entangled wavefunction 
is |ψ�1/2 = (|↓z�1|↑z�2 − |↑z�1|↓z�2)/

√
2 , where|↓z�1 is an eigen-function of the σ̂ 1

z  operator of the observer 1, 
and |↑z�2 is an eigen-function of the σ̂ 2

z  operator of the observer 2; hence, |ψ�1/2 represents and entangled state 
between the eigen-functions of the spin observables σ̂ 1

z  and σ̂ 2
z  . It is worthy of mention that in both cases the 

entanglement occurs between eigenfunctions of operators, i.e. these eigenfunctions have associated a precise 
eigenvalue in all cases.

On the other hand, the state given by Eq. (1) is a hybrid entangled  state57 where the entanglement is between 
a continuous variable z and the quantized spin, i.e. position-spin entanglement; however, the wavefuntion in z is 
not an eigenfunction of the position operator neither of the momentum operator. It produces steering by measur-
ing the position z whereby Alice steer Bob’s state towards the one given by Eq. (5), i.e. |ψ(t)� = C2

0M(x, y)|Z−�|↑z� 
or, additionally she could also measure the spin σ̂z and whereby she can steer Bob’s state towards Eq. (6), i.e. 

|ψσ1|1(t)� = C3
0M(x, y)e

−itµc
�

(B0+bz)e
−1

4(σ20+it�/2m)

(

z+ t2µcb
2m

)2

|↑z� . The peculiarity of this situation is that Eq. (5) and 
Eq. (6) are two different states that are produced by measuring two seemingly compatible operators, of course 
this does not contradict the results given in  references54,55. In this case, we conjecture that for the case of hybrid 
entanglement the steering could be demonstrated by measuring not just incompatible observables but also the 
observables associated with the two wavefunctions of the composite entangled state. In the next section, a partial 
positive answer is given to this conjecture by showing that there is a violation of a steering inequality formed by 
the averages of the operators related to the position and the spin observables in the SGE. We recall that a counter 
example showing that not always incompatibility imply nonlocality was  given58, here we show that there exist 
process where measurement of seemingly compatible observables produce steering. Hence, in the scenario of 
the SGE there is a rich situation in which one observer can choose between measuring incompatible observables 
like σ̂z and σ̂x , or the position z and the momentum pz , or well a combination of them like σ̂z and pz.

Furthermore, at the same time, it raises the question about how the spin measurement could be conducted 
independent of the position measurement; as it was mentioned before, the position measurement can be car-
ried out by detecting a cloud of electrons. Unfortunately, as fas as we known, a method for detecting the spin 
without inferring it by the measurement of the position has not been found, that is to say it seems that we still 
must infer the spin value of a particle from inference of the position’s (or momentum) measurement althought a 
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(12)|ψσ2|2(t)� = C6
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proposal has been made for a quantum simultaneous measurement of the spin direction using an Arthurs–Kelly 
model, i.e. by simultaneous measurements of σ̂x , σ̂y and σ̂z without measuring the particle’s position. However, 
its implementation must still be analysed and checked further in order to asses its probable applicability to the 
SGE for the quantum measurement of the spin direction of σ̂z  only77; thereby, by treating the internal and external 
DOF as quantum variables in the SGE, it becomes clear that there are instances where the resultant final state is 
not the same when measuring an observable than to infer its value from measuring other observable. There is 
another perspective on this analysis that considers the situation when the measurement is carried out at different 
places by different  parties59. Furthermore, an additional issue arises when considering whether or not the Alice’s 
apparatus is close to the particle or not; in our general discussion we implicitly take the point of view that she 
does not have any difficulty in placing the particle in her measuring apparatus, in the situation when she would 
get nothing the particle will appears at the place in Paris where Bob is. However, in a real experiment a careful 
approach must be taken into consideration to secure the right setup of the experiment.

