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Abstract

Changes to arm swing and gait symmetry are symptomatic of several pathological gaits

associated with reduced stability. The purpose of this study was to examine the relative con-

tributions of arm swing and gait symmetry towards gait stability. We theorized that actively

increasing arm swing would increase gait stability, while asymmetric walking would

decrease gait stability. Fifteen healthy, young adults (23.4 ± 2.8 yrs) walked on a split-belt

treadmill under symmetric (1.2 m/s) and asymmetric walking (left/right, 5:4 speed ratio) with

three different arm swings: held, normal, and active. Trunk local dynamic stability, inter-limb

coordination, and spatiotemporal gait variability and symmetry were measured. Active arm

swing resulted in improved local trunk stability, increased gait variability, and decreased

inter-limb coordination (p < .013). The changes in local trunk stability and gait variability dur-

ing active arm swing suggests that these metrics quantify fundamentally different aspects of

stability and are not always comparable. Split-belt walking caused reduced local trunk stabil-

ity, increased gait variability, and increased lower limb asymmetry (p < .003). However, the

arm swing symmetry was unaffected by gait asymmetry, this suggests that the decreases in

gait stability are linked to the increases in gait asymmetry rather than increases in arm swing

asymmetry.

Introduction

Arm swing during gait has been shown to have both passive and active components [1, 2].

While the exact interplay between these components in arm swing is still unknown, the small

torques calculated at the shoulder indicate that passive, pendular like oscillations are likely

dominant in the formation of normal arm swing. However, muscle activity at the shoulder is

persistent, even during conditions of restricted arm movements (e.g. bound arms) [2]. This

activity is thought to arise from central pattern generators important in the formation of nor-

mal gait patterns. Indeed, there appears to be a neurological link between the oscillatory move-

ments of the arms and legs [3, 4]. The purpose of this neural connection, and more broadly of

the ubiquitous presence of arm swing in healthy human gait, is presently unclear. Past research

has linked arm swing during gait to decreased metabolic cost [5], decreased vertical ground

reaction forces [6], and increased stability [7, 8].
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Stable gait can be defined as gait which maintains equilibrium despite the presence of inter-

nal and external perturbations [9]. Interestingly, Ortega et al. [5] found that an increased meta-

bolic cost due to walking without arm swing was mitigated by applying external lateral

stabilization. Therefore, it was posited that the increased metabolic rate when walking without

both arm swing and external stabilization was due to an increased effort in maintaining stabil-

ity [5]. Further studies into this link between arm swing and gait stability have found conflict-

ing results. Some studies have found decreases in stability when arm swing was prevented

(either by binding the arms or holding them still) as compared to normal swing by analysing

step width variability [10], harmonic ratios [11], and local dynamic stability [8]. Yet, others

found no effect on stability when comparing bound and normal swing using local dynamic sta-

bility [7] and harmonic ratios [11].

Decreases in arm swing amplitude have been found in older adults [12] and people with PD

[13–15]. Simultaneously, while some level of gait variability is common in healthy subjects,

both younger and older [16], increases in gait spatiotemporal variability—often used indica-

tors of gait stability and measured as the standard deviation of step or stride width, length, or

time—are associated with increased fall risk in older adults as well as people with Parkinson’s

disease (PD) [17–20]. It has been previously suggested that deliberately emphasized arm swing

could have a positive effect on trunk stability, and initial results demonstrated improved med-

iolateral trunk stability using harmonic ratios in older adults [11]. Other work has found

increases in local dynamic stability when comparing active arm swing (e.g. increased swing

amplitude) conditions to normal swing [21]. It remains unclear whether consciously increas-

ing arm swing amplitude could have a beneficial aspect on gait stability. It is possible that

increased attentional demands of active arm swing, in switching from largely passive and auto-

matic control to conscious control, may have negative effects on interlimb coordination. Con-

tinuous relative phase (CRP) is a common method used to measure coordination among body

segments [22–24] where interstride variability of CRP is an indicator of the stability of the

coordination pattern [23]. To our knowledge, no previous studies have compared the effects of

normal, held and active arm swing conditions on gait stability within the same population.

