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Purpose: Stomach adenocarcinoma (STAD) is one of the most frequently diagnosed
cancer in the world with both high mortality and high metastatic capacity. Therefore, the
present study aimed to investigate novel therapeutic targets and prognostic biomarkers
that can be used for STAD treatment.

Materials and Methods: We acquired four original gene chip profiles, namely
GSE13911, GSE19826, GSE54129, and GSE65801 from the Gene Expression
Omnibus (GEO). The datasets included a total of 114 STAD tissues and 110 adjacent
normal tissues. The GEO2R online tool and Venn diagram software were used to
discriminate differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto
Encyclopedia of Gene and Genome (KEGG) enriched pathways were also performed
for annotation and visualization with DEGs. The STRING online database was used
to identify the functional interactions of DEGs. Subsequently, we selected the most
significant DEGs to construct the protein-protein interaction (PPI) network and to reveal
the core genes involved. Finally, the Kaplan-Meier Plotter online database and Gene
Expression Profiling Interactive Analysis (GEPIA) were used to analyze the prognostic
information of the core DEGs.

Results: A total of 114 DEGs (35 upregulated and 79 downregulated) were identified,
which were abnormally expressed in the GEO datasets. GO analysis demonstrated
that the majority of the upregulated DEGs were significantly enriched in collagen trimer,
cell adhesion, and identical protein binding. The downregulated DEGs were involved in
extracellular space, digestion, and inward rectifier potassium channel activity. Signaling
pathway analysis indicated that upregulated DEGs were mainly enriched in receptor
interaction, whereas downregulated DEGs were involved in gastric acid secretion. A total
of 80 DEGs were screened into the PPI network complex, and one of the most important
modules with a high degree was detected. Furthermore, 10 core genes were identified,
namely COL1A1, COL1A2, FN1, COL5A2, BGN, COL6A3, COL12A1, THBS2, CDH11,
and SERPINH1. Finally, the results of the prognostic information further demonstrated
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that all 10 core genes exhibited significantly higher expression in STAD tissues compared
with that noted in normal tissues.

Conclusion: The multiple molecular mechanisms of these novel core genes in STAD are
worthy of further investigation and may reveal novel therapeutic targets and biomarkers
for STAD treatment.

Keywords: stomach adenocarcinoma, gene profiling, biomarker, differentially expressed genes,
bioinformatical analysis

INTRODUCTION

Stomach adenocarcinoma (STAD) is one of the common
malignant tumors, which accounts for high mortality and high
incidence worldwide, notably in East Asia. In China alone,
approximately 3,804,000 new cancer cases were diagnosed and
2,296,000 cancer deaths were reported in 2015 (Chen et al.,
2018). Among them, the incidence and mortality of STAD
ranked third (Bray et al., 2018). Although the gastroscopy and
diagnostic techniques have made significant improvements in
the treatment options of STAD, the overall survival rate for
STAD patients remains unfavorable. According to the latest
report, the 5-year survival rate for STAD is estimated to be
approximately 10% (Chen et al., 2016). STAD is a complicated
and gradual process and several genetic and environmental
factors play important roles in its pathogenesis. Some of these
risk factors, such as H. pylori infection, diet, smoking, chemical
exposure, alcohol consumption, and exercise can also influence
the development of STAD (Karimi et al., 2014). Cumulative
evidence has shown that genetic factors, such as Glutathione
S-transferase M1 (GSTM1)-null phenotypes and variants in the
E-cadherin (CDH1), interleukin-17 (IL-17) and interleukin-10
(IL-10) contribute to the development of STAD (Meng et al.,
2014; Long et al., 2015; Alvarez-Escola et al., 2019; Gao et al.,
2019). Currently, numerous studies have focused on studying
the mechanisms of STAD and several considerable improvements
have been made in the efficacy of the clinical therapeutic methods.
However, the lack of tumor-sensitive biomarkers that can be
used early is considered to lead to poor prognosis. Therefore,
it is essential to understand the pathogenesis and identification
of novel promising prognostic biomarkers for individualized
therapies, which can be beneficial in the improvement of life and
survival of STAD.