Additionally, a parallel consideration could be made by taking into account the nonlocal measurements of 
the observables, for example σA

z ⊗ σB
z  at the same time (where σA

z  is an Alice operator and σB
z  is a Bob operator) 

on two subsystems. Please notice that the considerations in the previous paragraph come by locally measur-
ing two operators, for example σ̂z and σ̂x . At first glance, it seems that measuring two operators locally is the 
same than measuring them in a nonlocal way; however, although a product operator is composed of two local 
operators, it differs from performing two local measurements individually, especially when the subsystems are 
distant from one  another60,61. In others words, by measuring the product of two operators we can induce non-
local  properties62–64, as the failure of the product  rule64. In the case of the SGE, this parallel analysis requires 
further research.

As a conclusion of this subsection, it is worthy of mention that further investigation is necessary to clarify 
how the spin and momentum measurements could be carried out independent of the position of the particle, as 
well as further analysis is required to clarify the steering process which occurs when measuring two observables 
as σ̂z and z or σ̂z and pz.

Steering certification
According to Uola et al.42 there are mainly three ways to verify steering. One is through the calculation of expec-
tation values of the form < ÂB̂ > and the demonstration that these correlations can prove steerability, usually 
by the violation of some steering  inequality39. A second way is to enquire whether Bob’s assemblage ρ̂a|x could 
be explained by means of a Local Hidden State (LHS) model; and a third way is to consider a quantum state ρ̂12 
and checking whether this state allows to see steering when Alice makes appropriate measurements; part of this 
latter way for proving steering was implemented in the previous sections, where it was shown the phenomenon 
of steering in the SGE through suitable choice of Alice measurements. According to E. G. Calvacanti et al.39, 
the entangled states, the steerable states and the Bell-nonlocal sates are all equivalent classes for pure  states39,40. 
Additionally, there is a proposal to certify steering for single systems but considering measurements at the same 
location, i.e. without considering space- like  separation65. In this section, the violation of a steering inequality 
that proves the inadequacy of LHS model in the SGE will be shown, but first the formal definition of steering 
will be given, see  reference39–41.

The steering scenario considers that one party (Bob) is capable of carrying out trusted quantum measurements 
whereas the other party (Alice) can not trust her own measurement devices. Let the set of all observables of Alice’s 
system, which belongs to its Hilbert space, be denoted by Dα . An element of Dα is denoted by A whereas the set 
of its eigenvalues {a} is denoted by �(A) . P(a|A; W) will denote the probability that Alice gets the result a when 
she measures A on a system with density matrix W. The measurements that Alice could perform are represented 
by the set Mα ⊆ Dα , this set is her measurement strategy, a similar notation is for Bob’s system. Additionally, 
let ρξ be a preexisting local hidden state (LHS). Hence, Alice can produce the steering phenomenon by using 
her measurement strategy Mα on the state W, if and only if (iff) it is not the case that for all a ∈ �(A) , b ∈ �(B) , 
for all A ∈ Mα , B ∈ Dβ , we have

where P(a|A, ξ) and Pξ are probability distributions over the hidden variable; and P(b|B; ρξ ) is a probability 
distribution compatible with quantum states, i.e. it denotes the quantum probability for obtaining the eigenvalue 
b when measuring the observable B in the state ρξ . Eq. (13) establishes that the phenomenon of steering could 
not be produced when the joint probability of Alice and Bob’s measurements can be explained employing a LHS 
model for Bob and a local hidden variable (LHV) model for Alice correlated with Bob’s  state41. Hence, the state 
W is steerable iff there exists a measurement strategy Mα that exhibits steering, for details  see40,41.

