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Abstract
Species distribution models are widely used for stream bioassessment, estimating changes

in habitat suitability and identifying conservation priorities. We tested the accuracy of three

modelling strategies (single species ensemble, multi-species response and community clas-

sification models) to predict fish assemblages at reference stream segments in coastal sub-

tropical Australia. We aimed to evaluate eachmodelling strategy for consistency of predictor

variable selection; determine which strategy is most suitable for stream bioassessment using

fish indicators; and appraise which strategies best match other streammanagement applica-

tions. Five models, one single species ensemble, two multi-species response and two com-

munity classification models, were calibrated using fish species presence-absence data from

103 reference sites. Models were evaluated for generality and transferability through space

and time using four external reference site datasets. Elevation and catchment slope were

consistently identified as key correlates of fish assemblage composition among models. The

community classification models had high omission error rates and contributed fewer taxa to

the ‘expected’ component of the taxonomic completeness (O/E50) index than the other strate-

gies. This potentially decreases the model sensitivity for site impact assessment. The ensem-

ble model accurately and precisely modelled O/E50 for the training data, but produced biased

predictions for the external datasets. The multi-species responsemodels afforded relatively

high accuracy and precision coupled with low bias across external datasets and had lower

taxa omission rates than the community classification models. They inherently included rare,

but predictable species while excluding species that were poorly modelled among all strate-

gies. We suggest that the multi-species response modelling strategy is most suited to bioas-

sessment using freshwater fish assemblages in our study area. At the species level, the

ensemble model exhibited high sensitivity without reductions in specificity, relative to the

other models. We suggest that this strategy is well suited to other non-bioassessment stream

management applications, e.g., identifying priority areas for species conservation.

PLOS ONE | DOI:10.1371/journal.pone.0146728 January 12, 2016 1 / 23

OPEN ACCESS

Citation: Rose PM, Kennard MJ, Moffatt DB,
Sheldon F, Butler GL (2016) Testing Three Species
Distribution Modelling Strategies to Define Fish
Assemblage Reference Conditions for Stream
Bioassessment and Related Applications. PLoS ONE
11(1): e0146728. doi:10.1371/journal.pone.0146728

Editor: Vincent Laudet, Ecole normale superieure de
Lyon, FRANCE

Received: June 18, 2015

Accepted: December 20, 2015

Published: January 12, 2016

Copyright: © 2016 Rose et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: PMR was funded by an Australian
Postgraduate Award scholarship.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0146728&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction
Species distribution models (SDMs) are widely used for stream bioassessment, estimating
changes in habitat suitability and identifying conservation priorities, and the accuracy of these
models is critical for guiding effective stream management decisions. SDMs relate known spe-
cies occurrences to landscape, climate and habitat variables to predict species occurrence prob-
abilities across the landscape or river network [1, 2]. SDMs are used for several important
stream management applications, most commonly the prediction of reference assemblages for
bioassessment [3, 4, 5], but also for quantifying species-environment relationships to inform
management [6, 7]; assessing assemblage changes under different land use patterns [8]; pre-
dicting responses to future climate or restoration scenarios [7,9]; mapping aquatic biodiversity
and identifying species conservation priorities [10, 11, 12]; predicting the invasion potential of
alien or translocated species [13, 14, 15]; and identifying remnant populations and uncovering
species range extensions or gaps [16].

Stream bioassessment using SDMs usually relies on a reference condition approach,
whereby the taxa observed at a test site are compared to modelled taxa predicted to occur at an
environmentally similar site, derived from a regional pool of minimally impacted sites [3,4,5].
Both the quality and representativeness of selected reference sites and the modelling strategy
applied can affect the success of bioassessment using the reference condition approach [5, 16].
The present study focusses on the effectiveness of different modelling strategies for stream
bioassessment and complementary management applications.

Three modelling strategies are widely used for predicting species distributions, each reflect-
ing different theories about how assemblages are structured, and each having strengths and
weaknesses in their implementation. The River Invertebrate Prediction and Classification Sys-
tem (RIVPACS) community modelling approach is the most widely used strategy for stream
bioassessment [3, 17]. RIVPACS is an ‘assemble then predict’ strategy [18] and relies on a clas-
sification step which is most often undertaken using discriminant function analysis (DFA).
The need to classify biotic data into discrete assemblages has been perceived by some as an arti-
ficial construct, because these rarely occur in nature [19, 20]. In the RIVPACS approach, taxa
predictions at new sites are not derived from a single predefined assemblage; instead, the pre-
diction system uses weighted average smoothing across groups to predict the biotic assemblage
at sites intermediate in character to those on which the model is derived [21]. This enables
RIVPACS models to predict taxa across a continuum of ‘stream types’. Perceived drawbacks
include its relatively strict statistical assumptions and multiple steps and decisions involved
with the classification procedure [22]; reduced ability to model complex, non-linear ecological
data; and that individualistic species responses to key environmental gradients are not able to
be directly modelled [20]. A recent advance to overcome some statistical limitations of DFA in
RIVPACS models is the use of more flexible machine learning (ML) algorithms for the classifi-
cation step (e.g. random forest–see [23]). Recently however, other less restrictive strategies
have been explored for predicting aquatic taxa, falling broadly into either the category of ‘pre-
dict then assemble’, also termed single species models (e.g. [17, 21]), or ‘predict and assemble
together’, also termed multi-species response models [16, 20, 24, 25].

The ‘predict then assemble’ strategy involves individually modelling each species and
assembling them to synthesize a community at a site. The basis for single species SDMs is
grounded in ecological niche theory [26] and usually relies solely on autecological correlative
relationships. This strategy allows selection of the best suite of predictor variables relevant to
each species [27], rather than those that provide the best average response over an entire
assemblage. Alongside traditional logistic regression, a large number of ML algorithms have
been used to model individual species distributions and these are advantageous through their
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flexibility (e.g. ability to fit non-linear functions; automatically fit interactions) and ability to
model complex data responses. Furthermore, combining predictions of several of the most
accurate models across different algorithms (ensemble models–[28, 29]) may result in more
accurate predictions when applied to external validation datasets [30, 31]. The use of ensemble
models in aquatic studies is recent, and while this approach has been used to model freshwater
taxa under climate change scenarios [32], conservation and stream bioassessment applications
are rare (but see [33, 34]). A potential drawback of the ‘predict then assemble’ strategy is that
co-occurrence data is not explicitly used in the modelling process and therefore the potential
influence of biotic interactions (e.g. via competitors, predators, prey, parasites) is not inherently
included [35]. A practical limitation is that it can be laborious to separately model each species,
particularly for taxa rich groups (e.g. macroinvertebrates, phytoplankton). Although with
advances in statistical software, this is becoming less of a constraint.

The third strategy, ‘predict and assemble together’ reflects the theory that communities
assemble with elements of both discrete community and individualistic species responses to
environmental gradients [20]. Multivariate adaptive regression splines (MARS) and multire-
sponse artificial neural networks (MANN) are two methods that reflect this view and both
predict an entire assemblage in a single analysis. Some researchers have reported that multi-
species response strategies more accurately model rare species because they can ‘borrow’ infor-
mation from the species-environment relationships of more widespread species [25], while
others have found no increase in accuracy or transferability [36, 37]. By constraining selection
of variables to those that have a community signal, multi-species response models potentially
produce more realistic predictor response curves than their single species ML model counter-
parts, which often have pronounced discontinuities [36].

