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Abstract: This study presents the key mechanical and residual properties after high-temperature of
different Nano SiO, carbon fiber-reinforced concrete (NSCFRC) mixtures. A total of seven NSCFRC
mixtures incorporating 0%—0.35% of carbon fiber by volume of concrete and 0%—-2% Nano SiO; by
weight of the binder were studied. The key mechanical properties such as compressive strength,
tensile strength, and flexural strength of NSCFRC with 0.25% carbon fiber and 1% NS were 6.8%,
20.3%, and 11.7% higher than PC (0% CFs, 0% NS), respectively. Scanning Electron Microscopy (SEM)
shows that Nano SiO, reduced the internal porosity and increased the compactness of the concrete
matrix. Furthermore, the experimental result demonstrates that NSCFRC can improve the mechanical
properties of concrete after high-temperature and equations were obtained to describe the evolution
of residual properties at elevated temperatures. Results suggested that the effect of carbon fibers on
the residual properties of concrete after high-temperature is less than steel fiber and polypropylene
fiber. It was also indicated that adding appropriate Nano SiO, to concrete is an effective means to
improve the residual performance after high-temperature.
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1. Introduction

Concrete is one of the most widely used building materials, but its tensile strength is relatively low
compared to compressive strength. This defect limits the application of concrete in many ways. As a
common reinforcement method, fiber reinforcement is currently being considered more widely [1-4].
Carbon fiber-reinforced concrete (CFRC) has been used in many projects since the 1970s due to its
good thermal conductivity, lightweight quality (low density), and high modulus of elasticity [4-9].
it can effectively improve the tensile strength, flexural strength, impact resistance and crack resistance.
Carbon fiber concrete has also been widely studied as smart (self-monitoring) structural materials in
recent years due to its electrical conductivity [10-12].

Similar to other flexible fibers, carbon fiber generally has no significant influence on the
improvements of compressive strength of concrete and may decrease the compressive strength
when the high-volume fractions. Previous studies have shown that the addition of 0.25-1 vol.% carbon
fiber reduces the compressive strength of concrete by 15%-50% [13,14]. Furthermore, with the wide
application of carbon fiber concrete, the fire resistance research of CFRC was very limited. At present,
researchers pay more attention to steel fiber-reinforced concrete and polypropylene fiber-reinforced
concrete. The melting and ignition points of polypropylene fiber are around 150 °C and 400-500 °C,
respectively. Polypropylene fiber melts at higher temperatures to form a large number of small pores,
which causes the internal pore connectivity to enhance, reduce the internal vapor pressure, and has
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much better resistance to thermal spalling. Steel fiber has high thermal conductivity and can effectively
transfer high temperatures to the interior of concrete, reducing the temperature gradient of concrete.
Carbon fiber has a higher melting point and ignition points (>1000 °C) than polypropylene fiber, and
its thermal conductivity is lower than that of steel fiber. Therefore, the residual mechanical properties
of carbon fiber concrete after high-temperature are worrying.

In order to improve the mechanical properties of CFRC after high-temperature, Nano SiO; (NS)
was added to CFRC to prepare NSCFRC. It is well documented that the mechanical and physical
properties of concrete can be greatly improved by combining the pozzolanic nano materials such as SiO,
with concrete [15,16]. Due to the ultra-fine size of Nano SiO,, the formation of C-5-H gel nanocrystals
can be accelerated and most of the pores of traditional cement-based concrete can be filled [17].
Formerly, the effect of the addition of silica nanoparticles on the mechanical properties of concrete
was investigated. For example, Heidari [18] shown that the incorporation of nano-SiO, particles
can significantly improve the compressive, flexural, tensile strength and toughness of concreteln
addition, NS can improve the mechanical properties of concrete after high-temperature. Yan et al. [19]
research showed that the addition of Nano S5iO, can evidently improve normal-temperature and
high-temperature compressive strengths of the concrete.

This study presents the experimental results obtained on seven NSCFRC mixtures subjected to
high temperatures. The main objective of this study was to investigate the effect of carbon fibers and
Nano SiO; on the mechanical properties at room temperature and high-temperature.

The study is realized in two stages. Firstly, this paper supplies results on the mechanical properties
of seven mixtures at room temperature. The effect of carbon fiber content and NS content on the
mechanical properties and microstructure of concrete was revealed. Secondly, seven mixtures heated
to 375 °C, 575 °C, 775 °C, and natural cooling. The evolution of residual mechanical properties
with temperature were investigated in order to explain the influence of carbon fiber and NS on the
mechanical properties of concrete after high temperature.