In recent years, gene expression microarray and gene chip
detection techniques have increased dramatically and biomedical
research is commonly used to screen differentially expressed
genes (DEGs) in a given organism and to identify prospective
biomarkers for early diagnosis and advanced treatment of
tumors (Vogelstein et al., 2013). The Gene Expression Omnibus
(GEO) profiles and the Cancer Genome Atlas (TCGA) are
public databases that have accumulated a large amount of core
chipdata on the association between genes and diseases at the
gene level (Petryszak et al., 2014). Therefore, large amounts
of gene expression profiles and prognostic biomarkers can
in theory be identified for STAD. Significant improvement
has been made in the field of bioinformatic research on

STAD in recent years (Liu et al., 2018; Pectasides et al., 2018;
Chu et al., 2019). Nevertheless, the results are distinct or
limited due to independent sample heterogeneity. To overcome
these disadvantages, we adopted the methods of integrating
bioinformatics with gene chip techniques.

In the present study, we obtained four original gene
chip profiles, namely GSE13911, GSE19826, GSE54129, and
GSE65801 from GEO. The datasets included a total of 114 STAD
tissues and 110 adjacent normal tissues. The GEO2R online tool
and Venn diagram software were used to discriminate DEGs.
Gene ontology (GO) and Kyoto Encyclopedia of Gene and
Genome (KEGG) enriched pathways were also performed for
annotation and visualization with DEGs. The STRING online
database was used to identify the functional interactions of
DEGs. Subsequently, the most significant DEGs were selected
to construct the protein-protein interaction (PPI) network and
to reveal the core genes. Finally, the prognostic information
was assessed for the core DEGs using the Kaplan-Meier Plotter
online database and the Gene Expression Profiling Interactive
Analysis (GEPIA). Due to its comprehensive analysis, the present
study is one of the few to gather multiple databases regarding
STAD. In conclusion, it can be deduced that the core DEGs
and the enriched pathways in STAD may aid the screening and
the identification of novel biomarkers and treatment targets of
STAD in the future.

MATERIALS AND METHODS

Microarray Data Information
The four gene chip profiles GSE13911, GSE19826, GSE54129, and
GSE65801 containing information on STAD and adjacent normal
tissues (ANT) were obtained from NCBI-GEO. The GSE13911,
GSE19826, and GSE54129 were based on the GPL570 platforms,
whereas GSE65801 was based on GPL14550. The GSE13911,
GSE19826, GSE54129, and GSE65801 contained 38STAD and
31ANT, 12STAD and 15ANT, 111STAD and 21ANT, and
32STAD and 32ANT, respectively.

Data Preprocessing of DEGs
The GEO2R online tools (Davis and Meltzer, 2007) were used
to distinguish DEGs between stomach tumors and adjacent
normal tissues by the cut-off criteria of adjusted P < 0.05 and
|log2FC| > 1.5. Subsequently, the Venn software was used online
to identify the original data among the four datasets and to reveal
the commonly encountered DEGs.
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FIGURE 1 | Authentication of 114 common DEGs in the four datasets (GSE13911, GSE19826, GSE54129, and GSE65801) through venn diagrams software
(available online at: http://bioinformatics.psb.ugent.be/webtools/venn/). Different color meant different datasets. (A) Overall diagram of the study. (B) 35 DEGs were
up-regulated in the four datasets (log2FC > 1.5). (C) 79 DEGs were down-regulated in the four datasets (log2FC > –1.5).
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TABLE 1 | The detailed information of the four GEO datasets.

ID Tissue Platform Normal Tumor

GSE13911 STAD GPL570 31 38

GSE19826 STAD GPL571 15 12

GSE54129 STAD GPL572 21 111

GSE65801 STAD GPL14550 32 32

TABLE 2 | All 114 commonly differentially expressed genes (DEGs) were detected from four profile datasets, including 79 downregulated genes and 35 upregulated
genes in the STAD tissues compared to normal STAD tissues.