SDMs are commonly used to identify important environmental determinants of species dis-
tributions by assessing the relative importance of predictor variables and examining the species
response curves in partial plots of selected predictor variables [38]. However, apparent species-
environment relationships may differ depending on the modelling method used [39]. By
assessing differences in variable importance among competing modelling strategies, variables
likely to be truly important can be distinguished from those selected due to model idiosyncrasy.
Furthermore, because model applications that assess species range changes require spatially
continuous data, it is useful to assess the importance of field derived habitat variables, and
whether these markedly improve model accuracy compared with GIS-based variables alone
[40].

The generality (or transferability) of species-environment relationships within an assess-
ment area is also important for bioassessment. In practice, these relationships might not trans-
fer to different spatial or temporal settings either due to model over-fitting (e.g. excessive
parameters with weak correlation to the response variable or fitting the training data to a nar-
row set of environmental conditions) or model under-fitting, that is, not including key envi-
ronmental variables in the model [6, 37]. In bioassessment, predictions at new sites need to be
accurate so that index results reflect anthropogenic disturbance rather than model error. Fur-
thermore, it is important to quantify the stability of predictions through time to assess whether
comparable site assessments can be made among seasons and years (e.g. [5]). Finally, different
sampling protocols are used in different jurisdictions, and it is instructive to see whether model
predictions are transferable to samples collected using different methods, and thus more widely
applicable. Because different modelling strategies may be prone to over- or under-fitting train-
ing data, thorough external model validation in different spatial and temporal contexts is
required.

Studies comparing the performance of different SDM algorithms are now fairly common
(e.g. [1, 41]). However, very few investigations have focussed on the predictive success of the
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three broadly different modelling strategies previously identified specifically for stream bioas-
sessment (but see [20]). Moreover, there is a paucity of studies that explore the implications of
employing these strategies and their method of evaluation to the range of potentially useful
applications for stream management [16]. Different evaluation measures highlight the advan-
tages and drawbacks of modelling strategies for different intended applications (2, 16]. Ideally,
SDMs have low omission and commission error rates (i.e. high sensitivity and specificity
respectively); however, these errors are usually a trade-off. Depending on the intended model
use, and costs associated with making incorrect decisions, preferences will be either to balance
these errors, or favour one or the other [2]. For example, a model that balances omission and
commission errors may be well suited to stream bioassessment, while an alternative model that
exhibits high sensitivity (i.e. correctly predicted presence) with some minimum criteria for
specificity (correctly predicted absences) may be more useful for identifying suitable areas for
re-stocking a species. This is because the model would highlight areas where a species could be
(i.e. maximising potentially suitable habitat), rather than where it is presently observed [2].
The emergence of broad scale stream bioassessment programs has resulted in large collections
of aquatic species distribution data that may have applications beyond the purpose for which
they were originally intended. Comprehensive evaluation of modelling strategies has potential
to shift bioassessment programs beyond ‘first-cut’ river health assessments by improving the
sensitivity of biotic indices to detecting anthropogenic impacts and by making undervalued
monitoring data more widely applicable.

This current study uses fish assemblage data collected at least disturbed reference sites for
the Ecosystem Health Monitoring Program (EHMP) (see [42]), to evaluate the accuracy and
potential utility of three different modelling strategies (single species, multi-species response,
and community classification) for stream bioassessment and other model applications for
stream management. Specifically, it aims to: (1) explore species-environment relationships and
evaluate consistency of predictor selection among strategies; (2) assess whether the addition of
field derived variables to GIS-based variables significantly improves model accuracy; (3) deter-
mine which strategy is best suited to stream bioassessment programs using fish indicators and
a reference condition approach by externally evaluating model performance in space and time;
and (4) appraise which strategies may be suited to other applications that can be used to com-
plement bioassessment programs (e.g. conservation reserve design, assessing species range
changes under climate scenarios, identification of suitable re-stocking sites).

Materials and Methods

Study area
The study area includes streams in sub-tropical eastern Australia extending from the Mary
River Basin in south eastern Queensland (SEQ), to the Clarence River Basin in north eastern
New South Wales (NEN), Australia, and spans an area of approximately 64,000 km2 (Fig 1). It
occurs within the eastern biogeographic province [43], and represents a transitional zone for
tropical and temperate fish species [44]. The climate ranges from cool-temperate near the
Great Dividing Range on the western margin to sub-tropical along the eastern coastal margin.
Rainfall and stream flows are generally highest during summer and autumn, although many of
the streams exhibit highly variable flow, both seasonally and inter-annually [45]. The area con-
tains several vegetation types including: subtropical; warm and temperate rainforest; wet and
dry sclerophyll forest; tableland and dry valley woodlands; and coastal ‘wallum’ (Banksia spp.)
heaths [46]. Key land uses in the region include cattle grazing and cropping, large tracts of
urban and industrial development, managed and plantation forests and a range of intensive
plant and animal industries. Consequently, many streams in the study area have degraded
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water quality, in-stream habitat and riparian condition. As indicted by spatial patterns in River
Disturbance Index scores ([47]; Fig 1), the central and northern section of the study area con-
tains large urbanised areas and has a greater number of regulated stream sections and anthro-
pogenic barriers to fish passage than does the southern section (see [48] for more information
on the environmental characteristics of the study area).

Site selection, sampling methods and datasets
Fish assemblages were sampled at 128 least disturbed reference sites (Fig 1; see [48] for details)
in the post wet season (autumn/winter) of 2013 using a standardised single pass backpack elec-
trofishing protocol ([49]; mean stream length of 98m), which yields reliable estimates of species
presence-absence at each site. Fish sampling was carried out under Animal Ethics permits
(Department of Agriculture and Fisheries Permit SA 2012/11/393; and Griffith University Ani-
mal Ethics Permit ENV/04/12/AEC). The study area received average rainfall during the
autumn/winter sampling period, following a wetter than average summer. The study area had
a reasonable spatial coverage of sampling sites except for the Brisbane River Basin upstream of
Wivenhoe Dam, owing to the lack of reference quality sites in this area (Fig 1). Data from 103
sites (80% random subset) were used to train the models (hereafter termed ‘training’ dataset–
see Fig 1) and data from the remaining 25 sites (20%) were used as external model evaluation
(‘space’ dataset–Fig 1).

