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Abstract

Renal pathology is essential for diagnosing and assessing the severity and prognosis of kid-

ney diseases. Deep learning-based approaches have developed rapidly and have been

applied in renal pathology. However, methods for the automated classification of normal

and abnormal renal tubules remain scarce. Using a deep learning-based method, we aimed

to classify normal and abnormal renal tubules, thereby assisting renal pathologists in the

evaluation of renal biopsy specimens. Consequently, we developed a U-Net-based seg-

mentation model using randomly selected regions obtained from 21 renal biopsy speci-

mens. Further, we verified its performance in multiclass segmentation by calculating the

Dice coefficients (DCs). We used 15 cases of tubulointerstitial nephritis to assess its appli-

cability in aiding routine diagnoses conducted by renal pathologists and calculated the

agreement ratio between diagnoses conducted by two renal pathologists and the time taken

for evaluation. We also determined whether such diagnoses were improved when the output

of segmentation was considered. The glomeruli and interstitium had the highest DCs,

whereas the normal and abnormal renal tubules had intermediate DCs. Following the

detailed evaluation of the tubulointerstitial compartments, the proximal, distal, atrophied,

and degenerated tubules had intermediate DCs, whereas the arteries and inflamed tubules

had low DCs. The annotation and output areas involving normal and abnormal tubules were

strongly correlated in each class. The pathological concordance for the glomerular count, t,

ct, and ci scores of the Banff classification of renal allograft pathology remained high with or

without the segmented images. However, in terms of time consumption, the quantitative

assessment of tubulitis, tubular atrophy, degenerated tubules, and the interstitium was
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improved significantly when renal pathologists considered the segmentation output. Deep

learning algorithms can assist renal pathologists in the classification of normal and abnormal

tubules in renal biopsy specimens, thereby facilitating the enhancement of renal pathology

and ensuring appropriate clinical decisions.

Introduction

Renal diseases are a significant global burden in all facets of health and economy [1, 2]. There-

fore, the precise diagnosis of kidney diseases is a prerequisite for selecting an appropriate treat-

ment strategy. As the golden standard for diagnosing kidney diseases, renal pathology is

essential. Information obtained from renal biopsy specimens is used to confirm the diagnosis

and further assess the severity and prognosis of kidney disease. Therefore, to ensure appropri-

ate clinical decisions, the accurate assessment of renal biopsy specimens is essential.

Currently, deep learning-based approaches have developed rapidly, and they have been

applied extensively in the subspecialty of renal pathology [3]. Specifically, convolutional neural

networks (CNNs), which are the most popular deep learning-based techniques, are mainly

used for the automated detection and morphometric analysis of histological components and

in the prediction of renal disease prognosis. The applications of CNNs in renal pathology

include glomerular counting [4–8], global glomerulosclerosis [9–14], podocyte morphometric

analysis [14–17], the classification of diabetic glomerulosclerosis [18], IgA nephropathy [19,

20], glomerular hypercellularity [21], several glomerular changes [22], kidney transplant

pathology [23–25], interstitial fibrosis and tubular atrophy [10, 11, 14, 26–28], vascular detec-

tion [28], immunofluorescence staining patterns [29], and the classification of normal and

abnormal structures in the renal cortex [4, 30–32] (Table 1). However, studies on the develop-

ment of CNNs that can be successfully applied in the classification of normal and abnormal

renal tubules [4, 5, 11, 30], which remains a challenging domain even among renal patholo-

gists, are scarce. Because tubulointerstitial abnormalities significantly predict the outcome of

various renal diseases, including acute tubulointerstitial nephritis, diabetic nephropathy, lupus

nephritis, and allograft kidneys [33–37], it is crucial to evaluate tubulointerstitial abnormalities

quantitatively.

In this study, we aimed to classify normal and abnormal renal tubules precisely by develop-

ing a segmentation model using U-Net [38], which is a representative CNN-based architecture

mainly used for the segmentation of biomedical images. We improved U-Net by implementing

fine finetuning and Dice cross-entropy [39, 40]. We annotated the abnormal tubules in detail,

including the atrophic and degenerated tubules as well as tubulitis. The automated classifica-

tion of renal tubules could help renal pathologists evaluate renal biopsy specimens rapidly and

accurately.

Methods

Renal biopsy specimens

We used formalin-fixed, paraffin-embedded needle-core biopsies obtained from 21 patients (7

patients 1 h after renal transplantation and 14 patients with tubulointerstitial nephritis) who

underwent renal biopsy between 2000 and 2020 at Kanazawa University Hospital and its affili-

ated hospitals. Because various kidney diseases can involve glomeruli in addition to tubuloin-

terstitial compartments, we needed to collect homogenous samples that involved only the
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Table 1. Deep learning methodologies used for renal pathological studies.