DEGs Gene names

Uprcgulated ADAM 12 IGF2BP3 COL1A1 FNDC1 CST1 FN1 PRRX1 COL5A2 HOXA10 SPP1

SFRP4 CDH11 BGN COL8A1 ASPN SERPINH1 FAP INHBA FSCN1 BMP1

THBS2 NID2 MFAP2 WISP1 Sum RARRES1 COL6A3 CLDN1 COL10A1 PMEPA1

CTHRC1 EPHB2 COL1A2 COL12A1 SPOCK1

Downregulated LDHD MAL ADH7 ZBTB7C LIPF B4GALNT3 FM05 roc TMED6 SULT1B1

FBP2 CAPN9 VSIG1 CWH43 PDIA2 CYP2C18 CA2 B3GNT6 SCNN1G CLDN18

AKR1B10 PKIB CA9 SCGB2A1 LOC400043 ALDH3A1 GATA5 KCNE2 PSAPL1 FBXL13

PTPRZ1 ESRRG GCNT2 TMPRSS2 ARHGEF37 FUT9 ATP4B SOSTDC1 KLKU GKN2

ATP4A AKR7A3 SSI CXCL17 CAPN13 RDH12 SLC26A9 ENPP6 PSCA BEX5

UGT2B15 CPA2 TFF2 SPINK2 TCN1 C16orf89 VSTM2A RORC KCNJ16 HYAL1

KIAA1324 RAB27B SCNN1B LYPD6B HOMER2 GIF SSTR1 MUC5AC KCNJ15 TFF1

GKN1 DPCR1 HPGD CNTN3 MUC6 ALDH1A1 ACER2 VSIG2 ASCL1

TABLE 3 | Gene ontology analysis of differentially expressed genes in STAD.

Expression Category Term Count P-value FDR

Upregulated GOTERM_BP_DIRECT GO:0007155∼cell adhesion 7 8.38E-07 0.001059856

GOTERM_BP_DIRECT GO:0035987∼endodermal cell differentiation 4 1.68E-05 0.021196552

GOTERM_BP_DIRECT GO:0030199∼collagen fibril organization 4 2.35E-05 0.029671995

GOTERM_BP_DIRECT GO:0071230∼cellular response to amino acid stimulus 3 0.003303913 4.09798155

GOTERM_BP_DIRECT GO:()001501-skeletal system development 3 0.004586779 5.647054851

GOTERM_CC_DIRECT GO:0005581-collagen trimer 7 1.31E-09 135E-06

GOTERM_CC_DIRECT GO:0005578∼proteinaceous extracellular matrix 8 5.16E-08 5.29E-05

GOTERM_CC_DIRECT GO:0005615∼extracellular space 12 1.21E-06 0.001236783

GOTERM_CC_DIRECT GO:0070062∼extrdcellular exosome 12 0.002224851 2.258522618

GOTERM_CC_DIRECT GO:0005576∼extracellular region 6 0.00306613 3.100466564

GOTERM_MF_DIRECT GO:0042802∼identical protein binding 4 0.002087486 1.983628784

GOTERM_MF_DIRECT GO:0005201-extracellular matrix structural constituent 3 0.002236986 2.124328943

GOTERM_MF_DIRECT GO:0005515∼protein binding 4 0.003812268 3.59592875

GOTERM_MF_DIRECT GO:0005509∼calcium ion binding 6 0.003982864 3.75410086

GOTERM_MF_DIRECT GO:0048407∼platelet-derived growth factor binding 2 0.005716885 5.348701785

Downregulated GOTERM_BP_DIRECT GO:0007586∼digestion 8 6.67E-09 9.09E-06

GOTERM_BP_DIRECT GO:0006081∼cellular aldehyde metabolic process 4 1.07E-05 0.014571778

GOTERM_BP_DIRECT GO:0006805∼xenobiotic metabolic process 6 1.69E-05 0.023039718

GOTERM_BP_DIRECT GO:(X)55114∼oxidation-reduction process 12 2.71 E-05 0.036936867

GOTERM_BP_DIRECT GO:0010107∼potassium ion import 4 2.02E-04 0.27485333

GOTERM_CC_DIRECT GO:0005615∼extracellular space 20 1.49E-06 0.001568694

GOTERM_CC_DIRECT GO:0016324∼apical plasma membrane 6 0.006968923 7.094816498

GOTERM_CC_DIRECT GO:0070062∼extracellular exosome 21 0.008418185 8.511744286

GOTERM_CC_DIRECT GO:0031225∼anchored component of membrane 4 0.011341676 11.31066102

GOTERM_CC_DIRECT GO:0005764∼lysosome 5 0.014100077 13.88022987

GOTERM_MF_DIRECT GO:0005242∼inward rectifier potassium channel activity 3 0.002416557 2.873134203

GOTERM_MF_DIRECT GO:0018479∼benzaldehyde dehydrogenase (NAD +) activity 2 0.007332264 8.48537793

GOTERM_MF_DIRECT GO:0008900∼hydrogen:potassium-exchanging ATPase activity 2 0.010978534 12.45446088

GOTERM_MF_DIRECT GO:0001758∼retinal dehydrogenase activity 2 0.025432302 26.68434583

GOTERM_MF_DIRECT GO:0015280∼ligand-gated sodium channel activity 2 0.029013148 29.86504406
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FIGURE 2 | Gene Ontology enrichment and KEGG pathway analysis of the
differentially expressed genes. (A–D) The numbers of enriched according to
the (A) biological process, (B) molecular function, (C) cellular component
categories, and (D) KEGG pathway analysis.