A concept from dynamical systems theory, local dynamic stability uses an estimate of the

maximal Lyapunov exponent (MLE), a measure of chaos, to quantify stability where a smaller

MLE represents an increase in stability and a larger MLE represents a decrease in stability.

Dingwell et al. [25] were the first to use the MLE to quantify stability during steady-state gait

and found it to be a more sensitive measure of stability than traditional gait variability mea-

sures when comparing overground walking to walking on treadmills in a population of healthy

young adults [25]. Further studies have supported its use as a measure of stability; van Schoo-

ten et al. [26] demonstrated the feasibility of MLE as an indicator of gait stability by using gal-

vanic vestibular stimulation to reduce the stability of healthy young adults [26]. Looking at the

local dynamic stability of lower limb joint angles [27] and of the trunk velocity [28], research-

ers also reported greater trunk stability with increased walking speed. Finally, older adults

show significant decreases in gait stability compared to young adults when measured with the

MLE [29].

Asymmetry in gait has also been linked to decreases in gait stability. Individuals with patho-

logical gait, such as those with PD, often demonstrate asymmetry of the lower limbs as well as

changes in arm swing amplitude and symmetry when compared to age-matched controls [20].

Studies also link this asymmetric gait pattern to increased risk of falls [30]. In healthy young

adults, asymmetric gait induced via split-belt treadmills is associated with decreased stability

measured using margins of stability [31, 32]. However, the relationship between asymmetry in

the upper and lower limbs and changes in stability is not well understood.

The effects of arm swing amplitude and lower-limb asymmetry on gait stability

PLOS ONE | https://doi.org/10.1371/journal.pone.0218644 December 20, 2019 2 / 14

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0218644


The purpose of this study was to further examine the role of arm swing and lower limb sym-

metry on gait stability in healthy young adults using common gait variability measures (mean

and standard deviation of step length and width) and local dynamic stability. We hypothesized

that active arm swing would lead to greater stability, that asymmetric walking would be less

stable than symmetric walking, and that active arm swing would mitigate stability decreases

caused by asymmetric walking.

Materials and methods

Subjects

An a priori power analysis performed using SigmaPlot 12.5 (Systat Software, San Jose, CA)

indicated that 12 participants would result in adequate statistical power when set at β = 0.8 and

estimated with the local dynamic stability results from Bruijn et al. (2010). To account for pos-

sible attrition, fifteen healthy, young adults (8 male, 23.4 ± 2.8 years (mean ± s.d.); 72.3 ± 13.5

kg; 170.2 ± 8.1 cm) from the Ottawa area were recruited. Subjects were excluded based on the

presence of any recent (< 6 months) musculoskeletal injuries, or any chronic neurological or

orthopaedic disorders that could affect gait. All participants but one (who reported as ambi-

dextrous) self-reported as right handed. The study was carried out in compliance with the Tri-

Council Policy statement; Ethical Conduct for Research Involving humans; The International

Conference on Harmonization—Good Clinical practice: Consolidated Guideline; and the pro-

visions of the Personal Health Information Protection Act 2004. The study was approved by

the Ottawa Health Science Network Research Ethics Board (20170291-01H) as well as by the

University of Ottawa Research Ethics Board (A06-17-03). All subjects gave written, informed

consent prior to participation.

