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Abstract: Background: Most early children’s experiences will occur in a family context; therefore,
the quality of this environment is critical for development outcomes. Not many studies have assessed
the correlations between brain functional connectivity (FC) in important areas such as the default
mode network (DMN) and the quality of parent-child relationships in school-age children and early
adolescence. The quality of family relationships and maternal behavior have been suggested to
modulate DMN FC once they act as external regulators of children’s affect and behavior. Objective:
We aimed to test the associations between the quality of family environment/maternal behavior and
FC within the DMN of school-age children. Method: Resting-state, functional magnetic resonance
imaging data, were collected from 615 children (6–12 age range) enrolled in the Brazilian High-Risk
Cohort (HRC) study. We assessed DMN intra-connectivity between the medial prefrontal cortex
(mPFC), posterior cingulate cortex (PCC), and inferior parietal lobule (IPL-bilateral) regions. The
family functioning was assessed by levels of family cohesiveness and conflict and by maternal
behavior styles such as maternal responsiveness, maternal stimulus to the child’s autonomy, and
maternal overprotection. The family environment was assessed with the Family Environment Scale
(FES), and maternal behavior was assessed by the mother’s self-report. Results: We found that
the quality of the family environment was correlated with intra-DMN FC. The more conflicting the
family environment was, the greater the FC between the mPFC-left IPL (lIPL), while a more cohesive
family functioning was negatively correlated with FC between the PCC-lIPL. On the other hand,
when moderated by a positive maternal behavior, cohesive family functioning was associated with
increased FC in both regions of the DMN (mPFC-lIPL and PCC-lIPL). Conclusions: Our results
highlight that the quality of the family environment might be associated with differences in the
intrinsic DMN FC.

Keywords: default-mode network; resting State; family environment; parental practices childhood;
adolescence
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1. Introduction

The protracted maturation of the human brain is largely dependent on early postnatal
experiences [1], for a review of [2]. Most of these early experiences will occur in a family
context, and therefore, the quality of this environment is critical for the outcomes of
children’s developmental process [3,4]. Some studies have explored the consequences of
different socio-economic backgrounds [5–7], effects of poverty [8–10], and the influences
of parental income and education [6,11,12] on brain networks to illustrate some effects of
family experiences on children’s brain development.

Brain regions associated with the development of self-regulatory abilities, such as
those involved in self-referential activity [13–15], social cognition [16,17], and empathy [18]
are of special interest as they have been extensively related to the default mode network
(DMN) functions [19,20].

The DMN is a resting-state network composed of the medial prefrontal cortex (mPFC),
posterior cingulate cortex (PCC), and bilateral inferior parietal lobule (IPL). It is thought
to support self-related processes [13,19,21,22]. Although all regions share functions in
these self-related processes, many specificities have been suggested (e.g., mPFC’s role in
mentalizing self, evaluation, and perspective-taking [23,24]; PCC is thought to regulate the
balance between internal and external focus [25]; IPL seems to be relevant for self-other
discrimination [21,26] and judgment of social closeness between people [27,28].

Altered DMN functional connectivity (FC) related to deficits in those mentioned cog-
nitive functions has been described in a wide range of psychiatric and neurodevelopmental
disorders, such as autism [29–31], attention-deficit/hyperactivity disorder [32–34], mood
disorders [35,36], schizophrenia [37,38], and bipolar disorder [39,40]. Only a few studies
have assessed the association between the quality of parent-child relationship and DMN
regions [5,41–43].

The effect of parent-child interactions might be important considering that they poten-
tially work as external regulators of children’s affect and behavior [44,45]. There is evidence
suggesting that the quality of parent-child interactions mediate differences in the DMN
neural FC. Negative interaction, characterized by lower family cohesion and a greater fam-
ily conflict, has been associated with the increased activation of PCC and the ventrolateral
prefrontal cortex (vlPFC), regions considered to be the neural substrates of increased risk
behaviors in adolescents [42]. Lower parental responsiveness was associated with increased
FC between mPFC and amygdala in children aged 4–10 years old [43]. Likewise, exposure
to higher parental conflict (verbal conflict) and increased FC between PCC and the anterior
portion of mPFC and between PCC and amygdala were found in infants aged 6–12 months.
These infants also exhibited higher negative emotional reactivity [41]. On the other hand,
positive family relationships characterized by high levels of cohesion, communication, and
warmth [9,11] have distinct neural development outcomes. A more mature brain FC was
described by Degeilh et al. [5], and a better quality of maternal behavior was predictive of
a stronger negative FC between DMN regions (anterior cingulate cortex and ventral mPFC)
and salience network in children from birth until nine years later. They described higher
levels of mind-mindedness (attention and sensibility to child’s ongoing mental state) and
autonomy support (encouragement of child independence for problem-solving and a focus
on the child’s own decisions) as main contributors to self-regulatory abilities attributed to
DMN (as their possible neural substrate).