2. Experimental Program

2.1. Materials and Mixture Proportions

Normal Portland Cement (42.5R, Huaxin Cement Co., Ltd., Wuhan, China), Crushed Limestone
Coarse Aggregate (CA), Natural Sand Fine Aggregate (FA), Nano Silica (NS) (A380, Evonik
Industries AG, Essen, Germany), Water Reducer (WR) (F10, BASF SE, Ludwigshafen, Germany),
Carbon Fibers (CFs) (T300, GW COMPOS, Weihai, China), Normal Tap Water (W), Dispersant (D)
(Carboxyethylcellulose, HEC, Sinopharm Chemical Reagent Co., Ltd., Beijing, China) and Defoaming
Agent (DA) (Tributyl Phosphate, AR, Sinopharm Chemical Reagent Co., Ltd., Beijing, China) were
used in this study.

Table 1 shows the major properties of CFs and Nano SiO;. The diameter and length of the selected
carbon fibers were 7 um and 7 mm, respectively. Hence, the aspect ratio was 1000. The selected Nano
SiO, is Evonik A380 with specific surface area and particle size of 380 m?/g and 7 nm, respectively.
The carbon fiber surface is hydrophobic and difficult to disperse uniformly in the cement paste,
which directly affects the mechanical and other properties of the CFRC. Hydroxyethyl Cellulose
(HEC, Sinopharm Chemical Reagent Co., Ltd., Beijing, China) was used as a dispersant in this study.
Defoamer (Tributyl Phosphate, Sinopharm Chemical Reagent Co., Ltd., Beijing, China) was used to
reduce pores generated during concrete mixing.
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Table 1. Major properties of carbon fibers and nano-5iO;.

Material Properties
Tensile strength: 3530 MPa
Tensile modulus:230 GPa
Carbon fibers Length: 7 mm

Diameter: 7 pm
Volume density: 1.76 g/cm3
Carbon content: 93%

Specific surface area: 380 + 30 m?/g
Mean Particle size: 7 nm

Nano-SiO; Apparent density: =~ 30 wt.%
Bulk density: = 50 wt.%

SiO, content: > 99.8%

Table 2 presents the details of concrete mixture proportions. A total of seven NSCFRC mixtures
incorporating 0%—-0.35% carbon fibers by volume of concrete and 0%—2% Nano SiO, by weight of the
binder (C + NS) were studied. Nano SiO, also improved the dispersion of carbon fibers in NSCFRC.

Table 2. Details of mixture proportions per unit volume of concrete.

Concrete  Water/Binder ~ Water ~ Cement  FA cA 1:?(‘)” CFs  D(wt% WR(Wt% DA (wt%
Mixture Ratio (kg/m®) (kg/m®) (kg/m3) (kg/m®) (kgllmz3) (kg/m®) of Binder) of Binder) of Binder)

PC 0.45 193.5 430.0 710 1075 0 0 0.6 1.0 0.6

c1 0.45 193.5 425.7 710 1075 43 2.58 0.6 1.25 0.6

Cc2 0.45 193.5 425.7 710 1075 43 43 0.6 1.5 0.6

C3 0.45 193.5 425.7 710 1075 43 6.02 0.6 1.75 0.6

S0 0.45 193.5 430.0 710 1075 0 2.58 0.6 1.0 0.6

S1 0.45 193.5 4279 710 1075 21 2.58 0.6 1.25 0.6

S2 0.45 193.5 4257 710 1075 43 2.58 0.6 1.25 0.6

S3 0.45 193.5 421.4 710 1075 8.6 2.58 0.6 1.25 0.6

PC (0% CFs, 0% NS); C1(0.15% CFs, 1% NS); C2 (0.25% CFs, 1% NS); C3 (0.35% CFs and 1% NS); S0 (0.15% CFs, 0%
NS); §1(0.15% CFs and 0.5% NS); S2 (0.15% CFs and 1% NS); S3 (0.15% CFs and 2% NS).

2.2. Preparation of Concretes

The carbon fiber and Nano SiO, were pre-dispersed. The carbon fiber was placed in a beaker and
a certain amount of water was added. The SiO, and the dispersing agent being added, ultrasonically
shaken and stirred for 10 min and the defoamer being added in this process reduces the bubbles
generated during the mixing process. All dry components (cement and aggregate) were first pre-mixed
together in the mixing machine (HJW-60, Kexin instrument Co., Ltd., Cangzhou, China) for 2 min.
The dispersed carbon fiber and Nano SiO,, the remaining water and WR were added into the forced
mixer, mixed the concrete mixture was mixed further for 2 min. Finally, concrete was poured into the
molds and kept for 24 h, when they were demolded and conserved in curing room (25 °C and Relative
Humidity > 95%) until 28 days of age.