Protocol

A 57 marker set was used to capture kinematic data [33] in the Computer Assisted Rehabilita-

tion Environment (CAREN) (CAREN-Extended, Motekforce Link, Amsterdam, NL) at the

Ottawa Hospital Rehabilitation Centre. The CAREN system combines a 6 degree of freedom

platform with an integrated instrumented split-belt treadmill (Bertec Corp., Columbus, OH)

and a 12 camera Vicon motion capture system (Vicon 2.6, Oxford, UK). Kinematic data was

captured at 100Hz, and kinetic data was collected at 1000Hz. Participants were asked to walk

on the split-belt treadmill at a speed of 1.2 m/s. Each trial had a duration of 200s, and the first

25s of each trial were removed to allow the treadmill to reach the set speed and the participant

to reach a steady-state. The three arm swing conditions were: held, normal, and active. For the

held swing condition, participants were instructed to hold their arms at their sides in a relaxed

manner, without swinging or stiffness. The instructions for the active swing condition were to

swing their arms such that the arm was horizontal when each forward swing peaked. For the

asymmetric walking condition, the right treadmill belt speed was set to 80% of the left side, or

0.96 m/s; a smaller treadmill asymmetry ratio than previous studies was chosen to cause gait

asymmetries while only functioning as a minor continuous perturbation. The combination of

all arm swing and symmetry conditions were randomized for each participant; each condition

was performed once.

Analysis

All data was imported into Visual3D v6 (C-Motion, Germantown, MD) and filtered using a

4th order, zero-lag low-pass Butterworth filter with a cutoff frequency of 12Hz and 10Hz for

the kinematic and kinetic data, respectively. Heel strikes were identified with a logistic

The effects of arm swing amplitude and lower-limb asymmetry on gait stability
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classification model which used ground reaction forces from both force plates and kinematic

data (feet position relative to the pelvis, feet velocity–relative to both the pelvis and the labora-

tory, feet acceleration, and both knee angles); all heel strikes were manually verified and cor-

rected as necessary. Trunk linear and angular velocities, feet centre of mass positions, and left

and right shoulder and hip angles in the sagittal plane were exported from Visual3D and fur-

ther data analyses were done in Julia (v1.0.3) [34] using custom code. All measures were calcu-

lated using 125 strides of data.

Arm swing amplitude was calculated as the average sagittal range of motion of the shoulder

angle to confirm adherence to condition instructions. CRP between contralateral arm-leg

pairs was calculated as recommended by Lamb and Stockl [35] by first centering the amplitude

of shoulder and hip angles, then calculating the phase angle for each signal using the signal

and its Hilbert transform, shown in Eqs (1) and (2). Finally, the CRP was calculated between

the two signals as shown in Eq (3) [35]. CRP calculated with non-sinusoidal signals will vary

across a period, therefore it is necessary to calculate the average of the ensemble standard devi-

ation of CRP, hereafter referred to as MSDCRP, to quantify the stability of coordination pat-

terns as the interstride variability of CRP [22, 35].

Xcentered ¼ X � minðXÞ �
maxðXÞ � minðXÞ

2
ð1Þ

yx ¼ arctan
HðXcenteredÞ

Xcentered

� �

ð2Þ

CRP ¼ yhip � yshoulder ð3Þ

Note that the extrema, min and max, in Eq (1) were the average extrema of the 125 strides

analysed. In Eq (2), H(X) represents the imaginary part of the analytic signal produced by the

Hilbert transform. Circular means and standard deviations were used to reduce the CRP data

to MSDCRP [36].

Average step width and step width variability were calculated as the average and standard

deviation of the mediolateral distance between successive heel strikes. Average step length and

step length variability were calculated as the average and standard deviation of the anteropos-

terior distance between successive heel strikes [18]. Step length metrics were analysed sepa-

rately for each foot. This was necessary to avoid confounding effects in the asymmetric gait

condition, where the left and right steps will naturally have 2 distinct lengths. Left steps are

defined as the left heel strike following a right leg stance; right steps are defined oppositely.

Arm swing asymmetry, and step asymmetry–both temporal and spatial–were calculated as

ln
minðL;RÞ
maxðL;RÞ

� ��
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�� 100 ð4Þ

where L and R are the metrics for the left and right sides, and where a result of zero represents

perfect symmetry [37]. Temporal step asymmetry was calculated using step time, and spatial

step asymmetry was calculated using step length.