Three additional datasets were sourced to externally evaluate model generality through
space and time. The first dataset consisted of fish catch from 79 of the 128 previously described
SEQ sites, sampled in the pre-wet season (spring/summer) of 2012 (‘season’ dataset). Use of
that data enabled assessment of whether seasonality markedly affected predictions, and from a
bioassessment perspective, whether a seasonal sampling window is required for data collection
at test sites. The second dataset contained 23 sites from SEQ corresponding to those from the
training dataset, sampled biannually between 2003 and 2011 (‘time’ dataset–Fig 1) (n = 331).
Note that not every site was sampled each season owing to sampling constraints (e.g. depth too
great to sample effectively). This allowed assessment of the stability of predictions through
time and therefore whether valid comparisons can be made at test sites in the future (i.e. does
the benchmark markedly fluctuate with antecedent conditions?). The third dataset contained
33 sites from NEN drawn from the New South Wales Department of Primary Industries fresh-
water fish database [50] that had been sampled with a single pass electrofishing (backpack or
boat) and bait trapping method (‘Method’ dataset–Fig 1). This enabled assessment of whether
the model predictions are transferable to samples collected with a different fish sampling proto-
col, acknowledging that these samples were also collected over a number of seasons and years.
The first four datasets (training, space, season and time) were all sampled using a consistent
standardised single pass electrofishing protocol [49].

Fish data
Fish catch data were converted to species presence-absence, and alien and estuarine vagrant
species were removed. Species occurring at only one site in the training dataset were also
removed, as these could not be modelled by all of the methods. The final training dataset con-
sisted of 25 native species with prevalence among sites ranging from 3% (Ophisternon sp.) to

Fig 1. Reference site locations for each dataset used, andmajor river systems in the study area. The river disturbance index (RDI–see [47] for details
of its derivation) provides context for the ‘least disturbed’ reference sites; low RDI values indicate low levels of human pressures in the upstream catchment.
Note that the season dataset is represented by all ‘training’ sites in the SEQ section of the study area.

doi:10.1371/journal.pone.0146728.g001
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95% (Anguilla reinhardtii), with a mean (± SD) fish species richness of 6.5 (±2.8) per site
(S1 Table).

Predictor variables
Twenty-three ecologically relevant predictor variables representing four different spatial scales
were selected from a larger list of candidate variables (see S2 Table) as input to modelling. Can-
didate variables were chosen on the basis of prior research in the region [5, 6, 51]. Variables
were excluded if they had missing values or they were highly correlated (absolute Pearson
r>0.8). For highly correlated variable pairs, we decided which variable to omit on the basis of
which we believed would have a more direct influence on fish assemblages. Twenty variables
were GIS-based, and represented three spatial scales: (1) the stream segment and associated
sub-catchment, (2) the downstream flow path and (3) the upstream catchment (see [52] for
details). The remaining three site-scale predictors; stream width, depth and flow velocity, were
measured at each sampling site using standard EHMP methods [49] to form part of the train-
ing, space, and season datasets. With these datasets, fish assemblages were modelled with and
without the site-scale environmental variables measured in the field to determine whether
inclusion of these variables significantly increased model performance. Eight variables were
transformed to meet the assumption of a normal distribution required by some models (e.g.
DFA) (see S2 Table).

Model fitting
Single species ensemble model (ENS). Predictive models were constructed and mapped

to the relevant portion of the stream network of Stein et al. [52], which consisted of 10,928
stream segments with Strahler stream order>1. Stream segments were defined as the length of
stream between two confluences (mapped at 1:250000 resolution), and were typically 2-3km in
length. First order stream segments, which were not considered in this study, had an average
upstream catchment area of 3.5km2. Five types of commonly used single species models were
selected to generate a single ensemble model for each species using the BIOMOD package [29]
in R (version 2.13.1, Foundation for Statistical Computing: Vienna, Austria). The models used
were: generalised linear models (GLM), random forest (RF), boosted regression trees (GBM),
artificial neural networks (ANN) and multivariate adaptive regression splines (MARS). Param-
eter settings used for each model were the default in the BIOMOD package. Models were
trained using 80% of the ‘training’ dataset and k-fold cross validated (k = 5) using the remain-
ing 20%. This process was repeated 10 times for each modelling algorithm, using a randomised
80/20% allocation of sites each time, resulting in 50 candidate models per species for ensemble
modelling. Only cross-validated models were retained for the ensemble model, that is, the full
model was not considered. The true skill statistic (TSS) was used as the criterion for model
retention. TSS equals the sensitivity + specificity– 1 [53]. Models were retained if the TSS>0.8,
except where no candidate models met this criterion, in which case, TSS> 0.7 was used. The
retained models were combined into a single ensemble model for each species by calculating
the arithmetic mean of prediction probabilities. We chose this method as it has been shown to
provide more robust predictions than single models and most other consensus techniques [28].

Multi-species response models (MARS and MANN). Two multi-species response models
were generated. These models use an input matrix containing all species, and make predictions
in a single analysis. The first was a multivariate adaptive regression splines (MARS) multire-
sponse model [54] and was fitted using custom R scripts [55] and themda package [56]. First
order interactions were allowed, and a penalty value of 2 was selected to avoid over-fitting (this
parameter penalises degrees of freedom). Other penalty values (0.5, 1, 1.5 and 2.5) were trialled
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but these model iterations were less successful, as assessed by the mean cross-validated species
area under curve of the receiving operator characteristics plot (AUC), and are not reported on
further.

The second multi-species response model generated was a single hidden-layer feed-forward
multirepsonse artificial neural network (MANN), model fit using the nnet package in R [57].
Initially, the performance of different network structures was evaluated using a range of hidden
nodes (0–20) and decay weights to optimise the model and prevent over-fitting [57]. The
best structure, selected using the highest mean cross-validated species AUC, contained seven
hidden nodes and a decay weight of 0.03. Because neural network predictions can differ for dif-
ferent model iterations owing to the assignment of initial random parameter weights, we gener-
ated 10 MANNmodels, with the best fit (evaluated by mean species AUC) retained as the final
model. An ensemble MANN was also trialled by retaining the five best models (evaluated by
mean species AUC) and calculating the arithmetic mean of probabilities of occurrence; how-
ever, this model did not perform as well as the ‘best’ individual model, and is not reported on
further.

RIVPACS community-type models (DFA and RF). Two RIVPACS community-type
models were constructed. This procedure uses an initial step that classifies the biota into assem-
blage groups (see [3] for a detailed description of the general modelling procedure). Firstly,
Sørensen’s dissimilarity was calculated from the species by site matrix, and sites were clustered
using the flexible unweighted pair group method with arithmetic mean (β = -0.6). Six assem-
blage groups were identified visually from the resultant cluster (see S1 Fig). Secondly, two clas-
sifiers were used to predict the group membership of sites, one using a traditional approach
(DFA classifier selected using stepwise backwards elimination with Akaike’s information crite-
rion), and the second using a random forest classifier (RF; [58]). Thirdly, occurrence probabili-
ties for each species at each site were calculated by multiplying the site probability of group
membership by the species frequency of occurrence for each group, then summing the prod-
ucts across assemblage groups. The underlying group classification was the same for each
model. Both models were constructed using custom R scripts [23].

Relative importance of predictor variables
Methods for assessing predictor variable importance were model specific. Single species ensem-
ble models were assessed by a permutation approach (see [29]). The MARS multi-species
response model was assessed using the loss of deviance explained when the variable under con-
sideration was omitted [54]. The MANNmodel was assessed using the connection-weight
approach [20]. The RIVPACS DFA model was assessed using F-to-remove statistic associated
with the partial Wilk’s lambda for the variable under consideration (e.g. [59]) The RIVPACS
RF model was assessed using mean decrease in the Gini index [60]. To enable comparison
among models, the average rank importance of retained predictors was used.