Thus, these studies show that the quality of family environment (negative or positive)
and the quality of parental caregiving are associated with variations in DMN regions,
specifically the PCC and the mPFC portions. The FC of these two main regions with
the bilateral IPL has been investigated less, despite its role in perspective-taking and the
judgment of social closeness between people [27] and social perception [46], which are
important self-referential processes attributed to the DMN.

In this study, we aimed to test the associations between the quality of family envi-
ronment/maternal behavior and FC within the DMN of school-age children. This is a
hypothesis-driven study focused on testing two-hypothesis: (1) if there is an association
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between children‘s FC of PCC and mPFC regions, and its connections with bilateral IPL
[left inferior parietal lobule (lIPL) and the right inferior parietal lobule (rIPL)] and the
quality of the family environment; and (2) if there is an association between these two DMN
regions and the the quality of family environment when mediated by maternal behavior.
We hypothesized that higher conflict in the family functioning would be associated with
increased FC between mPFC-IPL [41]. A lower cohesive functioning was expected to be as-
sociated with increased FC in the PCC-IPL regions [5], and maternal behavior associations
with cohesive functioning would increase the FC between both mPFC-IPL and PCC-IPL.

2. Materials and Methods
2.1. Participants

We included 615 school-age children (6-to-12-years-old, see Figure 1) participating
in the “Brazilian High-Risk Cohort (HRC) Study for Psychiatric Disorders in Childhood”.
The HRC is a population-based sample from 57 Brazilian public schools (35 schools in the
city of São Paulo and 22 schools in Porto Alegre). Further details on this cohort can be
found elsewhere [47]. Written informed consent was obtained for each participant, and all
experimental procedures were in accordance with local regulations and approved by local
ethics committees.
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2.2. Behavioral Assessments

The family environment was assessed using the Family Environment Scale (FES); [48,49].
The FES assesses interpersonal relationships and the social environment from the point
of view of a family member by quantifying three domains: interpersonal relationships,
directions of personal growth, and basic organization. Interpersonal family relationship
was evaluated through the subscales of conflict and cohesion. The parents answered all
scales during home interviews (biological mothers were 87.6% of the informants). The
items from both subscales were loaded into a general latent factor (general interpersonal
family functioning), and the residuals from each indicator were loaded into specific factors
of cohesion and conflict. This bifactor model gave a good fit to the data (RMSEA = 0.029,
CI90% 0.026 to 0.033; CFI = 0.985, TLI 0.98). Further information about the model and
fitting is described in Sato et al., (2018). Higher scores reflect a higher quality of the family
environment on the cohesion scale, and lower scores show the inverse on the conflict scale.
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To investigate the features of parental caregiving, three questions related to maternal
behavior were included: (1) maternal responsiveness (mother smiles at the child, speaks
friendly, praises child’s actions, tries to understand the child, and helps with problem-
solving); (2) maternal stimulation to child’s autonomy (mother gives the child autonomy in
choices); (3) maternal overprotection (mother treats the child as a baby, is overprotective,
wishes to prevent the child from growing up). These three questions were summarized as
a single factor named “maternal behavior”. We acknowledge that this variable is limited
in its scope. However, since the participants in this cohort were assessed using several
questionnaires regarding a myriad of constructs, unfortunately, it was not possible to obtain
very detailed information on maternal caregiving.

Regarding the characterization of this sample, the Brazilian socioeconomic scale ABEP;
2010 version by Almeida and Whickerhauser [50] was used to define the socioeconomic
scores (SES) of families. The quantitative SES was calculated for each family, as only one
child per family was enrolled in the HRC study.