Methodology Stains Histological primitive Number of WSIs or cases Task Ref. No.

U-Net with

ResNet34

backbone

PAS (paraffin sections) Glomerulosclerosis, tubular atrophy 83 WSIs from human

transplant biopsies

Segmentation and classification

of glomerular and tubular

structures

[11]

PAS, MT (paraffin

sections)

Arteries, interstitial fibrosis 65 WSIs from human

transplant biopsies

Segmentation of kidney blood

vessel and fibrosis

[28]

U-Net PAS (paraffin section) Glomeruli, sclerotic glomeruli, empty

Bowman’s capsule, proximal tubuli,

distal tubuli, atrophic tubuli,

undefined tubuli, capsule, arteries

137 WSIs from 122 human

kidney transplant biopsies and

15 human nephrectomy

specimens

Segmentation and classification

of multiclass for histological

primitives

[4]

PAS, HE, PAM, MT Glomerular tuft, glomeruli, proximal

tubules, distal tubules, artery,

peritubular capillaries

459 curated WSIs from 125

human biopsies with minimal

change disease

Multiclass segmentation of

histological primitives

[32]

PAS (paraffin section) Glomerular tuft, glomeruli, tubules,

arteries, arterial lumina, tubular

atrophy, glomerular size, interstitial

expansion

168 WSIs from 16 humans, 41

healthy mice, 75 murine

disease models, 30 other

species, and 6 others

Multiclass segmentation of

histological primitives

[31]

U-Net PAS (paraffin sections) Glomeruli 22 WSIs from mouse kidneys Glomerular segmentation [8]

U-Net and Yolo V2

architecture CNN

CD3, CD4, CD8, CD20,

T-bet, GATA3, CD68,

CD163

Interstitial infiltration of

inflammatory cells

22 WSIs from human kidney

transplant biopsies

Quantitative assessment of the

inflammatory infiltrates

[25]

U-Net and Mask

R-CNN

PAS (paraffin section) Interstitial fibrosis, tubular atrophy,

interstitial inflammation

789 WSIs from human kidney

transplant biopsies

Compartment or mononuclear

leukocyte detection and tissue

detection to predict Banff scores

(ci, ct, ti) and rejection

[24]

U-Net, DenseNet,

LSTM-GCNet, 2D

V-Net

PAS (paraffin section) Glomeruli, mesangial hypercellularity 400 WSIs from human kidney

biopsies with IgA nephropathy

Detection of glomerular location,

lesion identification, glomeruli

decomposition, mesangial

hypercellularity score calculation

[20]

U-Net and U-Net

cycleGAN

WT1, DACH1 Glomeruli, podocytes 110 WSIs from human kidney

biopsies with ANCA-

associated glomerulonephritis

Podocyte morphometrics [17]

VGG16 HE (frozen and paraffin

sections)

Glomeruli, glomerulosclerosis 149 WSIs (98 frozen and 51

paraffin sections) from human

kidney biopsies

Quantification of the percent

global glomerulosclerosis

[9]

Inceptionv3 PAS, HE, PAM (paraffin

sections)

Normal, antibody-mediated rejection,

T-cell mediated rejection, mixed

rejection, borderline T-cell mediated

rejection, other disease

5,844 WSIs from human

kidney transplant biopsies

Classification of Banff category [23]

PAS, PAM (paraffin

sections)

Glomerulosclerosis, segmental

sclerosis, endocapillary proliferation,

mesangial matrix accumulation,

mesangial cell proliferation, crescent,

basement membrane structural

changes

15,888 glomeruli images from

283 human kidney biopsies

Classification of multiple

glomerular findings

[22]

DeepLab V2 PAS Nonsclerotic glomeruli, sclerotic

glomeruli, IFTA

223 WSIs from human kidney

biopsies with 148 diabetic

nephropathy and 75 allograft

kidneys

Detection and quantification of

the percentages of

glomerulosclerosis and IFTA

[10]

PAS, HE (paraffin

sections)

Nonsclerotic glomeruli, globally

sclerotic glomeruli, podocyte nuclei,

other nuclei, interstitial fibrosis,

tubular atrophy

WSIs from mice kidneys and

human kidney biopsies

Segmentation of multiclasses of

histological primitives

[14]

DeepLabv2 ResNet

and RNN

PAS (paraffin section) Nuclear component, PAS-positive

component, luminal component

54 WSIs from human kidney

biopsies and 25 WSIs from

mice kidneys

Detection and segmentation of

glomerular boundaries on WSIs;

diabetic nephropathy

classification/prediction

[18]

(Continued)
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tubulointerstitial compartments for annotation. Thus, specimens with tubulointerstitial

nephritis without other involvement were used to annotate abnormal tubulointerstitial struc-

tures, whereas specimens collected 1 h after renal transplantation were nearly healthy controls

to annotate normal kidney structures. In each specimen, a 2 μm section was stained using a

periodic-acid Schiff staining reagent.