Model evaluation
The match between the predicted and observed assemblage composition was evaluated using
two metrics: the taxonomic completeness index (the ratio of observed to expected species) at a
cut-off threshold of 0.5 (O/E50), and the Bray-Curtis dissimilarity index [61] (Table 1). For O/
E50, the number of expected species is calculated as the sum of species probabilities>0.5. We
selected 0.5 as the cut-off as it is the most commonly used threshold for stream bioassessment.
For the Bray-Curtis index, all species were included (i.e. a cut-off threshold of 0).

Model performance was evaluated for each species and dataset using several common SDM
evaluation statistics (described in Table 1) generated with the SDMTools package in R [62]. For
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threshold dependant metrics, 0.5 was again used as the occurrence probability cut-off thresh-
old. One-way analysis of variance (ANOVA) and Tukey’s honestly significant difference tests
were used to determine if each evaluation metric significantly differed among each of the five
models and datasets. To gain insight into the consistency of spatial predictions of each model,
we mapped the occurrence predictions of a high prevalence species (Melanotaenia duboulayi)
and a low prevalence species (Hypseleotris klunzingeri).

Results

Consistency of predictor variable selection among modelling strategies
Stream elevation was the most influential predictor of fish assemblages, followed by the slope
of the upstream catchment, distance to the sea, and mean annual runoff (Table 2). Stream ele-
vation and catchment slope were the only two predictors selected by every model, and the for-
mer was ranked as the most important variable by all models except for the RIVPACS DFA.
The eight candidate catchment geology variables were all ranked amongst the 10 least impor-
tant predictors. The models were relatively consistent in predictor variable selection, although
the RIVPACS DFA modelling process selected stream temperature in the hottest month and %
unconsolidated geology in the upstream catchment as the two most important variables,
whereas these variables were not ranked highly for the remaining models.

Performance of models with and without field-derived predictors
Predictive accuracy, as assessed by mean species AUC, did not significantly differ between
models calibrated using GIS-derived predictor variables and those with the addition of field
derived predictors for any of the modelling strategies (p<0.05 for all one-way ANOVAs)
(Table 3). Further, none of the 25 species exhibited consistent improvement in AUC with the
addition of field derived variables. Given the overall lack of differences, the remainder of the
results section relates to the models derived with GIS-derived predictors only.

Table 1. Metrics used to evaluate model performance at species and assemblage levels.

Code Metric Description

Species level metrics

AUC Area under curve of the receiving operator
characteristics plot

Ranges from 0.5 to 1; Higher values indicate a better fit

Se Sensitivity Correct prediction of presence (ranges from 0 to 1; 1 indicates perfect prediction)

Sp Specificity Correct prediction of absence (ranges from 0 to 1; 1 indicates perfect prediction)

K Cohen's Kappa Generally ranges from 0 to 1; higher values indicate a better fit

CCR Correct Classification Rate Proportion of sites correctly classified as either present or absent

Assemblage level metrics

Mean O/E Mean of O/E index Indicates model accuracy

Bandwidth 90th percentile minus 10th percentile of O/E index Estimate of model precision; used to develop 'bands' of impairment

r2 Pearson r-squared regression coefficient of O vs E Model goodness of fit

SD Standard deviation of O/E index Estimate of model precision

Slope Slope of the linear regression of O vs E Indicative of model bias (e.g. slope <1 indicates underestimation of richness at
diverse sites)

Intercept Y-intercept of linear regression of O vs E Indicative of model bias

BC Bray-Curtis dissimilarity index Dissimilarity between forecast and observed community (i.e. lower is better)

SD BC Standard deviation of the BC index Estimate of BC model precision

doi:10.1371/journal.pone.0146728.t001
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Accuracy of assemblage composition prediction among modelling
strategies
Ensemble models were superior to other modelling strategies across most O/E50 evaluation
metrics when applied to the training dataset; and generally produced the most precise O/E50
estimates across all datasets as indicated by low standard deviation and narrow bandwidths
(Table 4). However, mean O/E50 and regression slope were consistently<1 when applied to
the external datasets implying model bias (i.e. overestimating expected species, particularly for
sites with high species richness). The ensemble model also performed poorly for the ‘space’
dataset, driven by a few outlying sites (e.g. O/E50 of 0 for a high elevation site in NEN).

The multi-species response and RIVPACS models had similar accuracy (mean O/E50 and
r2) and bias (slope and intercept) across all datasets; however precision (bandwidth and stan-
dard deviation) was usually better for the multi-species response models. The RIVPACS mod-
els were conservative in including taxa at a 0.5 threshold (e.g. total of nine species were
potentially predicted to occur for the training dataset) in comparison to MANN and MARS
multirepsonse models (16 and 18 species, respectively) and the ensemble models (all 25 spe-
cies). For example, the two RIVPACS models did not predictHypseleotris klunzingeri, a low
prevalence species (18% in the training dataset), to occur at all (Fig 2A). This species is effec-
tively ignored in the O/E50 index, even though it has a highly predictable distribution, as indi-
cated by a mean AUC of 0.9 for the ensemble model (Table 1).

Table 2. Ranking of GIS-based predictor variable importance for predicting fish assemblage composition for eachmodelling strategy (1 indicates
the most important variable).

Modelling strategy

Predictor ENS DFA RF MARS MANN Average

Mean segment elevation 1 6 1 1 1 2.0

Catchment average slope 3 3 3 2 6 3.4

Distance to outlet (the sea) 6 7 2 - 3 4.5

Mean annual runoff 2 5 9 - 2 4.5

Catchment shape (elongation ratio) 5 4 7 - 4 5.0

Maximum upstream elevation 4 - 4 - 12 6.7

Stream and sub-catchment average annual rainfall 7 - 8 - 5 6.7

Stream and sub-catchment hottest month mean temperature 12 1 6 - 9 7.0

Average slope of downstream flow path 9 - 10 - 7 8.7

Catchment relief ratio 8 - 5 - 13 8.7

Catchment percentage unconsolidated rocks 16 2 14 - 10 10.5

Catchment percentage igneous rocks 10 - 13 - 14 12.3

Modelled annual terrestrial mean net primary productivity 17 - 12 - 8 12.3

Coefficient of variation of monthly totals of accumulated soil water surplus 11 - 11 - 17 13.0

Stream and valley percentage siliciclastic/undifferentiated sedimentary rocks 13 - 15 - 11 13.0

Stream and valley percentage unconsolidated rocks 15 - 16 - 15 15.3

Catchment percentage metamorphic rocks 14 - 17 - 19 16.7

Stream and valley percentage metamorphic rocks 18 - 19 - 18 18.3

Stream and valley percentage mixed sedimentary and igneous rocks 20 - 20 - 16 18.7

Catchment percentage mixed sedimentary and igneous rocks 19 - 18 - 20 19.0

See S2 Table for predictor variable descriptions. ENS–Single species ensemble model; DFA–RIVPACS community model using a discriminant function

classifier; RF–RIVPACS model using a random forest classifier; MARS–Multi-species response multivariate adaptive regression splines model; MANN–

Multi-species response artificial neural network model.

doi:10.1371/journal.pone.0146728.t002
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Table 3. AUC averaged among species using (i) all predictor variables and (ii) GIS-based predictors alone, for three datasets.