2.3. Testing of Concretes

For each different concrete, 36 specimens were prepared and tested: 24 cubic specimens (150 mm
x 150 mm X 150 mm) for the compression test and splitting tension test, and 12 prismatic specimens
(100 mm x 100 mm X 400 mm) were made for the flexure test (Hongshan Testing Machine Co., Ltd.,
Tianshui, China). The purpose of this work was to evaluate the mechanical properties of NSCFRC
after high temperatures. Therefore, the following tests were carried out under 4 different conditions
(25,375, 575 and 775 °C). For each different concrete 27 specimens included 18 cubic specimens and
nine prismatic specimens were heated by box type resistance furnace (Jianli Co., Ltd., Huanggang,
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China) at 375, 575, and 775 °C. Once reached the target temperature, it was maintained for 120 min to
obtain a homogeneous thermal state within the specimens. After that, turn off the oven and store the
sample inside for natural cooling All samples were tested after cooling up to ambient temperature.
The compressive strength, splitting tensile strength, and flexure strength of NSCFRC and control
mixtures were determined according to GB/T50081-2016.
The microstructure of the fractured concrete surface was observed by Scanning Electron Microscopy
(SEM, TESCAN, Brno, Czech)

3. Results and Discussion
3.1. Mechanical Properties at Room Temperature

3.1.1. Compressive Strength

The compressive strength results and associated standard deviation (SD) for different NSCFRC as
show in Table 3. All data performed one sample t-test with 95% confidence, the population mean is not
significantly. The experimental results were statistically acceptable. Figure 1a shows that specimen C2
(0.25% carbon fiber, 1% Nano SiO,) provided the highest compressive strength of 47.1 MPa, 6.8% higher
than PC (0% carbon fiber and 0% Nano SiO,). However, the compressive strength of other specimens
generally declined. C3 (0.35% carbon fiber and 1% Nano SiO,) provided the lowest compressive
strength of 39.9 MPa. Comparing with PC (0% carbon fiber, 0% Nano SiO;) and SO (0.15% carbon fiber,
0% Nano Si0O;), the compressive strength of carbon fibers decreased by 15.5%. Carbon fibers had a
negative effect on the compressive strength of concrete. The compressive strength of NSCFRC was
between 81.0 and 106.5% of PC in the presence of carbon fibers. A previous study reported that carbon
fibers significantly decreased the compressive strength of CFRC, because it increased internal porosity
and reduced the compactness of the concrete matrix [20]. Other studies have shown that carbon fibers
are not as strong as aggregates to resist compression [21].

Table 3. Compressive strength, Splitting tensile strength and flexural strength of different NSCFRC.

Concrete CFs (vol.% of I\I(i::too/flo(f)z Compressive Tensile Strength Flexural
Mixture Concrete) Bi : den) Strength (MPa) (MPa) Strength (MPa)
inder,

PC 0 0 44.1 (4.1%) 2.76 (9.4%) 3.67 (3.8%)
C1 0.15 1 41.2 (8.4%) 3.18 (3.9%) 3.85 (11.4%)
C2 0.25 1 47.1 (4.3%) 3.32 (3.4%) 4.10 (5.6%)
C3 0.35 1 39.9 (6.5%) 3.02 (10.2%) 4.43 (11.1%)
S0 0.15 0 37.3 (1.3%) 2.98 (9.9%) 3.62 (7.8%)
S1 0.15 0.5 35.7 (7.2%) 2.86 (7.6%) 3.70 (10.0%)
S2 0.15 1 41.2 (8.4%) 3.18 (3.9%) 3.85 (11.4%)
S3 0.15 2 38.1 (3.1%) 3.24 (4.7%) 3.57 (7.9%)