2.3. MRI Acquisition

Resting-state functional neuroimaging (rs-fMRI) data were obtained in two 1.5 T MRI
GE scanners (São Paulo city, Brazil: Signa HDX and Porto Alegre: Signa HD) with identical
acquisition parameters, as follows: 1080 whole-brain EPI volumes were obtained for each
participant (TR = 2000 ms, TE = 30 ms, slice thickness = 4 mm, gap = 0 mm, flip angle = 80◦,
matrix size = 80 × 80, reconstruction matrix = 128 × 128, 1.875 × 1.875 mm, NEX = 1,
slices = 26, total acquisition time of six minutes). Participants were instructed to keep their
eyes open and fixate their gaze at a painted target. T1-weighted scans (3D FSPGR sequence)
were obtained considering up to 160 axial slices (TR = 10.91 ms, TE = in phase 4.2 ms,
thickness = 1.2 mm, flip angle = 15◦, matrix size = 256 × 192, FOV = 24 × 18 cm, NEX = 1).

2.4. MRI Preprocessing

rs-fMRI image preprocessing was performed with the CONN toolbox v.16.b (https:
//www.nitrc.org/projects/conn/ accessed on 12 November 2019). In brief, the first four
scans were dropped in order to achieve a steady-state condition. Preprocessing steps
were performed using a standard pipeline that included: realignment and unwarping,
slice-timing correction, structural segmentation [white matter (WM), grey matter (GM), and
cerebrospinal fluid (CSF)], spatial normalization resulting in both functional and structural
images in the Montreal Neurological Institute (MNI)-space, outlier detection, smoothing,
denoising with a simultaneous option for the removal of WM and CSF noise (with five
dimensions each), scrubbing, motion regression (12 regressors: six motion parameters + six
first-order temporal derivatives), and band-pass filtering (from 0.008 Hz to 0.09 Hz).

The DMN regions of interest (ROIs) were defined as proposed by Fox et al., (2005),
with three predefined seed regions (MNI coordinates): mPFC (−1, 47, −4), PCC (−5, −49,
40), and LPC (−45, −67, 36). The mPFC, PCC, and IPL (left IPL and right IPL, lIPL, and
rIPL, respectively) were chosen as they represent the core-self DMN regions, each of them
presenting specificities on their support to self-referential functions [13,15]. Importantly,
they belong to a functional network characterized by maturation heterogeneity between its
anterior-posterior regions [51–53] which are relevant aspects of our chosen seeds and are
critical to interpreting our results.

FC estimates among the ROIs were obtained using Pearson’s correlation coefficient for
the preprocessed mean blood oxygen level-dependent (BOLD) signal of each ROI. These
correlations were then normalized using the Fisher transform.

2.5. Statistical Analyses

For each seed region, associations between FC, each pair of DMN nodes (PCC-lIPL,
PCC-rIPL, mPFC-lIPL, mPFC-rIPL, mPFC-PCC), and family functioning (FES conflict
and FES cohesion) were tested using the general linear model (GLM), considering the
correlation value between each pair of DMN nodes as the dependent variable, FES scales

https://www.nitrc.org/projects/conn/
https://www.nitrc.org/projects/conn/
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as the independent variables, and age, gender, and site of MRI acquisition as covariates.
SES was tested as a covariate. In addition, we included FES and its interactions with the
maternal behavior factors as variables of interest. The Type I Error was set at 5%. Since the
sample is large, the GLM assumption on residual normality is not necessary due to the
Hajek–Sidak central limit theorem.

To facilitate the GLM analysis, a Principal Component Analysis (PCA) was carried out
to reduce the three questions related to the maternal behavior factors, to facilitate the GLM
analysis and the quality of the child’s family environment when mediated by the maternal
behavior (2).

3. Results

The demographic characteristics of the participants are given in Table 1 and Figure 1.
The mean age of the participants was 8.68 years old (standard deviation [SD] 1.79), and
55.6% were male (n = 342). The Mean Intelligence Coefficient was 102.5 (SD 16.60; median
100). Considering the scores of family functioning, family FES cohesion was slightly higher
than FES conflict scores.

Table 1. Summary statistics of key variables.

Variable Minimum 1st
Quartile Median Mean Standard

Deviation
3rd

Quartile Maximum Missing Occurrences

Age 6 7 9.00 8.68 1.79 10 12 0 -
FES Cohesion 1 5 6.00 5.69 1.19 6 9 0 -
FES Conflict 1 3 4.00 04.02 1.28 5 8 0 -

FES Total 1 4 5.00 4.76 1.42 6 9 0 -
SES 6 5 20.00 20.17 4.50 6 39 0 -

N total 615

FES—family environment scale, SES—socioeconomic status.