Model Variables Training (n = 103) Space (n = 25) Season (n = 79) Average

ENS All variables 0.99 0.81 0.86 0.89

GIS only 0.99 0.82 0.85 0.89

DFA All variables 0.82 0.77 0.80 0.80

GIS only 0.81 0.76 0.79 0.79

RF All variables 0.86 0.81 0.78 0.82

GIS only 0.86 0.80 0.79 0.82

MARS All variables 0.85 0.84 0.83 0.84

GIS only 0.85 0.78 0.83 0.82

MANN All variables 0.86 0.77 0.74 0.79

GIS only 0.86 0.76 0.80 0.81

No significant differences (at p<0.05) were detected between (i) and (ii) for any model/dataset combination, assessed by one-way ANOVAs. ENS–Single

species ensemble model; DFA–RIVPACS community model using a discriminant function classifier; RF–RIVPACS model using a random forest classifier;

MARS–Multi-species response multivariate adaptive regression splines model; MANN–Multi-species response artificial neural network model.

doi:10.1371/journal.pone.0146728.t003

Table 4. Assemblage level model evaluation metrics typically used to assessmodel quality for stream bioassessment for eachmodel and dataset.

Dataset Model Mean O/E50 SD O/E50 Band width O/E50 r2 O/E50 Slope O/E50 Intercept O/E50 Mean BC SD BC

Training ENS 1.08 0.13 0.33 0.95 1.11 -0.14 0.20 0.10
(n = 103) DFA 1.03 0.29 0.71 0.61 1.06 -0.09 0.42 0.10

RF 1.05 0.32 0.61 0.74 1.15 -0.35 0.42 0.10

MARS 0.98 0.25 0.57 0.73 0.98 0.01 0.38 0.10

MANN 1.06 0.24 0.48 0.87 1.02 0.17 0.38 0.13

Space ENS 0.91 0.33 0.72 0.51 0.64 0.85 0.37 0.15

(n = 25) DFA 0.99 0.29 0.56 0.78 0.93 0.18 0.46 0.13

RF 1.02 0.30 0.48 0.83 1.13 -0.21 0.47 0.12

MARS 0.92 0.28 0.51 0.77 0.90 0.07 0.42 0.12

MANN 0.92 0.31 0.62 0.60 0.72 0.52 0.45 0.15

Season ENS 0.91 0.19 0.47 0.78 0.89 0.06 0.52 0.08
(n = 79) DFA 1.01 0.27 0.66 0.60 1.09 -0.30 0.52 0.09

RF 1.03 0.29 0.62 0.68 1.26 -0.81 0.52 0.09

MARS 0.97 0.25 0.61 0.69 0.97 0.05 0.51 0.09

MANN 1.00 0.26 0.65 0.75 0.96 0.13 0.52 0.10

Time ENS 0.83 0.24 0.58 0.56 0.71 0.68 0.37 0.13

(n = 23; 331 samples) DFA 1.18 0.34 1.06 0.42 0.78 1.28 0.44 0.11
RF 1.16 0.38 0.95 0.43 0.91 0.85 0.44 0.11

MARS 1.00 0.34 0.86 0.40 0.66 1.25 0.42 0.11

MANN 1.04 0.30 0.71 0.52 0.84 0.78 0.42 0.11

Method ENS 0.76 0.25 0.52 0.50 0.66 0.51 0.41 0.12

(n = 33) DFA 0.97 0.30 0.58 0.42 0.78 0.62 0.45 0.11

RF 1.02 0.29 0.67 0.49 0.84 0.55 0.49 0.10
MARS 0.93 0.27 0.60 0.43 0.77 0.57 0.43 0.11

MANN 0.86 0.28 0.57 0.63 0.71 0.49 0.47 0.11

Bold and italicised text indicates the ‘best’ metric value for each dataset/model combination. See Table 1 for metric codes and descriptions. ENS–Single

species ensemble model; DFA–RIVPACS community model using a discriminant function classifier; RF–RIVPACS model using a random forest classifier;

MARS–Multi-species response multivariate adaptive regression splines model; MANN–Multi-species response artificial neural network model.

doi:10.1371/journal.pone.0146728.t004
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The ensemble model best matched observed to predicted assemblage composition using the
BC index relative to other modelling strategies for all datasets except ‘season’ where BC values
were almost equivalent among models. The multi-species response models also generally pro-
duced lower BC values than the RIVPACS models. The precision of BC had no discernable pat-
terns across datasets or models.

Fig 2. Projected species distributions (at a cut-off threshold of 0.5) for (a)Hypseleotris klunzingeri and (b)Melanotaenia duboulayi.Green stream
segments are predicted presences; grey segments are predicted absences. The circles are sites that were sampled in autumn/winter 2013 (i.e. the training
and space datasets; n = 128). Red circles are observed presences, open circles are observed absences. ENS–Single species ensemble model; DFA–
RIVPACS community model using a discriminant function classifier; RF–RIVPACSmodel using a random forest classifier; MANN–Multi-species response
artificial neural network model; MARS–Multi-species response multivariate adaptive regression splines model.

doi:10.1371/journal.pone.0146728.g002
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Accuracy of species predictions among GIS- based modelling strategies
AUC ranged from 0.68 (Anguilla australis) to 0.95 (Hypseleotris compressa and Ophisternon
sp.), averaged across datasets and modelling strategies (Table 5). The ensemble model pro-
duced good predictions (arbitrarily defined as AUC>0.8) for 20 species compared with MARS
(13 species), the two RIVPACS-type models (9 species each) and the MANNmodel (8 species).
On average, the ensemble model most accurately predicted rare species (i.e. those with preva-
lence<10%); however, differences among strategies were not significant (p>0.05 for one-way
ANOVAs). The two RIVPACS-type models least accurately predicted rare species.

Model projections varied considerably, including for species with a similar AUC. For exam-
ple, projections for the relatively common speciesMelanotaenia duboulayi ranged from 40%
predicted occupancy of stream segments throughout the stream network for the ensemble
models, to 79% for the RF RIVPACS-type model, even though the mean AUC for the two
models was almost identical (Fig 2B, Table 5).

Single species ensemble models derived from the training dataset were significantly more
accurate (using AUC) than those from other strategies (Table 6). Ensemble models also gener-
alised better across space, season, time and method datasets, although these differences were

Table 5. AUC for each species, averaged among datasets. Asterisks denotes rare species (defined as <10% prevalence in the training dataset).