Appropriate amount of carbon fiber and NS can improve the compressive strength of concrete.
C2 (0.25% carbon fiber, 1% Nano SiO,) had the highest compressive strength, which proved that Nano
SiO; can effectively improve the compressive strength of concrete. Furthermore, the compressive
strength of the specimens increased with the increase in Nano SiO; content. The compressive strength
for SO (0.15% carbon fiber and 0% Nano SiO,) was 37.3 MPa and for S2 (0.15% carbon fiber and 1%
Nano SiO;) was 41.2 MPa. The compressive strength increased by 10% for 1% Nano SiO,, since it
reduced the internal porosity and increased the compactness of the concrete matrix. The study by
Wang et al. [22] reported that the addition of 3% Nano SiO; significantly increased the compressive
strength of Lightweight aggregate concrete (LWAC). Cheng et al. [23] reported that the incorporation
of 1% Nano SiO, greatly improved the strength, and abrasion resistance of concrete. Zhang et al. [24]
reported that when the content of nano-SiO; is limited to a certain range, the incorporation of concrete.
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Therefore, in this experiment, the optimal content of concrete to compressive strength was kept at
1 wt.% NS and 0.25 vol.% CFs.
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Figure 1. (a) The compressive strength of NSCFRC; (b) tensile splitting strength of NSCFRC; (c) The
flexural strength of NSCFRC.

3.1.2. Splitting Tensile Strength

The splitting tensile strength results and associated standard deviation (SD) for different NSCFRC
as show in Table 3. All data performed one sample t-test with 95% confidence, the mean is not
significantly. The experimental results were statistically acceptable. Figure 1b show that the splitting
tensile strength of NSCFRC increased first and then decreased as the carbon fiber content increased.
PC had the tensile strength of 2.76 MPa while C3 (0.25% carbon fiber and 1% Nano SiO,) had the
tensile strength of 3.32 MPa, the splitting tensile strength increased by 20% for 0.25% carbon fiber, 1%
Nano SiO,. Table 3 shows the effect of carbon fibers and Nano SiO, on the splitting tensile strength
of concrete. The tensile strength of NSCFRC increased first. Many articles reported a similar trend
in the tensile strength results of CFRC, a higher load is obtained because the increase in carbon fiber
content reduces the crack growth [13,20]. When the carbon fiber content reached 0.35%, the carbon
fiber content is too high to be uniformly dispersed causing defects in concrete to increase and the
tensile strength to decrease.

The tensile strength of NSCFRC decreased first and then increased as the Nano SiO, content
increased. SO (0.15% carbon fiber, 0% Nano SiO,) had a tensile strength of 2.98 MPa while S3 (0.15%
carbon fiber, 2% Nano SiO,) had a tensile strength of 3.24 MPa, the splitting tensile strength increased
by 8.7% for 2% Nano SiO5.
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Nazari et al. [25] reported that when SiO, is less than 3%, the formation of C-S-H gel can be
accelerated due to the increase of crystalline Ca (OH), content in the initial stage of hydration reaction,
thereby improving the tensile strength of concrete specimens. When the SiO, content is more than
3%, the reduction of the tensile strength is caused by the decrease of the crystalline Ca(OH), content
required for the formation of the C-5-H gel. Other researchers have reported similar content, but the
optimal dosage of NS was different [26,27]. NS can react with C-H in cement to form C-5-H, effectively
filling the concrete pores and increasing the matrix compactness. It effectively improved the splitting
tensile strength of concrete. Therefore, in this work, the optimal content of concrete for splitting tensile
strength was 2% NS.

3.1.3. Flexural Strength

The flexural strength results and associated standard deviation (SD) for different NSCFRC as show
in Table 3. All data performed one sample t-test with 95% confidence, the mean is not significantly.
The experimental results were statistically acceptable. Figure 1c shows that the flexural strength of
C1, C2 and C3 was 3.85MPa, 4.10Mpa, and 4.30MPa, respectively. The flexural strength of C3 about
19% higher than PC. The flexural strength for the specimens increased as the carbon fiber content
increased because the carbon fibers bridged the cracks and significantly reduced the crack opening,
thus increasing the flexural strength of concrete. The increased number of fibers that cross the crack
surface also increases the flexural strength of concrete [20,28].

Figure 1c also shows that the flexural strength increased first and then decreased as the SiO,
content increased. The flexural strength ranged from 3.57 to 3.85 MPa. S2 (0.15% CFs and 1% NS) had
the highest flexural strength of 3.85 MPa while S3 (0.15% CFs and 2% NS) had the lowest flexural
strength of 3.57 MPa. The flexural strength of S2 was 6.4% higher than that of SO (0.15% CFs, 0% NS).
The results indicated that Nano SiO, were able to improve the flexural strength of concrete due to the
Pozzolanic and filling effects. A previous study reported that the increased SiO, nanoparticles content
(more than 4 wt. %) causes reduced flexural strength due to unsuitable dispersion of nanoparticles in
the concrete matrix [25]. This was also the main reason for the lowest flexural strength of specimen S3.