Additionally, the concept of EPR-steering inequalities was introduced by E. G. Calvacanti et al.39 as a criterion 
for certifying steering, i.e. a violation of any of these inequalities certifies that the correlations observed by two 
parties cannot be explained by a local hidden state model. These authors follow in close analogy the theories 
of certification for entanglement and nonlocality  criteria66–69. Furthermore, E. G. Cavalcanti et al. proved an 
analog of the Clauser-Horne-Shimony-Holt (CHSH) inequality for  steering70, which is a necessary and sufficient 
condition for certifying steering, i.e. the violation of this inequality means that the quantum state is steerable, it 
is given by the following equation:

(13)P(a, b|A,B,W) =
∑

ξ

P(a|A, ξ)P(b|B; ρξ )Pξ

(14)

√

�AB+ A′B�2 + �AB′ + A′B′�2
√

�AB− A′B�2 + �AB′ − A′B′�2 ≤ 2.
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The inequality given by Eq. (14) was demonstrated taking into account the correlations which have a LHV-
LHS model between two dichotomic measurements (that form a convex set)70, it was also proved that it obeys an 
optimal upper bound equal to the Cirel’son  quantity71, i.e. 2

√
2 . Additionally, the work of Girdhar and Cavalcanty 

strongly suggest that all two-qubits states that are EPR steerable with CHSH-type correlations are also Bell nonlocal 
-including mixed states-72 (as it was mentioned above, for pure states nonlocality, steering and nonseparability 
are equivalent classes); that is to say, a quantum state violates a CHSH-type steering inequality iff it violates the 
CHSH inequality also, possibly for different sets of measurements72. Furthermore, a similar result was reported 
by Costa and  Angelo73, when searching for the maximal amount in which some of the steering inequalities are 
violated (including the one in Eq. (14)), they reached the conclusion that for the two-measurement scenario the 
steering and Bell nonlocality are indistinguishable. Additionally, Quan et al.74 have demonstrated that the Bell-
diagonal states are steerable iff they violate the CHSH inequality, considering two projective measurements also. 
What these works show is the existence of states in general (i.e. mixed) which are steerable and nonlocal at the 
same time; for example, those with CHSH-type correlations and the Bell-diagonal states.

That inequality, given by Eq. (14), adapted to the SGE takes the following form:

where

Ŵ(z, pz) is the Wigner operator (we recall that the Wigner operator is equivalent to the parity  operator36) and 
σ̂ (θ) is the Pauli operator in an arbitrary direction in θ ; see Eqs. (6) and (12) in  reference36 where C(z, θ) was 
calculated following the approach of Banaszek and Wódkiewicz75,76, please see  reference36 for more details. A 
plot of Bz , i.e. the inequality given in Eq. (15), is shown in Fig. 3. An inset of Fig. 3 is shown in Fig. 4, it shows 
the range of values of Bz between 2.0 and 2.83 which gives the violation of the steering inequality. Another inset 
of Fig. 3 is shown in Fig. 5, this shows how the correlation reaches the optimal value 2

√
2 ≈ 2.83 . Based on these 

plots, we certify that the SGE is capable of producing the steering phenomena.

Methods
To certify steering we have followed two approach, the first one was by showing how the steering phenomena 
can be implemented by the wave function’s collapse by means of measuring suitable observables. The second one, 
was by showing the violation of an steering inequality, following the approach of Wódkiewicz76 who showed that 

(15)
Bz =

√

[C(z, θ)+ C(z′, θ)]2 + [C(z, θ ′)+ C(z′, θ ′)]2

+
√

[C(z, θ)− C(z′, θ)]2 + [C(z, θ ′)− C(z′, θ ′)]2 ≤ 2

(16)C(z, θ) = ��|Ŵ(z, pz)σ̂ (θ)|��,

Figure 3.  Plot of the inequality (15), taking z′ = 0.08 and θ ′ = π/2 , we have set π� = 1 , m = 1 , σ0 = 0.05 , 
µcb/2 = 2.2 , pz = 0.01 and time t = 0.2.

Figure 4.  Inset of Fig. 3, for the values of Bz from 2 to 2.83.
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by measuring the parity operator it can be demonstrated the nonlocality of quantum states, which translated to 
the SGE it shows that a LHS model can be constructed if the joint probability can be written as:

where Ŵ(z) is the parity operator, i.e. the Wigner operator, and the dichotomic variables are Ŵ(z) and σ̂z(θ).