Species Observed prevalence ENS DFA RF MARS MANN Average

Ambassis agassizii* 9% 0.89 0.75 0.75 0.84 0.85 0.82

Anguilla australis 15% 0.78 0.66 0.72 0.63 0.61 0.68

Anguilla reinhardtii 95% 0.83 0.84 0.86 0.77 0.79 0.82

Craterocephalus Marjorie 13% 0.80 0.81 0.85 0.83 0.78 0.81

Craterocephalus stercusmuscarum* 7% 0.95 0.79 0.78 0.85 0.93 0.86

Galaxias olidus* 6% 0.95 0.82 0.90 0.95 0.96 0.91

Gobiomorphus australis 43% 0.97 0.92 0.93 0.93 0.91 0.93

Gobiomorphus coxii 29% 0.83 0.71 0.76 0.82 0.77 0.78

Hypseleotris compressa 35% 0.94 0.95 0.95 0.95 0.94 0.95

Hypseleotris galii 54% 0.84 0.75 0.80 0.79 0.76 0.79

Hypseleotris klunzingeri 18% 0.90 0.77 0.71 0.73 0.79 0.78

Leiopotherapon unicolor* 8% 0.73 0.69 0.73 0.69 0.73 0.71

Melanotaenia duboulayi 67% 0.78 0.73 0.77 0.74 0.76 0.76

Mogurnda adspersa 12% 0.95 0.60 0.64 0.79 0.75 0.74

Mugil cephalus* 9% 0.83 0.85 0.75 0.83 0.74 0.80

Notesthes robusta 11% 0.92 0.85 0.77 0.81 0.70 0.81

Ophisternon sp.* 3% 0.96 0.93 0.95 0.95 0.95 0.95

Percalates novemaculeata 18% 0.77 0.68 0.75 0.69 0.69 0.72

Philypnodon grandiceps 26% 0.83 0.74 0.75 0.70 0.79 0.76

Philypnodon macrostomus 17% 0.81 0.71 0.79 0.78 0.72 0.76

Pseudomugil signifier 14% 0.83 0.69 0.70 0.75 0.71 0.74

Retropinna semoni 68% 0.90 0.73 0.84 0.83 0.86 0.83

Rhadinocentrus ornatus 15% 0.98 0.93 0.94 0.90 0.97 0.94

Tandanus tandanus 55% 0.83 0.73 0.75 0.77 0.73 0.76

Trachystoma petardi* 5% 0.76 0.79 0.72 0.81 0.72 0.76

Number of ‘good’ predictions (AUC>0.8) 19 9 8 13 8 11

ENS–Single species ensemble model; DFA–RIVPACS community model using a discriminant function classifier; RF–RIVPACS model using a random

forest classifier; MARS–Multi-species response multivariate adaptive regression splines model; MANN–Multi-species response artificial neural network

model.

doi:10.1371/journal.pone.0146728.t005
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not significant (Table 6). The ensemble models also had significantly higher kappa, sensitivity,
and correct classification rates for the training dataset, as well as the highest values for all evalu-
ation metrics averaged among the datasets. The multi-species response models had intermedi-
ate levels of predictive success, while both RIVPACS-type models on average exhibited the
lowest success across all of the evaluation metrics. The ensemble models in particular, consis-
tently had the highest sensitivity and consequently lowest omission error rates; however, speci-
ficity and correct classification rate did not vary markedly among modelling strategies.

Table 6. Mean species level evaluation metrics for eachmodel and dataset.

Dataset (no. sites) Model AUC K Se Sp CCR

Training (n = 103) ENS 0.99A 0.88A 0.90A 0.96 0.96A

DFA 0.81B 0.16B 0.28B 0.87 0.86B

RF 0.86B 0.17B 0.28B 0.88 0.87B

MARS 0.85B 0.26B 0.37B 0.87 0.87B

MANN 0.86B 0.37B 0.43B 0.91 0.89B

Space (n = 25) ENS 0.82 0.35 0.52 0.87 0.88

DFA 0.76 0.14 0.29 0.86 0.87

RF 0.80 0.14 0.29 0.86 0.87

MARS 0.78 0.18 0.31 0.88 0.87

MANN 0.76 0.20 0.33 0.88 0.87

Season (n = 79) ENS 0.85 0.49A 0.62A 0.88 0.88

DFA 0.79 0.14B 0.27B 0.86 0.86

RF 0.79 0.14B 0.27B 0.87 0.86

MARS 0.83 0.24B 0.36AB 0.86 0.87

MANN 0.80 0.25B 0.35AB 0.88 0.87

Time (n = 23; 331 samples) ENS 0.81 0.36A 0.62A 0.81 0.83

DFA 0.73 0.12B 0.28B 0.85 0.86

RF 0.74 0.13B 0.29B 0.85 0.86

MARS 0.77 0.13B 0.33AB 0.82 0.83

MANN 0.78 0.19AB 0.37AB 0.84 0.85

Method (n = 33) ENS 0.82 0.27 0.53 0.84 0.84

DFA 0.79 0.18 0.33 0.87 0.86

RF 0.77 0.15 0.31 0.86 0.86

MARS 0.78 0.20 0.36 0.87 0.86

MANN 0.74 0.17 0.37 0.84 0.84

Average ENS 0.86 0.47 0.64 0.87 0.87

DFA 0.78 0.15 0.29 0.86 0.86

RF 0.79 0.15 0.29 0.86 0.86

MARS 0.80 0.20 0.35 0.86 0.86

MANN 0.79 0.24 0.37 0.87 0.87

Significant differences in mean evaluation metrics among models are denoted by different letters (assessed by one-way ANOVAs and Tukey’s HSD

tests). Bold values indicate the highest mean evaluation metric for each model/dataset. See Table 2 for metric codes and descriptions. ENS–Single

species ensemble model; DFA–RIVPACS community model using a discriminant function classifier; RF–RIVPACS model using a random forest classifier;

MARS–Multi-species response multivariate adaptive regression splines model; MANN–Multi-species response artificial neural network model.

doi:10.1371/journal.pone.0146728.t006
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Discussion

Correlates of fish assemblage composition and consistency of variable
selection
Variables related to the site position in the stream continuum (sensu Vannote et al. [63]) were
strong determinants of fish assemblage composition in our study. These included elevation,
catchment slope and mean annual runoff (discharge), and are likely related to stream size and
depth, habitat diversity, primary production and carbon sources, water permanency, and the
occurrence of important hydraulic habitat types such as pools, runs, and riffles [48]. Consistent
with studies in coastal streams both locally [5, 6] and elsewhere [64], distance to the sea was
important, as several species require access to the sea to complete their life history (e.g.Mugil
cephalus, A. reinhardtii, Gobiomorphus australis). Catchment and sub-catchment geology were
generally found to be among the least important factors for fish assemblages, which contrasts
with several studies elsewhere [24, 41]. Model predictions at headwater sites tended to be the
least reliable, and we attribute this to the frequent presence of natural barriers in these stream
types (e.g. waterfalls and steep cascades impassable to certain species). Detailed estimates of the
size and gradient of such barriers, historical persistence of refugia above these, and frequency
of ‘drown-out’ events would likely improve predictions in these areas. This information is cur-
rently difficult to acquire at regional scales. However, high resolution topographic data
acquired from light detection and ranging (LiDAR) is becoming increasingly available and
offers scope for improving model parameterisation for these stream types in the future.