3.1.4. Microstructure of NSCFRC

Figure 2 shows the microstructure of the fracture surface for different NSCFRCs observed via SEM.
The SEMs exhibited that the carbon fibers were uniform dispersion in concretes without agglomeration,
proving that the carbon fiber content can be evenly dispersed in concrete when it is 0.15 vol.%
of concrete.

Figure 2d shows the microstructure of specimen C2 with 0.25% carbon fiber and 1% Nano SiO,,
which provided the highest mechanical properties due to compact matrix and evenly distributed
carbon fiber.

Figure 3 shows the two fiber failure modes (fiber pullout and fiber breakage), observed by SEM.
Safiuddin et al. [20] found that the pitch-based carbon fibers were pulled out or broken after the peak
loading. In addition, Chen et al. [28] also observed fiber pull-out and fiber breakage in CFRC. Figure 3
also shows the clustering and uneven distribution of carbon fiber, which might be the reason for the
decrease in mechanical properties of specimen C3.



Materials 2019, 12, 3773 7 of 15

(d)

Figure 2. SEM of fracture surface of NSCFRC, (a) PC (0% CFs, 0% NS); (b) SO (0.15% CFs, 0% NS); (c) S2
(0.15% CFs, 1% NS); (d) C2 (0.25% CFs, 1% NS).

@ liberpdiond’
\éj@. . -

Figure 3. SEM of fracture surface of C3.
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3.2. Residual Compressive Strength

Table 4 shows the compressive strength of NSCFRC after exposure to high temperatures.
Normalized residual compressive strength is the ratio of the original compressive strength at room
temperature after exposure and cooling to high temperature. All data performed one sample t-test with
95% confidence, the mean is not significantly. The experimental results were statistically acceptable;
however, the standard deviation of the results indicates that the data are more discrete as the temperature
increases. Especially for S1, the standard deviation is above 30% at 775 °C.

Table 4. Compressive strength of different NSCFRC after high-temperature.

Concrete CFs (vol.% 1\1(3;0%510?2 25°C (MPa) 375°C 575 °C 775 °C
Mixture of Concrete) . (MPa) (MPa) (MPa)
Binder)

PC 0 0 44.1 (4.1%) 39.0 (5.4%) 26.3 (10.4%) 15.5 (26.6%)
C1 0.15 1 41.2 (8.4%) 38.5 (8.7%) 27.9 (11.8%) 18.0 (14.1%)
C2 0.25 1 47.1 (4.3%) 42.3 (6.0%) 32.3 (16.0%) 19.0 (14.3%)
C3 0.35 1 39.9 (6.5%) 36.4 (8.9%) 27.0 (8.1%) 17.3 (24.0%)
SO 0.15 0 37.3 (1.3%) 34.1 (4.9%) 23.1 (7.4%) 14.1 (7.0%)
S1 0.15 0.5 35.7 (7.2%) 35.0 (2.5%) 21.9 (6.7%) 14.6 (37.4%)
S2 0.15 1 41.2 (8.4%) 38.5 (8.7%) 27.9 (11.8%) 18.0 (14.1%)
S3 0.15 2 38.1(3.1%) 35.5 (13.3%) 25.0 (18.2%) 17.2 (4.0%)

Figure 4a show that the compressive strength of concrete decreases with increasing temperature.
The compressive strength decreased slightly at 375 °C and the normalized residual strength of all
samples were greater than 88%. The normalized residual strength ranges from 60 to 69% at 575 °C,
and the normalized residual strength is less than 45% at 775 °C. It can be seen that the presence of NS
can effectively increase the residual compressive strength of concrete after high-temperature. After
775 °C, the compressive strength of S3 (0.15% CFs and 2% NS) is 17.3 MPa, which is lower than that
of 52 (0.15% CFs and 1% NS) at 18.0 MPa. However, S3 provided the highest normalized residual
compressive strength of 45.3%, 7.5% higher than S0 (0.15% CFs and 0% NS), and 10.2% higher than PC
(0% CFs and 0% NS).