Local dynamic stability. Local dynamic stability, measured as the maximum finite time

Lyapunov exponent (MLE), characterizes the average logarithmic divergence of two trajecto-

ries from infinitesimally close initial conditions. The MLE was calculated with Rosenstein’s

method [38] using 125 strides of data interpolated to a length of 12,500 samples for an average

stride length of roughly 100 points [39]. Note that 125 strides were analysed instead of the

more common number of 140 strides because an unacceptable number of trials in the active

The effects of arm swing amplitude and lower-limb asymmetry on gait stability
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swing condition did not contain an adequate number of strides. Data was reconstructed in a

12D state space of the form

X ¼ ½ _xðnÞ _yðnÞ _zðnÞ _yðnÞ _�ðnÞ _cðnÞ _xðnþ tÞ _yðnþ tÞ _zðnþ tÞ _yðnþ tÞ _�ðnþ tÞ _cðnþ tÞ� ð5Þ

using the linear and angular velocity of the trunk and their 25 samples delayed signals [40]. To

account for the differing units, the linear and angular velocities were normalized to unit vari-

ance [41]. Only the “short term” maximum finite time Lyapunov exponent was used, which is

defined as the slope of the divergence curve from 0 to 0.5 strides, inclusive [39, 40].

Statistical analysis

A two-way (Arms×Symmetry, all swing conditions vs. both symmetry conditions) repeated-

measures ANOVA was performed on the following variables: left and right arm swing ampli-

tude, arm swing asymmetry, average right and left step length and width, spatial and temporal

step asymmetry, right and left step length and width variability, and MLE. One outlier was

identified using boxplots in SPSS—which denote outliers as samples 3 times the interquartile

range or more away from the median—and removed for left step length variability and tempo-

ral step asymmetry. A separate two-way (Arms×Symmetry, normal and active swing vs. both

symmetry conditions) repeated-measures ANOVA was performed on MSDCRP for both

arm-leg pairs; MSDCRP in the held condition was not analysed as there was no expectation of

a stable coordination pattern between the motionless arms and leg swing. Significance level

was set a priori at α = 0.05. A Bonferroni correction was used for all post-hoc tests performed.

Assumption of normality was confirmed using a Kolmogorov-Smirnov test and a Green-

house-Geisser p was reported when Mauchly’s Test of Sphericity was violated.

Results

Arm swing range of motion and coordination

Table 1 contains the results of the arm swing range of motion (RoM) and MSDCRP for both

contralateral limb pairs. A significant effect of arm swing was found for the left (F(2, 28) =

387.36, p< .001, Z2
p ¼ :965), and right (F(2, 28) = 362.65, p< .001, Z2

p ¼ :963) swing ampli-

tudes. Treadmill symmetry conditions had no effect on arm swing asymmetry (p> .05)

(Tables 2 and 3).

MSDCRP between the left shoulder and right hip showed a significant effect of arm swing

(F(1, 14) = 8.13, p = .013, Z2
p ¼ :367); the MSDCRP between the right shoulder and left hip

was also significantly affected by arm swing (F(1, 14) = 8.04, p = .013, Z2
p ¼ :365). The

Table 1. Summary of arm swing and contralateral limb coordination.

Arm swing

Symmetry Held Normal Active

Left arm RoM (˚) Symmetric 7.34 ± 2.16 25.9 ± 10.3 95.8 ± 17.3

Asymmetric 7.73 ± 2.37 25.4 ± 7.29 89.5 ± 18.8

Right arm RoM (˚) Symmetric 6.45 ± 2.05 25.3 ± 9.61 95.4 ± 16.1

Asymmetric 6.85 ± 1.75 27.5 ± 8.88 91.1 ± 16.2

MSDCRPleft shoulder, right hip (˚) Symmetric 13.1 ± 11.4 30.8 ± 31.3

Asymmetric 12.1 ± 4.93 29.2 ± 34.6

MSDCRPright shoulder, left hip (˚) Symmetric 13.7 ± 11.9 31.2 ± 31.8

Asymmetric 11.4 ± 3.80 29.5 ± 36.7

https://doi.org/10.1371/journal.pone.0218644.t001

The effects of arm swing amplitude and lower-limb asymmetry on gait stability

PLOS ONE | https://doi.org/10.1371/journal.pone.0218644 December 20, 2019 5 / 14

https://doi.org/10.1371/journal.pone.0218644.t001
https://doi.org/10.1371/journal.pone.0218644


MSDCRP of both contralateral limb pairs showed significant increases from normal to active

swing (p = .013). Neither limb pair was affected by the gait symmetry conditions.