This study was approved by the Ethical Committee of Kanazawa University (approval No.

2020–178). The ethics committee waived the requirement for obtaining informed consent

from the participants because our study design is retrospective and does not involve any fur-

ther tests or treatments of the participants. In addition, all data were fully anonymized before

we accessed them. Further, all participants had access to the detailed information about the

Table 1. (Continued)

Methodology Stains Histological primitive Number of WSIs or cases Task Ref. No.

SegNet and

DeepLab v3+ with

ResNet backbone

PAS (paraffin section) Glomerulosclerosis 26 WSI from donor kidney

biopsies

Glomerular detection and

classification

[12]

DeepLab v3 and

pix2pix GAN

PAS, p57, WT1 (paraffin

sections)

Podocyte nuclei 122 WSIs from mice, rat,

human kidney specimens

Automatically detection and

quantification of podocytes

[16]

SegNet-VGG19

and fine-tuned

AlexNet

PAS (paraffin section) Glomerulosclerosis 47 WSIs from human kidney

biopsies

Segmentation and classification

of glomeruli

[13]

ResNet-101 Immunofluorescence

(frozen section)

Appearance (granular, linear,

pseudolinear), distribution (focal,

diffuse, segmental, global), location

(mesangial, capillary wall), intensity

(0–3)

12,259 images from 2,542

subjects undergoing kidney

biopsies

Classification of immune deposits

on glomeruli

[29]

fine-tuned NASNet HE (paraffin section) Unsupervised extracted features 68 WSIs form human kidney

biopsies with IgA nephropathy

Extraction of features associated

with clinical parameters; after

clustering, multiclass

classification of defined clusters

to produce scores

[19]

CNN and SVM PAS, HE (paraffin

sections)

Endocapillary hypercellularity,

mesangial hypercellularity, endoMes

(both lesions) hypercellularity,

normal glomeruli

811 images (300 images of

normal human glomeruli and

511 images of human

glomeruli with

hypercellularity)

Classification of glomerular

hypercellularity

[21]

Google’s Inception

v3

MT (paraffin section) Interstitial fibrosis 171 WSIs from human kidney

biopsies

Prediction of clinical phenotype [26]

MT (paraffin section) Glomeruli 275 WSIs from 171 human

kidney biopsies

Glomerular segmentation and

classification

[7]

glapathnet (FPN) MT (paraffin section) Interstitial fibrosis 67 WSIs from human kidney

biopsies

Prediction of the IFTA grade [27]

AlexNet + SVM PAS (paraffin section) Glomeruli, mesangial matrix

expansion, tubular nuclei, tubular

vacuolization

98 glomeruli from 17 mice

kidneys, 500 image patches of

tubule structure

Glomerular detection;

classification of glomeruli and

tubules

[5]

Region-based CNN

(AlexNet)

MT (paraffin section) Glomeruli 87 WSIs from rat kidneys and

6 WSIs from human kidney

biopsies

Glomerular localization and

detection

[6]

Pix2pix GAN PAS, WT-1 (paraffin

sections)

Glomeruli, podocytes 24 WSIs from 14 mice kidneys Automated detection of

podocytes

[15]

ANCA, antineutrophil cytoplasmic antibody; CNN, convolutional neural network; FPN, feature pyramid network; GAN, generative adversarial network; GCNet, graph

convolutional network; HE, hematoxylin eosin; IFTA, interstitial fibrosis and tubular atrophy; MT, Masson’s-trichrome; NASNet: neural architecture search network;

PAM, periodic-acid silver methenamine; PAS, periodic-acid Schiff; ResNet, residual network; RNN, recurrent neural network; SVM, support-vector machine; WSI,

whole-slide image; WT-1, Wilms tumor-1

https://doi.org/10.1371/journal.pone.0271161.t001
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study, including the purpose, subjects, and content, available on our website. All subjects were

allowed to withdraw from the study participation using a written form whenever they wanted.

All these processes were approved by the Ethical Committee of Kanazawa University.