Figure 4b shows the relationship between the normalized residual compressive strength and
temperature. Figure 4b compared the results with other curves from previous studies. Included
the Eurocode 2 curve with siliceous aggregate and without fibers [29]. NSC with hybrid fiber by
Varona [30], steel fiber reinforced concrete (SFRC) by Li [31] and polypropylene fibers reinforced
concrete (PPFRC) by Aslani et al. [32] and Ding et al. [33]. It can be seen that NSCFRC gave better
residual strength than the EC-2 and polypropylene fibers reinforced concrete from Aslani et al. and
Ding et al. curve, included PC (0% CFs and 0% NS). The reason for it may not only the incorporation
of CFs and NS, but also used calcium aggregates, which perform better than siliceous aggregates
under high temperature. Quartz in siliceous aggregate will phase change at a high temperature of
about 575°C, Causes the aggregate volume to expand, resulting generates cracks and weakening of
the concrete matrix. The residual compressive strength of NSCFRCs is also higher than PPFRC by
Aslani et al. and Ding et al. because the residual compressive strength reduces when the temperature
is above 375 °C due to the fiber has been melted up at such high temperature and the pores left are
disadvantageous for the performance of concrete [32,33]. Moreover, experimental results were similar
to the Varona curve for hybrid fiber reinforce concrete. However, the normalized residual compressive
strength of NSCFRC is lower than that of steel fiber reinforced concrete by Li et al. This would support
the incorporation of carbon fiber and NS to increase the normalized residual compressive strength
of concrete.
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Figure 4. Evolution of the NSCFRC compressive strength after high temperatures; (a) The residual
compressive strength after exposure to high temperature; (b) The normalized residual compressive
strength after exposure to high temperature.

The experimental results were worked to design equations by the means of regression analyses.
Equation (1) corresponds to NSCFRC with 0.25% CFS and 1% NS, with a coefficient of determination
R? = 0.98175:

Jr _ 1.0048 — 1.166 x 10°T — 1.057 x 107/T?> (25°C < T < 775 °C), 1)

feas
where f. 1 is the residual compressive strength of concrete after exposure to high temperature T; f. 55 is
the compressive strength of concrete before exposure to high temperature; T is the elevated temperature
experienced by the concrete (unit: °C).
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3.3. Residual Tensile Strength

Table 5 shows the tensile strength of NSCFRC after exposure to high temperatures. All data
performed one sample t-test with 95% confidence, the mean is not significantly. The experimental
results were statistically acceptable the standard deviation of the results indicates that the data is more
discrete as the temperature increases.

Table 5. Splitting tensile strength of different NSCFRC after high-temperature.

Concrete CFs (vol.% Nan005102 o 375°C 575 °C 775 °C
Mixture of Concrete) (“Tt' %o of 25°C (MPa) (MPa) (MPa) (MPa)
Binder)

PC 0 0 276 (94%) 226 (8.9%)  1.46(16.1%)  0.72 (28.2%)
c1 0.15 1 318(39%)  2.73(4.0%)  1.94(5.0%)  1.11(18.0%)
2 0.25 1 332 (34%) 290 (4.6%)  2.06(2.3%)  1.23(7.9%)
3 0.35 1 3.02(102%) 268 (7.4%)  1.93(12.9%)  1.05 (17.7%)
S0 0.15 0 298 (9.9%)  2.54(5.6%)  1.77(10.7%)  0.94 (15.9%)
S1 0.15 0.5 286 (7.6%) 250 (5.3%)  1.72(27.0%) 0.9 (13.9%)
S2 0.15 1 318 (3.9%) 273 (4.0%)  1.94(5.0%)  1.11(18.0%)
S3 0.15 2 324 (47%)  2.88(6.1%)  2.05(52%)  1.07 (25.0%)

Figure 5 represents the evolution of the tensile strength of NSCFRC after high temperatures. It can
be seen that the tensile strength of concrete decreases with increasing temperature. The tensile strength
has a certain decrease after 375 °C, and the normalized residual tensile strength is between 82% and 89%.
When the temperature exceeds 375 °C, the normalized residual tensile strength decreases dramatically,
and the normalized residual tensile strength is between 26% and 37% after 775 °C. After exposure
to high temperature, the normalized residual tensile strength of NSCFRC improved compared to PC
due to the presence of carbon fiber and NS. After 775 °C, the normalized residual tensile strength of
52 (0.15% CFs and 0% NS) was 3.5% higher than S0 (0.15% CFs and 1% NS), and the residual tensile
strength of C2 (0.25% CFs and 1% NS) was 10.8% higher than PC.