Discussion and conclusion
Firstly, there is an unusual situation (a peculiar action-at-a-distance) coming from the above analy-
sis: if Alice measured σ̂z and detect nothing then the eigenfunction would collapse at Bob’s place towards 
C3
0M(x, y)�z|ϕ+�|↑z� ; however, if Alice measured σ̂x and detect �/2 then the eigenfunction would collapse 

towards C5
0M(x, y)[�z|ϕ+� + �z|ϕ−�]|↑x� , but if she detected −�/2 the wave function would collapses towards 

C6
0M(x, y)[�z|ϕ+� − �z|ϕ−�]|↓x� , remember that [�z|ϕ+� ± �z|ϕ−�] is a superposition state of “being” in Paris 

and Tokyo at the same time, this fact demonstrates the truly nonlocal feature of the single-particle entangle-
ment: How the particle senses which of the measuring devices Alice is using, i.e. the one that measures σ̂z or 
the one that measures σ̂x ? The answer is that the particle senses which device is in use by the nonlocality of the 
single-particle entanglement. This demonstrates that by measuring the internal degree of freedom, then, the 
external degree of freedom of the particle might be steered to become a reality in Paris or in Tokyo or even in a 
superposition state at both places.

Secondly, we can conclude that the spreading of the entangled wavefunction, of the single-particle entangled 
system, plays a paramount role in the nonlocality features that the system possesses. This open the question to 
whether such spreading plays a primordial role in the nonlocal properties of some of the multy-particle entan-
gled systems.

Thirdly, the collapse of the wave function depending on what kind of measuring device Alice is using in 
Tokyo implies some similarity to the Young interferometer, in which the use of a measuring device near a pinhole 
plays a primordial role in the loss of the interference pattern. The difference lies in the fact that in the Young 
interferometer the presence of a measuring device rules out quantum effects whereas in the SGE the presence 
of a measuring device could be used to produce steering.

Fourthly, what the previous sections proved, by showing the violation of a steering inequality, is that Alice 
is capable to steer Bob state in Paris by choosing different measurements at Tokio. This is possible due to the 
spreading over large distances of the entangled wavefunction, i.e. the spreading of the single-particle entangled 
wavefunction. To produce the steering she ask Bob about the kind of state he wants, then after turning on the 
SGE by using a classical control protocol (capable of sending a single atom or N atoms, as she wish), she could 
be able to steer Bob quantum states in such a way that this process rules out the existence of local hidden state 
 models40 (using some Bob’s protocol if he does not trust Alice). In concrete terms, by the use of N atoms Alice, by 
means of measuring the position observable, she will obtain N/2 times the eigenvalue −z at Tokio, whereas Bob 
is going to obtain N/2 times the eigenvalue +z at Paris. On the other hand, by the use of N atoms Alice, by means 
of measuring the spin σ̂z , she will obtain N/2 times the eigenvalue −�/2 at Tokio, whereas Bob is going to obtain 
N/2 times the eigenvalue +�/2 at Paris. Complex correlations could arise by measuring p̂z or by measuring σ̂x.

Finally, these considerations provide strong support to the fact that single-particle entanglement together 
with the nonlocal features of its wavefunction can be used to produce nonlocal steering at two different faraway 
places, superseding contextuality.

However, further analysis and research must be undertaken to ascertain how the spin measurements and 
momentum measurements could be conducted independent of the position of the particle and further research 
must also be done to understand better the steering process when measuring two seemingly compatible observa-
bles when there is a hybrid  entanglement57, for example z and σ̂z ; specially for the case of bipartite entanglement 
with states of the form:

(17)P(a, b|Ŵ(z), σ̂z(θ),W) =
∑

ξ

P(a|Ŵ(z), ξ)P(b|σ̂z(θ); ρξ )Pξ ,

Figure 5.  Inset of Fig. 3, for the values of Bz from 2.80 to 2.83.
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or similar ones, where the subscripts 1 and 2 refers to particle 1 and particle 21.
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