GO and Pathway Enrichment Analysis
Gene ontology (Ashburner et al., 2000) is a tool used to identify
genes and proteins and to reveal the biological property of the
chip database. KEGG (Kanehisa and Goto, 2000) is a collection of
databases dealing with genomes and biological pathways. GO and
KEGG analyses were used by the DAVID (Huang da et al., 2009),
an online bioinformatic resource that can afford tools for several
gene functions, such as DEG enrichment. The cut-off criterion
was P < 0.05.

PPI Network and Module Analysis
Initially, the search Tool for the Retrieval of Interacting Genes
(STRING1) (Szklarczyk et al., 2015) was used to evaluate the PPI
information. Secondly, Cytoscape (Shannon et al., 2003) was used
to construct the potential association between these candidate
DEGs. Finally, the Molecular Complex Detection (MCODE)
software was used to screen the modules of the PPI network
according to degree cutoff = 2, Depth = 100, k-core = 2, and node
score cutoff = 0.2.

Core Gene Analysis
The Kaplan-Meier Plotter online database was used to assess the
overall survival of the core genes. GEPIA (Tang et al., 2017)
was used to determine the expression levels related to the core
genes. GEPIA is an online tool that can achieve characteristic
functionalities based on TCGA and GTEx data. The hazard ratio
(HR) with 95% confidence intervals and log-rank P value were
computed and plotted.

RESULTS

Identification of DEGs in STAD
The overall design of this study is illustrated in Figure 1A. 4 gene
expression array datasets were obtained from the GEO database
as follows: GSE13911, GSE19826, GSE54129, and GSE65801,
respectively (Table 1). Following screening of the data with
GEO2R online tools with the cut-off criterion of adjusted P< 0.05
and |log2FC| > 1.5, 1,294, 899, 2,419, and 1,734 DEGs were
screened from the four expression profile data, respectively. The
volcano plot of the DEGs depending on FCs was displayed in

1https://string-db.org

TABLE 4 | KEGG pathway analysis of differentially expressed genes in STAD.

Pathwav ID Description Count P-value Genes

hsa04971 Gastric acid secretion 7 2.00E-05 KCNJ16, KCNJ15, ATP4A, ATP4B, KCNE2, CA2, and SST

hsa04512 ECM-receptor interaction 7 5.46E-05 COL6A3, COL1A2, COL1 Al, THBS2, COL5A2, SPP1, and FN1

hsa04974 Protein digestion and absorption 7 5.83E-05 COL6A3, COL1A2, CPA2, COL12A1, COL1A1, COL5A2, and COL10A1

hsa00830 Retinol metabolism 5 0.001520866 ALDH1A1, RDH12, CYP2C18, ADH7, and UGT2B15

hsa04510 Focal adhesion 7 0.005227439 COL6A3, COL1A2, COL1 Al, THBS2, COL5A2, SPP1, and FN1

hsa00982 Drug metabolism – cytochrome P450 4 0.016001409 FM05, ADH7, UGT2B15, and ALDH3A1

hsa04966 Collecting duct acid secretion 3 0.018727092 ATP4A, ATP4B, and CA2

hsa00980 Metabolism of xenobiotics by cytochrome P450 4 0.020028855 AKR7A3, ADH7, UGT2B15, and ALDH3A1

hsa05204 Chemical carcinogenesis 4 0.024566639 CYP2C18, ADH7.UGT2B15, and ALDH3A1
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FIGURE 3 | Common DEGs PPI network constructed by STRING online
database and Module analysis. (A) There were a total of 80 DEGs in the DEGs
PPI network complex. The nodes meant proteins, the edges meant the
interaction the proteins, blue circule meant down-regulated DEGs, and red
hexagons meant up-regulated DEGs. (B) Module analysis via Cytoscope
software (degree cutoff = 2, node score cutoff = 0.2, k-core = 2, and max
Depth = 100).

Supplementary Figure 1. Finally, the commonly expressed 114
DEGs, including 35 upregulated and 79 downregulated genes
were identified in the STAD tissues compared with the non-
tumor samples via the Venn diagram software in the four datasets
(Table 2 and Figures 1B,C).