The different modelling strategies identified important variables fairly consistently, with the
following exceptions. First, the MARS multi-species response model was exceptionally parsi-
monious; only identifying two important variables: elevation and upstream catchment slope.
Yet this model yielded remarkably good predictive accuracy across all datasets. Second, the
DFA RIVPACS model selected air temperature in the hottest month and % unconsolidated
geology in the upstream catchment instead of stream elevation, as the most important vari-
ables, which was ranked first by all other models. These variables, like elevation, probably serve
as a proxy for position in the stream continuum; however, the DFA model generally produced
the least accurate predictions. Whether this is due to the predictor selection method (stepwise
AIC) or the modelling process (fitting linear functions versus more flexible ML algorithms) is
unclear.

Spatially continuous predictions
Several studies have demonstrated the link between landscape scale predictors, local habitat
features and fish assemblage composition in minimally impacted streams [65, 66]. Exploratory
studies examining the relative roles of local and landscape variables for structuring fish com-
munities are fairly common (e.g. [67, 68]). However, fewer studies have directly quantified the
loss of predictive model accuracy using landscape variables alone, many of which may act as a
proxy for local habitat conditions (e.g. [40, 69]). Our study demonstrated that the inclusion of
commonly used habitat variables (width, depth and flow velocity) yielded minimal gain in pre-
dictive accuracy at a regional scale. However, other work has shown that local habitat variables
are important for predicting species occurrence at smaller spatial scales [24], or for predicting
other types of species responses such as variation in abundance or biomass (e.g. [6, 70]).

The minimal gain in predictive accuracy using field derived predictor variables has several
implications for stream bioassessment programs using fish indicators, which are typically
implemented at regional scales. Firstly, the additional collection of field derived variables can
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be time consuming and expensive, and appears to provide marginal improvements in model
accuracy relative to cost [68]. Model accuracy could be improved by instead diverting resources
to sampling a greater number of sites or expending a greater sampling effort per site. Secondly,
habitat measurements collected at the site are commonly influenced by anthropogenic stressors
thereby biasing predictions at test sites [71, 72]. For example, flow velocity and stream depth
may be affected by river regulation, water extraction, sedimentation or mobile sand slugs [72].
The use of static, GIS-based landscape variables that are not influenced by human pressures
avoids this issue. Thirdly, the use of spatially continuous variables enables predictions to be
mapped to stream networks. This can broaden the application of bioassessment data to answer
important stream management questions that require spatially explicit outputs [24], such as
predicting responses to future climate or restoration scenarios; mapping aquatic biodiversity
and identifying species conservation priorities; and predicting the invasion potential of alien or
translocated species.

Prediction of rare species
On average, rare species were slightly, but not significantly better predicted by the single species
ensemble model relative to the other models. This differs from reports that rare species are bet-
ter predicted by multi-species response models [25, 55] or community models [73], which
directly include co-occurrence information. However, our findings concur with other studies
[17, 36] where single species models slightly better predicted rare species than their community
classification and multi-species response model counterparts, respectively. Possible explana-
tions for our findings are: (1) several rare species in our study have strict habitat requirements
and were consequently predicted well by all modelling strategies (e.g. Galaxias olidus is
restricted to high elevation, low temperature areas; Ophisternon sp. generally occurs in low gra-
dient, tannin stained, coastal stream habitats); (2) species co-exclusion may be indirectly
inferred via absence data for the single species models (e.g. expressed by environmental condi-
tions that favour a competitor or predator) and (3) gains in predictive accuracy made via the
ensemble process may outweigh any potential gains made by inclusion of species co-occur-
rence information. As suggested by Hallstan et al. [17], predictions from models that use co-
occurrence information may also be improved by incorporating potentially interacting species
from the broader aquatic community, such as invertebrates, macrophytes, phytoplankton and
piscivorous birds.

Fish assembly and model accuracy
The strategies that allowed modelling of species-specific responses (i.e. ensemble and multi-
species response models) outperformed the community/RIVPACS method across most evalua-
tion metrics. There are two likely explanations for this. Firstly, each species may be responding
independently to environmental gradients, and the RIVPACS approach, which models the
response of assemblage groups, cannot reliably quantify these relationships. Secondly, the role
of contemporary species interactions may not be a large component of the realised fish distri-
bution, at least in the context of the study area. The relative roles of abiotic versus biotic drivers
of riverine fish assemblage composition have been the focus of many studies (see review by
Jackson et al. [74]). Generally, the emphasis of these roles are dependent on the spatial scale of
the study, with abiotic factors usually being identified as being more important than biotic fac-
tors for broad scale studies such as ours. Many streams of the present study area are hydrologi-
cally variable and unpredictable, both seasonally and inter-annually [5, 45]. Consequently,
biotic interactions may be superseded by the effect of strong hydrological controls which may
prevent species abundances from reaching carrying capacity [74]. Additionally, the relatively
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unpredictable environmental conditions in our study area may have historically extirpated spe-
cies, as evidenced by relatively depauperate fish assemblages by global standards [43], leading
to ‘vacant niches’, thereby reducing contemporary competitive or predation pressure.

Model appraisal for stream bioassessment
Both RIVPACS type models had low sensitivity (thus a high omission error rate), coupled with
high specificity. This increases the chance of committing a type II error, that is, designating an
impaired site as being unimpacted or underestimating the magnitude of prevailing impacts [5,
75]. This trade-off between specificity and sensitivity is highlighted by examining the number
of taxa never predicted to occur in the training dataset for each model using O/E50: 16 of the 25
modelled taxa are never predicted in either RIVPACS model, whereas the ensemble model pre-
dicts all 25 taxa to occur at one or more sites. Hypothetically, 64% of species could become
locally extinct without a change in the O/E50 metric using the RIPVACS models. Conservative
models like these are potentially useful when high confidence is needed to designate a site as
impaired (i.e. high specificity; low type I error rate) such as when a site is the unit being
assessed for compliance (e.g. breaching of acceptable limits–[76]). When the catchment is the
unit of assessment, as is often the case for broad scale bioassessment programs, more sensitive
models would be desirable.

High taxa omission error rates can reduce the potential sensitivity of the O/E index to envi-
ronmental impacts because rare taxa that may respond to subtle anthropogenic impacts are
often excluded [75, 77]. This effect may be particularly acute for bioindicator groups with low
taxa richness [4, 5], as is the case in the present study. Typically, researchers have focussed on
the trade-off between potential RIVPACS-type model sensitivity and taxa inclusion versus
model accuracy and precision by testing these responses at various probability of occurrence
cut-off thresholds (0.1, 0.2, etc.) (e.g. [78]). The decision of whether or not to include rare spe-
cies is the subject of ongoing debate [77, 78, 79, 80]. We suggest the following three options for
optimising this trade-off. Firstly, alternative modelling strategies to RIVPACS community type
models should be appraised, as in the present study and several others [17, 20, 21]. Secondly,
certain taxa may be omitted on the basis of taxa specific evaluation metrics (e.g. AUC, CCR) so
that rare, but accurately modelled taxa can be distinguished from statistically ‘noisy’ taxa such
as those that are unreliably sampled or governed by stochastic rather than strong niche related
processes. In our study, the multi-species response models did this inherently; for example, the
MANNmodel did not make predictions for four of the five least accurately predicted species
across all models (using AUC). Thirdly, all taxa can be included with optimised thresholds
applied on a per-taxon basis rather than applying a consistent threshold across all taxa (e.g.
[81]). This approach has been adopted for converting probabilities to presence-absence data in
most recent SDM studies (e.g. [31, 35, 36]), and thresholds can be optimised for a range of
model evaluation metrics. Ultimately, the choice of evaluation metric depends on the intended
application of the model [29, 82]. In the present study, we chose a cut-off threshold of 0.5, as
this is the most common threshold used in RIVAPCS type models. However, this does not nec-
essarily preserve the taxa prevalence of the training data, or result in the highest prediction
accuracy, particularly for taxa with high or low prevalence [82]. Further work is required to
determine if using taxon-specific thresholds, rather than an arbitrary threshold of 0.5, can
improve model accuracy for bioassessment.