Regarding the questionnaires, the gender of the respondents (parents), 90.4% (556 par-
ticipants) were female and 9.6% (N = 59) were male. The mean family income was 2865.36
(s.d. = 2329.61) Brazilian currency (BRL). Since the birth of the child, 52.8% of the respon-
dents reported that the financial condition of the families improved, and 15.2% reported a
deterioration. The parent that spent more time with the child was the mother (94%). and
99% of them were still in contact with the respective child (0.7% missing and 0.3% passed
away), and 53.2% of them were still living with the biological father of the child (14.3%
were divorced). Regarding the skin color of the mother, 57.6% were white, 16.1% black,
25.4% pardo, and the remaining were others (yellow, indigenous, or do not know). In terms
of the mothers‘ educational status, 2.4% never went to school, 14.8% completed elementary
school, 33.48% high school, and 3.4% went to college. Moreover, 45.5% of the mothers had
a permanent job, and 6.5% were unemployed.

The variance explained for maternal behavior questions were 43.27%, 33.13%, and
23.59% for first, second, and third PCA, respectively. The extracted commonalities for
questions 1, 2, and 3 were 64.2%, 44.8%, and 20.8%, respectively. The coefficient score for
the first PCA component was 0.617, 0.516, and 0.351 for each question, respectively. From
now on, we will refer to “maternal behavior”, the variable of the first PCA component (i.e.,
the higher variance).

According to Table 2, a significant and positive interaction effect (GLM beta coefficient)
was found between mPFC-lIPL and FES conflict (p = 0.02), but no significant interactions
were found between FES cohesion and any pair of regions. Interestingly, maternal be-
havior interaction was significant and positive for the PCC-lIPL pair (p = 0.02). No other
interactions were statistically significant.
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Table 2. GLM coefficients for each DMN link, interpersonal family function (FES) and maternal
parenting.

Independent Variables beta (p-Value *; Standard Error; t-Value)

Pair of Regions Coefficient Conflict Cohesion

mPFC-PCC

FES
Parenting

FES * Parenting

0.197 (0.633; 0.632; 0.312)
0.612 (0.532; 0.979; 0.625)

−1.053 (0.420; 1.304; −0.807)

−0.494 (0.466; 0.677; −0.729)
2.969 (0.597; 5.620; 0.528)
−0.496 (0.610;.972;−0.510)

mPFC-rIPL
0.842 (0.156; 0.593; 1.421)

−0.299 (0.644; 0.646; −0.462)
−0.413 (0.651; 0.913; −0.452)

0.860 (0.153; 0.602; 1.429)
0.756 (0.873; 4.719; 0.160)

−0.123 (0.920; 0.123;−0.101)

mPFC-lIPL
1.344 (0.029; 0.617; 2.179)
1.368 (0.804; 5.509; 0.248)

−0.192 (0.840; 0.953; −0.201)

−0.181 (0.605; 0.664;−0.272)
0.670 (0.892; 4.912; 0.136)

−0.094 (0.941; 1.273; −0.074)

PCC-lIPL
0.047 (0.962; 0.994; 0.047)
5.050 (0.517; 7.797; 0.648)

−1.138 (0.574; 2.022; −0.563)

1.001 (0.344; 1.056; 0.948)
−11.485 (0.046; 5.748; −1.998)

2.323 (0.020; 1.002; 2.317)

PCC-rIPL
−0.302 (0.724; 0.856; −0.353)

2.998 (0.668; 2.993;−1.061)
−0.465 (0.3504; 1.210; −0.384)

1.002 (0.209; 0.796; 1.258)
5.490 (0.380; 6.248; 0.879)

−1.344 (0.407; 1.620;−0.830)

mPFC—medial prefrontal cortex; PCC—posterior cingulate cortex; rlPL—right lateral parietal cortex; llPL—left
lateral parietal cortex; FES—family scale environment; * p-values uncorrected.

4. Discussion

Here we have investigated the associations between the quality of family functioning
and intrinsic DMN FC in a large sample of school-aged children. Our results suggest that
differences in DMN FC may occur according to the variations in the quality of family rela-
tionships. To the best of our knowledge, there is no other study relating family environment
influences to intra-DMN FC, except for those previous investigations exclusively focused
on PCC-mPFC connections.