DEGs, GO, and KEGG Pathway Analysis
in STAD
To comprehend the DEG functional levels, the online biological
tool DAVID6.8 was performed using the GO analysis with a
significance threshold of P < 0.05. The results of the 34 DEGs

TABLE 5 | The central node genes in the PPI network were identified based on
the filtering degree ≥10.

Node gene Degree

COL1A1 24

COL1A2 21

FN1 20

COL5A2 18

BGN 16

COL6A3 16

COL12A1 15

THBS2 15

CDH11 12

SERPINH1 11

COL10A1 11

TFF2 11

ASPN 11

MUC5AC 10

in the GO terms of the categories were divided into three
groups as follows: biological process (BP), cellular component
(CC), and molecular function (MF). As indicated in Table 3,
the CC of overexpressing DEGs were mainly enriched in
collagen trimer, proteinaceous extracellular matrix, extracellular
space, extracellular exosome, and extracellular region; the
downregulated DEGs were involved in the extracellular
space, apical plasma membrane, extracellular exosome, and
anchored component of membrane and lysosome. The BP
of the overexpressing DEGs was mainly enriched in cell
adhesion, endodermal cell differentiation, collagen fibril
organization, cellular response to amino acid stimulus, and
skeletal system development. The downregulated DEGs were
involved in digestion, cellular aldehyde metabolic process,
xenobiotic metabolic process, oxidation-reduction process, and
potassium ion import. The MF of the overexpressing DEGs
were mainly enriched in identical protein binding, extracellular
matrix structural constituent, protein binding, calcium ion
binding, and platelet-derived growth factor binding; the
down-regulated DEGs were involved in inward rectifier
potassium channel activity, benzaldehyde dehydrogenase
(NAD+) activity, hydrogen:potassium-exchanging ATPase
activity, retinal dehydrogenase activity, and ligand-gated
sodium channel activity. In general, the GO terms of the top
10 were displayed in Figures 2A–C according to the P-value
(Supplementary Table 2).

Furthermore, to distinguish the potential pathway of DEGs,
we used KEGG pathway enrichment analyses. As indicated
in Figure 2D and Table 4, the results demonstrated that
upregulation of DEGs was mainly enriched in receptor
interaction, protein digestion, and absorption and focal adhesion.
The downregulated DEGs were involved in gastric acid secretion,
retinol metabolism, and drug metabolism-cytochrome P450.

DEG PPI and Modular Analysis
In order to achieve core candidate gene and vital gene modules
in STAD, PPI network analysis was performed. A total of 80
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FIGURE 4 | The prognostic information of the 10 core genes. Kaplan-Meier plotter online tools were used to identify the prognostic information of the 10 core genes
and genes had a significantly worse survival rate (P < 0.05).
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FIGURE 5 | Significantly expressed 10 genes in STAD cancer patients
compared to healthy people. To future identify the genes’ expression level
between STAD cancer and normal people, 10 genes which were related with
poor prognosis were analyzed by GEPIA website. A total of 10 genes
significant expression level in STAD specimen compared to normal specimen
(*P < 0.05). Red color means tumor tissues and gray color means normal
tissues.

DEGs were screened into the PPI network complex, involving
80 nodes and 215 edges, and the remaining 34 DEGs were
not screened (Figure 3A). According to Cytoscape, 14 central
node genes were identified depending on the criteria of the edge
degree ≥ 10 (Table 5 and Supplementary Table 1). According to
the edge degree rank, the 10 core genes were COL1A1, COL1A2,
FN1, COL5A2, BGN, COL6A3, COL12A1, THBS2, CDH11, and
SERPINH1. Furthermore, we used the MCODE plug-in to screen
the highest degree module in the PPI network. The results of the
analysis revealed that the highest degree module contained 17
nodes and 92 edges (Figure 3B).

Core Gene Analysis
To achieve the 10 core-gene survival data, we performed Kaplan-
Meier curves to analyze the overall survival. The results indicated
that all 10 core genes exhibited a prominent prognosis for
STAD patients (P < 0.05, Figure 4). Subsequently, we analyzed
the expression status of these genes using the GEPIA. The
results indicated that all 10 core genes exhibited significantly
higher expression in the STAD tissues compared with those
of the normal tissues (P < 0.05, Figure 5). Subsequently, we
re-analyzed all 10 core genes associated with poor survival in
STAD by KEGG pathway enrichment. The results of the re-
analysis indicated that six genes (COL6A3, COL1A2, COL1A1,
THBS2, COL5A2, and FN1) were significantly enriched in
the extracellular matrix-receptor (ECM-receptor) interaction
(P < 0.05, Table 6 and Figure 6).