In general, the ensemble model provided accurate and precise estimates of O/E50, while
affording the greatest number of species available for prediction relative to the other strategies.
While relatively high precision was maintained across external datasets, mean O/E50 and
regression slope were consistently<1 (Linke et al. [83] recommend a slope between 0.85 and
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1.15). Given that mean AUC values were always highest for the ensemble method, we do not
attribute this to model over-fitting; instead we suggest that the model is sensitive to assemblage
changes through time (e.g. seasonal migrations of certain species such as Percalates novemacu-
leata and Trachystoma petardi which were both more prevalent in the post-wet samples in
SEQ), and sampling differences (method dataset).

The two multi-species response models were also relatively precise and accurate for O/E50,
but were less biased for external datasets than the ensemble model, and included more poten-
tial taxa than the two RIVPACS models. These models also performed better for the external
‘space’ dataset than the ensemble model; this is important given that accurate predictions are
needed for new test sites. For these reasons, we recommend that either the MANN or MARS
O/E50 model outputs would be most appropriate for bioassessment in our situation, if the taxo-
nomic completeness (O/E) index was to be used.

The taxonomic completeness index disregards information about species that were observed
but not predicted [17] and for this reason, differences in AUC, Kappa and sensitivity among
models were not mirrored in O/E50 values. In contrast the BC index does rely on this informa-
tion, and is the probable reason that the ensemble model produced the lowest mean BC values.
BC has been proposed as complementing taxonomic completeness because (1) it includes low
probability taxa and (2) it can detect stress-induced assemblage shifts that do not affect taxa
richness [61]. If the BC index was to be used for bioassessment in our situation, the ensemble
model would be the most appropriate choice.

In general, the models derived from a single season (winter 2013), were able to predict
assemblage composition with reasonable accuracy for sites sampled in different seasons and
years, and using a different sampling protocol (Table 4). This is important, as the study area
contains streams with that exhibit a high degree of hydrological variability, and ideally, bioas-
sessment is able to distinguish anthropogenic from natural stressors. A similar study in south-
east QLD [6], also found that fish assemblage predictions from a community classification
model were reasonably stable through time, although cautioned against relying on assessments
from sites experiencing extended low flow periods (e.g. leading to isolated pools and restricted
fish movement).

Matching modelling strategy, evaluation metrics and application
By assessing several different modelling strategies using multiple evaluations metrics, stream
managers can appraise the value of models for different stream management applications [16].
For example, a model with high sensitivity would be desirable for determining site susceptibil-
ity to an invasive species, because of the high error cost associated with predicting unsuitable
habitats incorrectly. Conversely, if the model purpose was for designating critical habitat for a
threatened fish species, the focus might be on obtaining high specificity, because of the high
cost associated with protecting sections of streams where the target species does not inhabit. In
our study, ensemble models had high AUC, kappa and sensitivity values across all datasets,
without significant reductions in specificity relative to other models. Therefore, we suggest that
the ensemble modelling strategy would be superior for most of the non-bioassessment applica-
tions (Table 7).

Conclusions
We suggest that the multi-species response modelling strategy is most suited to bioassessment
using freshwater fish assemblages in our study area. At the species level, the ensemble model
exhibited high sensitivity without reductions in specificity, relative to the other models. We
suggest that this strategy is well suited to other non-bioassessment stream management
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applications, e.g. identifying priority areas for species conservation. However, it must be
stressed that these findings are specific to the datasets used, taxa, and study area. Further stud-
ies are required before making generalisations about which modelling strategies are most
appropriate for specific stream management applications, if generalisations can be made at all.
We agree with Olden and Jackson [16] in advocating that several modelling strategies should
be evaluated on the same dataset so that model outputs can be matched to intended uses. We
believe that by exploring alternative modelling strategies, bioassessment data can answer
many important stream management questions beyond the scope of ‘first cut’ river health
assessments.
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S1 Fig. Cluster dendrogram showing the 6 groups (red boxes) selected for the community
classification models, RF and DFA.
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S1 Table. Fish presence-absence data, environmental predictor variables and site locations
for the ‘training’, ‘space’, ‘season ‘, ‘time’ and ‘method’ datasets. The ‘time’ and ‘method’
datasets were made available by SEQ Healthy Waterways Partnership and NSW DPI Fisheries,
respectively.
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S2 Table. Details of predictor variables used for the fish species distribution modelling and
rationale for their selection.
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Table 7. Desirable model evaluation properties for several common stream bioassessment applications of SDMs.

Model Application Desirable evaluation properties Notes/references

Bioassessment (reporting at the
catchment scale)

Balanced Sp and Se, mean O/E close to unity, low
BC, High r2, low SD, low bias, low omission rate for
assemblages with few taxa.

Balance between type I error (incorrectly diagnosing an
impaired stream as ‘reference’) and type II error (incorrectly
diagnosing a reference stream as impaired). Low availability
of modelled taxa can lead to coarse estimates of ecological
condition [4].

Bioassessment (regulatory/
compliance, at the site scale)

High Sp, mean O/E close to unity, low BC, High r2, low
SD, low bias.

Certainty of species loss is required to be confident that
acceptable limits have been breached

Biodiversity mapping Balanced Sp and Se, high r2, low SD, low bias, O/E0

close to unity
Requires a good regression fit of O vs. E

Species conservation and
reserve design

High Sp High commission errors may lead to protection of habitats
where target species may not actually inhabit (leading to
potentially wasted limited resources) (e.g. [84])

Population discovery and range
extension (survey gap analysis)

High Se Commission errors are acceptable (e.g. accurate model,
incomplete data such as species difficult to sample
efficiently)

Climate change Balanced Sp and Se, or high Se [2] notes that guidance on whether to balance errors or
down-weight commission errors is unresolved.

Restocking and translocation
suitability; habitat restoration

High Se Focus on low omission error because species absences may
be due to impacts and local extinctions (usually the impetus
for restocking/restoration)

Predicting site susceptibility to
invasive species

High Se Omission errors are less acceptable because of the costs
associated with incorrectly identifying unsuitable habitat.

Notes are sourced from [2], [16], and [83]. Refer to Table 1 for a description of the model evaluation property acronyms.

doi:10.1371/journal.pone.0146728.t007
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