Stability measures

See Tables 3 and 4 for a summary of the significant main effects for the stability measures and

the descriptive statistics. Post-hoc tests showed that the active arm swing had significantly

lower MLE compared to both normal (p = .002) and held (p = .001) swing conditions. Asym-

metric walking had significantly higher MLE than symmetric (p< .001).

Step width variability was increased during active swing compared to both held (p = .001)

and normal (p = .004). Step width increased during split-belt walking conditions (p = .001).

Active swing resulted in increased step length compared to held and normal, respectively, for

the right (p = .002, p = .001), and left (p< .001) sides. Right step length increased during split-

belt walking (p< .001). Active swing also showed increased right step length variability com-

pared to held (p = .002) and normal (p = .003). Asymmetric walking resulted in increased step

length variability compared to symmetric for the left (p = .003) and right (p< .001).

Measures of asymmetry

See Table 2 for a summary of the significant main effects for the measures of asymmetry.

Given the Arms×Symmetry interaction effect in spatial step asymmetry, post-hoc tests showed

Table 2. Summary of asymmetry measures.

Arm swing

Symmetry Held Normal Active

Arm swing asymmetry Symmetric 21.6 ± 18.9 22.1 ± 14.1 9.24 ± 6.96

Asymmetric 23.0 ± 12.8 24.6 ± 26.2 10.9 ± 7.91

Spatial step asymmetry Symmetric 2.88 ± 2.42 3.73 ± 2.31 3.75 ± 2.82

Asymmetric 16.4 ± 6.18 15.9 ± 5.65 13.9 ± 5.69

Temporal step asymmetry Symmetric 3.23 ± 2.19 3.23 ± 2.02 3.63 ± 2.89

Asymmetric 1.94 ± 1.24 1.71 ± 1.46 3.41 ± 2.12

https://doi.org/10.1371/journal.pone.0218644.t002

Table 3. Summary of main and interaction effects.

Main Effect

Arm Swing Symmetry Arm Swing × Symmetry

Arm swing asymmetry F(2, 28) = 5.36, p = .011, Z2
p ¼ :277 n.s. n.s.

Spatial step asymmetry n.s. F(1, 14) = 90.37, p< .001, Z2
p ¼ :866 F(2, 28) = 5.00, p = .014, Z2

p ¼ :263

Temporal step asymmetry� n.s. n.s. n.s.

MLE F(2, 28) = 18.31, p< .001, Z2
p ¼ :567 F(1, 14) = 37.55, p< .001, Z2

p ¼ :728 n.s.

Step width (m) n.s. F(1, 14) = 27.36, p< .001, Z2
p ¼ :661 n.s.

Step width SD† (m) F(2, 28) = 17.16, p< .001, Z2
p ¼ :551 n.s. n.s.

Left step length (m) F(2, 28) = 40.69, p< .001, Z2
p ¼ :744 F(1, 14) = 175.38, p< .001, Z2

p ¼ :926 n.s.

Left step length SD (m) F(2, 26) = 4.95, p = .035, Z2
p ¼ :276 F(1, 13) = 13.42, p = .003, Z2

p ¼ :508 n.s.

Right step length (m) F(2, 28) = 18.05, p< .001, Z2
p ¼ :563 n.s. n.s.

Right step length SD (m) F(2, 28) = 7.70, p = .002, Z2
p ¼ :355 F(1, 14) = 33.07, p< .001, Z2

p ¼ :703 n.s.

n.s. stands for not significant.