DISCUSSION

Stomach adenocarcinoma is one of the most frequently diagnosed
cancers in the world with both high mortality and high metastatic
capacity (Siegel et al., 2017). Certain genes have been shown to
play an important role in STAD. It has been reported that CDH1
may be used in identifying families with high risk of cancer as
well as aiding the design of chemopreventive programs that are
focused at high-risk subgroups (van der Post et al., 2015). It is well
known that the GSTM1-null phenotype can increase significantly
the risk of STAD (Darazy et al., 2011; Qiu et al., 2011; García-
González et al., 2012; Jing et al., 2012). In spite of a large number
of studies examining STAD, its molecular mechanism has not
been satisfactory explained due to the limited number of stable
and effective markers. The main reason is that previous studies
were too narrow. Therefore, multiple cohort types of research
regarding effective molecular biomarkers are required for STAD
prevention, diagnosis and treatment.

In the present study, the identification of more effective
molecular biomarkers for STAD was performed by merging
four profile datasets (GSE13911, GSE19826, GSE54129,

TABLE 6 | Re-analysis of 10 selected genes via the KEGG pathway enrichment.

Pathway ID Term Count P-value Genes FDR

XU04512 ECM-receptor interaction 6 1.12E-09 COL6A3, COL1A2, COL1 Al, THBS2, COL5A2, FN1 4.28E-07

xtrO4510 Focal adhesion 6 1.19E-07 COL6A3, COL1A2, COL1 Al, THBS2, COL5A2, FN1 4.53E-05
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FIGURE 6 | Re-analysis of 10 selected genes by KEGG pathway enrichment. (A) 10 high expressed genes in STAD tissues with poor prognosis were re-analyzed by
KEGG pathway enrichment and they were significantly enriched in ECM-receptor interaction. List 10 genes are shown in red“∗”. (B) Presumed patterns of changes in
the ECM-receptor interaction pathway of the four most expressed genes.
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and GSE65801). Bioinformatic analysis was performed and
resulted in the identification of 193 STAD and 99ANT genes.
Subsequently, the commonly identified 114 DEGs included
35 upregulated and 79 downregulated genes in STAD tissues
compared to those noted in the non-tumor samples, which were
identified by the Venn diagram software in the four datasets.
For the purpose of an in-depth understanding of the DEG
functional levels, we used the GO function and KEGG pathway
to analyze these DEGs. Subsequently, PPI network analysis was
used to identify these DEGs based on Cytoscape software and
the online database STRING. A total of 80 DEGs were screened
by the PPI network complex, involving 215 edges. The highest
degree module was screened from the PPI by the MCODE
plug-in. Eventually, 10 core DEGs were identified according
to the edge degree rank in the PPI network complex and the
results of the survival analysis demonstrated that the patients
with aberrant expression of DEGs exhibited a significantly lower
survival for STAD patients. In addition, we re-analyzed all 10
core genes with poor survival in STAD by KEGG pathway
enrichment. The results of the re-analysis indicated that the
six genes (COL6A3, COL1A2, COL1A1, THBS2, COL5A2,
and FN1) were significantly enriched in the ECM-receptor
interaction. Among these genes, COL1A1, COL1A2, FN1 and
COL5A2 were considered as perspective effective targets that
play prominent roles in the development and recurrence of the
tumor, including STAD.

COL1A1 and COL1A2 are the genes, which encode the pro-
alpha chains of type I collagen whose triple helix comprises two
alpha 1 chains and one alpha 2 chain. It has been reported
that the potential of the COL1A1 gene structure and intron
variation for common bone-related diseases can be determined
by comparative vertebrate evolutionary analyses of type I collagen
(Stover and Verrelli, 2011). COL1A1 can be used as a new
therapeutic marker and a target for hepatocellular carcinogenesis
(Ma et al., 2019). Another study demonstrated that COL1A2 may
affect proliferation, migration, and invasion of colorectal cancer
cells (Yu et al., 2018). Omar Ret al., reported that COL1A2 affects
cell migration of fibrosarcoma and chondrosarcoma by acting
on TBX3 (Omar et al., 2019). Several studies have shown that
COL1A1/2 plays a huge role in osteogenesis (Pollitt et al., 2006;
Sato et al., 2016; Wang et al., 2019; Zhytnik et al., 2019). COL1A1
and COL1A2 have been shown to play an important prognostic
role in STAD (Tamilzhalagan et al., 2017; Shi et al., 2019; Li J. et al.,
2020). Recently Wang et al., reported that COL1A1 suppressed
the invasion and migration of STAD cells by combining with
miR-129-5p (Wang and Yu, 2018). Furthermore, COL1A2 was
reported to suppress STAD cell invasion, and migration via
regulation of the PI3k-Akt signaling pathway (Ao et al., 2018).