An increased FC between mPFC (the most anterior DMN region) and the lIPL was pre-
viously associated with poorer self-reflection to stronger cognitive demands in schizophrenic
patients [54], while in healthy individuals, the lIPL activations result from an increase in
attentional demand (which engage both frontal and parietal regions) during behavioral
sequence execution [55]. We argue that exposure to a more conflictive family environment
may demand more cognitive efforts from children, such as in studies with adolescents,
where increased FC between PCC-mPFC is found in higher conflictive and lower cohesive
families [42]. In this regard, our results support previous findings of stressor effects on
the the frontolimbic circuitry (including the mPFC), which often describe increased FC in
limbic regions [43,56] and in other DMN regions associated with interparental conflict [41].
Similarly, we found that increased FC on PCC-lIPL regions occurred when children were
exposed to a lower cohesive family environment. Curiously, when the stressful experi-
ence becomes a trauma, similar results are described in adults: an increased FC in rIPL
and PCC/precuneus in women who suffered sexual abuse in childhood [57], as well as
enhanced regional homogeneity between lIPL and right superior frontal gyrus in men who
survive earthquakes [58]. In both situations, the research participants were patients with
post-traumatic stress disorder. Since our participants are not suffering from any mental
illness and they are not exposed to extreme stress experiences, one possible hypothesis is
that they are managing their stress situations with effective coping.

Effective coping means the ability to appraise the situation and choose an appropriate
coping strategy as a response [59], and the DMN plays a role in this ability (i.e., adults
with proactive coping) [60]. Thus, we conjecture that the more extensive IPL FC with the
PCC and MPFC as a DMN cause a compensatory involvement and help individuals cope
with stressful experiences. This is probably due to the influence of maternal behavior,
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once the increased FC of PCC with lIPL is moderated by more cohesive family functioning
associated with a responsive behavior (e.g., maternal responsiveness). Findings from
Che et al. [61] support our findings, they describe that the increased intra-DMN FC was
associated with higher levels of perceived social support (in adults), interpreted as a key
psychological factor in stress responses (i.e., adequate coping). In this case, we speculate
that the maternal behavior might be acting to reduce the aversive response of family stress
due to the emotional closeness to their children. We hypothesize that mothers act as their
own reference for the socialization process and model their perspective-taking through
their interactions with their children once the recruitment of IPL (on both PCC and mPFC
regions) is thought to allow the distinction between self-generated actions and actions
generated by others [62]. Interestingly, cohesive familiar functioning alone is associated
with higher FC in both mPFC-lIPL and PCC-lIPL node regions. On the contrary, lower FC
in both nodes is observed when maternal behavior mediates this association. Our findings
are in line with Degeilh et al. [5], who demonstrated that effective maternal parenting is
associated with DMN functioning, which in other words, means that early life parenting
could shape the function of the developing brain [3].

Importantly, we need to consider that our study has important limitations that should
be taken into account. First, the shift in how associations influence brain FC suggests that
the effects of parenting may not be static but are likely to change across development [63].
To better understand this variation over time, longitudinal studies would be necessary,
including repeated measurements over a long period of follow-up [64]. A second limitation
is the use of the mothers’ self-report and not the examination of the children’s behavior.
Additionally, family environment measures such as maternal behavior were assessed
via a short maternal report. Moreover, our sample had a very small number of fathers
(and we chose to exclude them). Increasing the number of parents in future studies
(and other secondary caregivers) may also amplify the marginal findings obtained in this
study. However, our findings are not explained by such restrictions. In future studies, the
inclusion of observational measures will be important to assess these constructs. For an
accurate assessment of the impact of the family environment quality on intrinsic DMN FC
development, further studies might include a longitudinal approach and larger samples.
Including genetic investigations will also be useful to clarify the effect of heritability from
parents on a child’s brain and behaviors (as potential interpretation bias).

5. Conclusions

Our findings provide evidence that variations in the quality of the environment are
associated with differences in the intrinsic DMN FC. We speculate that parental practices
might improve children’s self-referential processes attributed to DMN functioning. Further
studies will help to elucidate these gaps and test if improving relationships between the
parent and the child might offer better support for neurodevelopmental processes and the
regulation of socio-emotional abilities in children.
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