�Temporal step asymmetry approached significance for main effects of both arm swing (p = .064) and symmetry (p = .054).
†A main effect of symmetry approached significance for step width SD (p = .064).

https://doi.org/10.1371/journal.pone.0218644.t003
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a significant decrease between the held and active swing conditions only while in the asymmet-

ric walking condition (p = .025), and the split-belt walking was significantly increased from

symmetric gait (p< .001). Arm swing asymmetry was significantly decreased in the active

swing conditions as compared to held (p = .016) and normal (p = .035) swing. Temporal asym-

metry, shown in Fig 1, contained one outlier which was removed, and although it was not

Table 4. Summary of stability related measures.

Arm swing

Symmetry Held Normal Active

MLE Symmetric 0.52 ± 0.03 0.51 ± 0.03 0.49 ± 0.04

Asymmetric 0.59 ± 0.06 0.56 ± 0.05 0.50 ± 0.03

Step width (cm) Symmetric 19.1 ± 3.6 19.2 ± 3.8 19.6 ± 4.4

Asymmetric 20.9 ± 3.6 20.8 ± 4.4 21.0 ± 4.4

Step width SD (cm) Symmetric 1.71 ± 0.45 1.80 ± 0.49 22.7 ± 0.68

Asymmetric 1.67 ± 0.40 1.74 ± 0.40 20.4 ± 0.54

Left step length (cm) Symmetric 62.9 ± 3.9 62.9 ± 3.4 69.2 ± 3.6

Asymmetric 54.6 ± 4.7 55.2 ± 3.3 60.6 ± 4.7

Left step length SD (cm) Symmetric 1.77 ± 0.37 16.0 ± 0.32 23.6 ± 0.54

Asymmetric 2.32 ± 0.77 23.0 ± 0.82 26.9 ± 1.1

Right step length (cm) Symmetric 63.8 ± 3.6 64.6 ± 3.0 69.9 ± 4.9

Asymmetric 64.1 ± 5.1 64.7 ± 3.7 69.3 ± 6.8

Right step length SD (cm) Symmetric 1.94 ± 0.58 1.73 ± 0.27 2.83 ± 0.92

Asymmetric 2.71 ± 0.64 2.81 ± 1.46 3.32 ± 0.84

https://doi.org/10.1371/journal.pone.0218644.t004

Fig 1. Temporal step asymmetry. Error bars are ±SD.

https://doi.org/10.1371/journal.pone.0218644.g001
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statistically significant, a trend towards significance was found for main effects of both arm

swing (p = .064) and symmetry (p = .054).

Discussion

In this study, we examined the influence of changes in arm swing amplitude and lower limb

asymmetry on gait stability using several stability metrics. When compared to both normal

and held arm swings, active arm swing resulted in reduced contralateral limb coordination

and increases in gait variability. However, the active swing also showed improved local

dynamic stability. As for gait asymmetry, split-belt walking resulted in increased gait variability

in spatiotemporal measures and worsened local dynamic stability. Altogether, while the differ-

ence in local dynamic stability between active and normal swings matches our hypothesis that

active swing would improve local stability, it conflicts with both the increased step width and

length variability and the decreased arm-leg coordination. Regarding our hypothesis of asym-

metric gait causing reductions in stability, both local dynamic stability and gait variability

metrics show reduced stability during the split-belt walking conditions. Furthermore, the

increased step variability, worsened local dynamic stability, and reduced coordinative stability

during active arm swing, regardless of gait symmetry condition, does not support our hypothe-

sis that active arm swing would mitigate decreases in stability caused by asymmetric walking.