FN1, encodes fibronectin, a glycoprotein present in a soluble
dimeric form in plasma and in a dimeric or multimeric form
at the cell surface and in the extracellular matrix. Cai et al.
demonstrated that the low expression of FN1 in colorectal
cancer could significantly inhibit the growth and metastasis
of tumor cells (Cai et al., 2018). Cadoff et al., demonstrated
specific mechanistic insights into the cellular effects of a novel
FN1 variant associated with a spondylometaphyseal dysplasia
(Cadoff et al., 2018). Liu et al., indicated that the low expression

of NEAT1 could affect the radioactive iodine resistance by
the miR-101-3p/FN1/PI3K-AKT signaling pathway in papillary
thyroid carcinoma cells (Liu et al., 2019). Gene expression
database research demonstrated that FN1 could be used as a
new marker of radiation resistance for head and neck cancer
(Amundson and Smilenov, 2010; Zhan et al., 2018). In addition,
FN1 is often detected in STAD tissues and cell lines and its
abnormal expression is closely associated with the invasion and
metastasis of STAD (Xu et al., 2014; Arita et al., 2016; Sun et al.,
2020). Moreover, it has been reported that FN1 combined with
microRNA-200c can inhibit the migration and invasion of STAD
cells (Zhang et al., 2017).

COL5A2 encodes an alpha chain for one of the low abundance
fibrillar collagens. Fibrillar collagen molecules are trimers that
can be composed of one or more types of alpha chains. Yang
et al., indicated that the decrease of COL5A2 expression could
induce femoral head necrosis (Yang et al., 2018). Park et al.,
demonstrated that abnormal expression of COL5A2 may lead
to new abnormalities in skin and adipose tissue, which can
further lead to the occurrence of aortic aneurysms and dissections
(Park et al., 2017). Park et al., demonstrated that homozygosity
and heterozygosity for null COL5A2 alleles produced embryonic
lethality and a novel classic Ehlers-Danlos syndrome-related
phenotype (Park et al., 2015). A retrospective analysis of bladder
cancer gene expression data presented that COL5A2 in patients
with bladder cancer and ischemic heart disease may possess
important clinical significance (Azuaje et al., 2013; Meng et al.,
2018; Zeng et al., 2018). Moreover, COL5A2 was considered
a potential molecular marker in STAD using bioinformatic
analysis (Li J. et al., 2020; Li Z. et al., 2020). However, a limited
number of reports have been conducted on the mechanism
of COL5A2 in STAD.

In the present study, we identified candidate biomarkers
that may play a distinct clinical significance of STAD. These
newly discovered core genes could be regarded as potential
biomarkers to further explore the molecular mechanism and
the prognostic effects of STAD. However, the present study
contains certain limitations, which can be listed as follows: (1)
the present study requires additional experiments to complement
the bioinformatic analysis; (2) the basic characteristics of the
tumor, such as gender, age, sample size, tumor grade and
stage and main misleading outcomes were not considered
in the present study; (3) although 4 datasets were included,
no definitive results could be obtained. Therefore, subsequent
studies should be employed to confirm the association between
these core genes and STAD.

CONCLUSION

In summary, the present study integrated four different
microarray GEO datasets, and identified 114 DEGs, including
35 upregulated and 79 downregulated genes. Subsequently,
we observed that four core genes (COL1A1, COL1A2, FN1,
and COL5A2) exhibited the highest interaction degrees. The
results of the analysis demonstrate that these four genes play
prominent roles in the complicated and gradual process of
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STAD. However, the primary conclusions of the analysis require
further confirmation by a series of clinical experiments. The
multiple molecular mechanisms of these novel core genes in
STAD may reveal novel therapeutic targets and biomarkers
for STAD treatment.
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