In Figure 5b, the experimental results for tensile strength were compared with other curves from
previous studies. Included the Eurocode 2, the NSC with hybrid fiber by Varona et al. [30], steel fiber
reinforced concrete by Li et al. [31], polypropylene fibers reinforced concrete by Aslani et al. [32],
and HSC with hybrid fiber by Gao [34]. The experimental results showed that the residual tensile
strength of NSCFRC was higher than that of EC-2, there is a significant difference between EC-2 and
both the results and other curves. However, Figure 5b illustrates that the NSCFRC and other curves
still have good residual tensile strength after the temperature exceeds 575 °C. The reason for such
improvements could be attributed to the calcareous aggregates and fiber. Experimental results were
similar to the prediction in Gao curve for HSC with hybrid fiber below 575 °C. The reason for it may be
that NSC and NSCFRC had less internal porosity. However, at 775 °C, the residual tensile strength of
NSCFRC is lower than Gao curve because carbon fiber has a deterioration of mechanical properties
due to oxidation, and it cannot provide sufficient tensile strength above 575 °C. Therefore, steel fiber
reinforced concrete has the highest residual tensile strength at 775 °C.

The experimental results were worked to design equations by the means of regression analyses.
Equation (2) corresponds to NSCFRC with 0.25% CFs and 1% NS, with a coefficient of determination

R? = 0.9999
24T 1/(1+821x10710(T-25)>%)  (25°C < T < 775°C), @)
Jet25
where f 1 is the residual tensile strength of concrete after exposure to high temperature T; f 25 is
the tensile strength of concrete before exposure to high temperature; T is the elevated temperature

experienced by the concrete (unit: °C).
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Figure 5. Evolution of the NSCFRC tensile strength at high temperatures: (a) The residual tensile

strength after exposure to high temperature; (b) The normalized residual tensile strength after exposure

to high temperature.

3.4. Residual Flexural Strength

Table 6 shows the flexural strength of NSCFRC after exposure to high temperatures. All data
performed one sample t-test with 95% confidence, the mean is not significantly. The experimental

results were statistically acceptable.

Figure 6a can be seen that the flexural strength of concrete decreases with increasing temperature.
The flexural strength of concrete decreases by about 30% at 375 °C, 60% at 575 °C, and 80% at 775 °C.
After exposure to high temperatures, the flexural strength of NSCFRC improved compared to PC.
After 575 °C, specimen C3 (0.25% carbon fiber, 1% Nano SiO,) provided the highest flexural strength
of 1.86 MPa, and was 40% higher than that of PC. The normalized residual flexural strength of C3 was
6% higher than that of PC. After 775 °C, C3 (0.35% CFs, 1% NS) had the highest flexural strength while
PC had the lowest flexural strength. The normalized residual flexural strength of C3 was 10% higher

than PC.
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Table 6. Flexural strength of different NSCFRC after high-temperature.
Concrete CFs (vol.% I\I(:\I;too/st)?z 25 °C (MPa) 375 °C 575 °C 775 °C
Mixture  of Concrete) Y (MPa) (MPa) (MPa)
Binder)
PC 0 0 3.67 (3.8%) 2.58 (6.5%) 1.32 (18.3%) 0.61 (7.4%)
C1 0.15 1 3.85 (11.4%) 2.83 (8.6%) 1.57 (5.2%) 0.94 (11.8%)
C2 0.25 1 4.10 (5.6%) 3.04 (4.1%) 1.72 (17.4%) 1.04 (8.0%)
C3 0.35 1 4.43 (11.1%) 3.26 (5.5%) 1.86 (8.3%) 1.13 (12.5%)
S0 0.15 0 3.62 (7.8%) 2.60 (16.8%)  1.36 (14.5%)  0.66 (14.5%)
S1 0.15 0.5 3.70 (10.0%)  2.67 (15.4%)  1.43(23.4%) 0.74 (21.2%)
S2 0.15 1 3.85 (11.4%) 2.83 (8.6%) 1.57 (5.2%) 0.94 (11.8%)
S3 0.15 2 3.57 (7.9%) 2.61 (17.7%) 1.48 (9.8%) 0.83 (21.8%)
5 i
1v
O S SO SO
£ | |
s {° |
= N S ) R N
s o i
2 & s
o 3 |
(P N N S S
~ X
g
- : : §
"I mPcoctaczyca| T §
4 S0 % S1 ¢ S2 o S3
0 : ‘ : ‘ ‘
0 200 400 600 800
Temperature (°C)
(a)
1.0 -
0.8
®©
3£
= D
3 o6l
g @
Do
£ Ro0al
§ = Varoan et al-HF
fffff Li et al-SF
02 - Aslani and Samali-PP
——————— Aslani et al-SF T
0.0 Il Il Il -
0 200 400 600 800

Temperature (°C)

(b)

Figure 6. Evolution of the NSCFRC flexural strength at high temperatures: (a) The residual flexural

strength after exposure to high temperature; (b) The normalized residual flexural strength after exposure

to high temperature.
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Figure 6a illustrates that the carbon fibers had no significant effect on the normalized residual
flexural strength of concrete. The normalized residual flexural strength of concrete with different
carbon fiber content after exposure to high temperatures had little difference. However, the NS content
had a certain influence on the normalized residual flexural strength of concrete. Compared between SO
and S3, the normalized residual flexural strength increased by 6.2%.