On the basis of the apparently conflicting behavior between step variability and local

dynamic stability, it is justified to revise the assumption that local dynamic stability and gait

variability metrics are comparably related to stability, when defined as the likelihood of falling,

and often referred to as global stability. While both types of measures have been linked to this

definition of global stability in literature [17, 42, 43], the results here suggest a more nuanced

application and interpretation of these metrics. The improved local dynamic stability at the

cost of increased gait variability demonstrates the importance of local trunk stability as a

movement outcome–the trunk does account for a large proportion of the body mass. However,

the addition of gait variability as a measure of stability complements the trunk local dynamic

stability by providing a direct measure of the base of support which may signal decreases in

global stability and increased risk of falling before the trunk signals reflect decreases in stabil-

ity. Dingwell et al. [44] found precisely this behaviour of a more locally stable trunk despite

increased gait variability, and concluded that local dynamic stability and gait variability must

be distinguished due to the fundamental differences of what they are classifying.

Therefore, the increased local dynamic stability of the trunk is in line with our hypothesis,

increasing arm swing increases stability, if we clarify that stability here refers solely to the local

stability of the trunk, which may change independently of the global stability. What remains

unclear at this time is the cause of this increase in local trunk stability. We suggest two possible

explanations, both of which may contribute to these independent changes in local trunk stabil-

ity. Our initial hypothesis regarding increased arm swing, was primarily directed from a phys-

ics-based perspective, where increases in arm swing result in increases in angular momentum,

thereby increasing the trunk’s resistance to change [45]. In this case, it is possible that the

increased local stability from the greater angular momentum of the arms outweighs any

decreases in arm swing coordination and increases in step variability. However, it is also possi-

ble that the more variable, or dynamic, nature of the base of support also contributed to a

more locally stable trunk, but this would be difficult to confirm. A simulation study would be

best suited to investigate this, however, it seems likely that replicating the behaviour seen here

would require a model that actually demonstrates chaotic behaviour (i.e. the model can be

mathematically represented as a dynamical system), as opposed to previously used passive

dynamic walker models [43, 46].

The effects of arm swing amplitude and lower-limb asymmetry on gait stability

PLOS ONE | https://doi.org/10.1371/journal.pone.0218644 December 20, 2019 8 / 14

https://doi.org/10.1371/journal.pone.0218644


With respect to the gait variability measures, we attribute the increase in gait variability

between active swing and the other two conditions primarily to the decrease in inter-limb

coordination. Decreased inter-limb coordination during active swing is also visible in a trend

towards increased temporal step asymmetry when compared to normal swing. Large variabil-

ity in the temporal asymmetry (Fig 1) contributed to inadequate power to detect an interaction

effect; post-hoc power analysis using G�Power indicated more than 30 participants would be

required to achieve sufficient power to confirm this interaction. The decrease in coordination

during active arm swing is likely due to increased conscious control (i.e. dual tasking) of arm

swing. Active arm swing acting as a dual-task could also contribute to the increased gait vari-

ability. This behaviour would be in line with the results of McFadyen et al. [47] who found

changes in double support proportion and variation under the combined challenge of split-

belt walking and a dual-task. However, while the negative effect of dual-tasking on stability is

well established in impaired populations [48, 49], this negative effect is not as well supported

in young adults studied here [48, 50], and the design of this study is not appropriate to resolve

this question.

Whatever the cause of the increased gait variability during active arm swing, the physical

challenge of maintaining stability must also increase with more variable steps as larger gait var-

iability represents a continuous minor perturbation to gait. It remains to be seen if more mod-

erate increases in arm swing amplitude could succeed, or if prior training with this level of

swing amplitude could mitigate any affect of dual-tasking or coordination issues. Further stud-

ies which include a continuum of arm swing amplitudes would be also insightful as to the rela-

tionship between swing amplitude and stability, and whether there may be a transition point

beyond which increased swing amplitude decreases stability.

Regarding the effects of the split-belt walking, the induced asymmetric gait reduced gait sta-

bility as expected by increasing step length and width variability as well as reducing the trunk

local dynamic stability. The spatial step length asymmetry was dramatically increased by the

split-belt walking also as expected, while the temporal step asymmetry and arm swing symme-

try were unchanged. The results of temporal symmetry in the lower limbs during split-belt

walking agree with past research by Malone et al. [51] which showed that both temporal and

spatial asymmetry adapts to split-belt walking, and other studies showing that asymmetric gait

requires more precise timing of gait patterns (i.e. temporal asymmetry should remain roughly

the same or improve) [52, 53]. In our results, the trend towards improved temporal asymmetry

in the held and normal swing conditions supports the previous results. The interaction

between arm swing and split-belt walking for spatial asymmetry arose because the relative dif-

ference in step lengths between left and right sides for the held and active swing conditions

remained the same—6cm—despite both step lengths increasing, which reduced the relative

spatial asymmetry. Note that the spatial asymmetry calculated here differs from that used by

Malone et al. [51] and does not necessarily conflict with previous results regarding spatial

adaptation. The unchanged arm swing symmetry between symmetric and asymmetric gait is

also in line with a previous study on upper and lower limb coordination during asymmetric

gait which found that upper limb movements maintain symmetry and follow the rhythm of

the fastest leg, even during increasingly asymmetric gait [53].

While it is possible that the decreased stability during the split-belt walking is due to the

novelty, acting as a dual-task, previous research indicates that this is improbable [51, 52].

Indeed, Dietz et al. [54] saw adaptations to inter-limb coordination in 10-20 strides during

split-belt walking across multiple split-belt speed ratios, and Reisman et al. [52] showed rapid

changes to single limb characteristics, again across multiple speed ratios. Despite the adaptabil-

ity of multiple aspects of gait (including some measures of gait stability), some studies suggest

that not all characteristics of gait stability can adapt to long-term split-belt walking [31, 32]. A
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thorough investigation on gait stability in adults familiar with split-belt walking could confirm

the likely destabilizing effects of asymmetric gait.

In addition, healthy older adults have been shown to have reduced adaptation to asymmet-

ric gait than healthy young adults [55]. Similarly, people with PD have demonstrated worse

adaptability than age-matched controls [56]. While not the only population suffering from

asymmetric gait, people with PD are one example of those who demonstrate a pathological

gait with clear changes in arm swing amplitude and symmetry, and gait asymmetry when com-

pared to age-matched controls, while also showing decreased stability (i.e. increased risk of

falls) [24, 57, 58]. Our results suggest that deficits in stability may be linked to the decreases in

gait symmetry rather than decreases in arm swing symmetry. Future work involving both

induced asymmetric gait and asymmetric arm swing and their effects on stability could clarify

the relative contributions of each towards gait stability.

Limitations

A primary limitation of this study is that there were an insufficient number of participants to

achieve adequate power to detect an interaction effect in the temporal step asymmetry. Also, it

is important to note that populations with greater heterogeneity, such as people with Parkin-

son’s disease, would similarly require larger numbers of participants. Additionally, while the

variables and metrics used in the present study were appropriate to resolve our hypotheses, the

inclusion of other stability metrics, such as extrapolated center of mass, or analyses of angular

momentum could offer complementary insights to the results of this study.

Conclusion

In conclusion, decreased arm swing was not negatively affected in any stability metric analyzed

here, and although increased arm swing showed improved trunk local dynamic stability,

simultaneous increases in gait variability metrics suggest that local dynamic stability should

not be treated as precisely analogous to standard gait variability variables due to the fundamen-

tal differences of what and how they characterize stability. The larger gait variability also sug-

gests that actively increasing arm swing amplitude requires an observable level of attentional

demand in healthy young adults. Therefore, it would be interesting to repeat this protocol in

populations with postural stability deficits, particularly in those with asymmetric gait pattern.

As well, increases in lower, but not upper, limb asymmetry along with decreases in all stability

metrics during split-belt walking indicate that the corresponding decreases in gait stability for

asymmetric gaits are likely linked to the increased lower limb asymmetry–a finding relevant to

pathological gaits with marked upper and lower limb asymmetries as well as decreased global

stability.
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