Figure 6b shows the experimental results compared with other models, including the NSC with
hybrid fiber by Varona et al. [30], steel fiber reinforced concrete by Li et al. [31], polypropylene fibers
reinforced concrete, and steel fibers reinforced concrete by Aslani et al. [32,35]. All curves were linear
and similar. Nonetheless, there seems to be no need for providing additional equations for the flexural
strength of NSCFRC.

3.5. Mechanism of Mechanical Properties of NSCFRC after High Temperature

From the previous section, it can be seen that the NSCFRC has better residual mechanical properties
compared to the concrete without fiber and polypropylene fiber reinforced concrete but lower than steel
fiber reinforced concrete. Polypropylene fiber had a low melting point and melted at high temperatures,
forming a large number of small pores, which caused the internal pore structure of the concrete to
change. The pore connectivity was strengthened, providing a channel for the decomposition and
evaporation of moisture inside the concrete, which greatly reduced the internal pressure; thereby,
Polypropylene fiber reinforced concrete has much better resistance to thermal spalling compared to
the concrete without fiber. Steel fiber had high thermal conductivity and can effectively transfer high
temperature to the interior of concrete, reducing the temperature gradient of concrete [36]. Carbon fiber
has a high melting point and a burning point (>1000 °C); the testing temperatures are not high enough
to melted carbon fiber, Therefore, its ductility can effectively contribute to the concrete resisting tensile
damage, but carbon fiber has a deterioration of mechanical properties due to oxidation above 575 °C.

NS can effectively improve the mechanical properties of concrete after high-temperature.
Comparing S0 to S3, after 775 °C, the normalized residual compressive strength, residual tensile
strength, and residual flexural strength increased by 7.5, 3.5, and 6.3%, respectively. NS can react with
C-H in cement to form C-S-H, and effectively fill concrete pores and increase the matrix compactness.
It effectively alleviates the deterioration of concrete at high temperatures [37].

4. Conclusions

This study reports the experimental study on the mechanical properties of NSCFRC after
room-temperature and high-temperature. Based on the test results and associated discussion,
the following conclusions were drawn:

1.  NSCEFRC provided relatively good mechanical properties than PC. The compressive strength,
tensile strength and flexural strength of NSCFRC with 0.25% carbon fiber and 1% NS were 6.8%,
20.3% and 11.7% higher than that of PC, respectively.

2.  The existence of NS can comprehensively improve the mechanical properties of concrete.
The compressive strength, tensile strength and flexural strength of S2 (0.15% CFs and 1%
NS) were 10%, 6.7%, and 6.4% higher than that of S0 (0.15% CFs without NS), respectively, since
it reduces the internal porosity and increases the compactness of the concrete matrix. NS can
react with C-H in cement to form C-S-H, which reduces the internal porosity and increases the
matrix compactness.

3.  Similar to previous reports, carbon fiber substantially decreased the compressive strength of
CFRC because it increased the internal porosity and reduced the compactness of the concrete
matrix. However, it can increase the tensile strength and flexural strength of concrete because it
reduces the crack growth across the crack surface, thus resulting in failure at a higher load.

4. NSCFRC can improve the mechanical properties of concrete after high-temperature. The effect
of high temperature on the residual mechanical properties of NSCFRC was less than in PC,
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but greater than that of steel fiber-reinforced concrete. After 775 °C, the normalized residual
compressive strength, residual tensile strength, and residual flexural strength of NSCFRC with
0.25% carbon fiber and 1% NS were 5.2%, 10.9%, and 8.9% higher than those of PC, respectively.
NS can effectively improve the mechanical properties of concrete after high-temperature. NS can
reduce the internal porosity and increase the matrix compactness after high-temperature.
The synergistic effect of NS and carbon fiber was the main factor for the improvement of
mechanical properties of NSCFRC after high-temperature.
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