Ground truth training and test sets

From 21 kidney specimens, 311 regions were randomly selected, and 500×500 μm2 (approxi-

mately 1,000×1,000 pixels) images were captured by a human observer. For each image, the

corresponding annotation data were generated using the MATLAB Image Labeler (Math-

Works, MA). The annotation data included images labeled pixel-by-pixel for each tissue. Two

patterns of classes were marked; (1) five classes: “glomeruli,” “normal tubules,” “abnormal

tubules,” “arteries,” and “interstitium” and (2) eight classes: “glomeruli,” “proximal tubules,”

“distal tubules,” “arteries,” “tubulitis,” “degenerated tubules,” “atrophic tubules,” and the

“interstitium.” These are in the palette format of the PNG images.

The annotations were carried out by a nephrologist with sufficient experience in renal

pathology (S.H.). Because the number of renal pathologists is still quite small in Japan,

nephrologists are trained and practice renal pathology in most facilities. The annotations per-

formed by S.H. were double-checked by another nephrologist with sufficient renal pathology

experience (M.K.) to improve the annotation quality. When the two nephrologists had differ-

ent opinions, they discussed the issue and then annotated after reaching concordance.

All the normal or abnormal glomeruli were labeled as “glomeruli.” Thin ascending limbs of

Henle, convoluted distal tubules, and cortical collecting ducts were labeled as “distal tubules.”

The “arteries” included archery arteries, interlobular arteries, and arterioles. Tubules with infil-

tration of inflammatory cells and without atrophy or degeneration were defined as “tubulitis.”

The “atrophic tubules” showed narrowing of the tubular lumen owing to atrophy or the wrin-

kling of the tubular basement membranes, regardless of inflammatory infiltration, without

tubular degeneration. The “degenerated tubules” were defined as tubular abnormalities, such

as tubular vacuolation, tubular simplification, budding, loss of brush border, and cell detach-

ment, excluding tubular atrophy and tubulitis. All other unlabeled structures were included in

the “interstitium” category.

First, the kidney biopsy images were annotated with eight classes as described. Then, the

eight classes were recategorized into five classes. “Proximal tubules” and “distal tubules” were

recategorized into “normal tubules,” whereas “atrophic tubules,” “tubulitis,” and “degenerated

tubules” were recategorized into “abnormal tubules.” The total numbers in the annotated

training and test sets are listed in Table 2.

CNN design

We used U-Net for semantic segmentation. U-Net is a model that applies a CNN [38]. Fine-

tuning was implemented using the VGG-16 model [41], which was pretrained on the Ima-

geNet dataset, as the U-Net encoder. The model inputs were the image and annotation data,

and the output was the label information for each pixel. We compared the segmentation

Table 2. Number of annotations per class used in the training and test sets of U-Net.

Normal tubules Abnormal tubules

Glomeruli Proximal tubules Distal tubules Atrophic tubules Tubulitis Degenerated tubules Arteries

Train 141 2,798 1,877 1,465 618 1,307 205

Test 35 700 469 266 155 327 51

Total 176 3,498 2,346 1,831 773 1,634 256

https://doi.org/10.1371/journal.pone.0271161.t002
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models FCN, U-Net, PSP-Net, and DeepLab v3 in a preliminary study, and chose U-Net as the

most suitable for the present study because it exhibited the highest accuracy and relatively

clear segmented images (S1 Table and S1 Fig).

To train the model, we used 80% of the prepared images, which were randomly selected,

and the remaining 20% were used to evaluate the model’s performance. One image was only

used for the training or the test set. The input images for the model were resized to 512×512

pixels. In addition, we standardized the color appearance by the setting of mean (0.485, 0.456,

0.406) and standard deviation (0.229, 0.224, 0.225) as compared to RGB. Data augmentation

was performed during the training process to improve the model’s generalization perfor-

mance, even with a limited amount of data. We adjusted contrast and flipped horizontally at a

rate of 50% and rotated in a range of -15˚ to +15˚ for each epoch within random ranges. For

contrast adjustment, we calculated the average gray color of the input image in grayscale, and

then we created an image “a” of that single gray color. Next, we overlaid the input image and

image “a,” where the alpha value was a numerical value between 0.5 and 1.5. The alpha value

signifies the transparency, and the formula for the output image is given as follows:

output = image “a” × (1.0—alpha) + input image × alpha. A value of zero signifies a solid gray

image, whereas a value of one signifies that the input image remains the same. All these pro-

cesses were performed using Python functions. The number of epochs was set to 200. Adam

was used as the learning rate optimization algorithm, and Dice cross-entropy was used as the

loss function. The output of U-Net was the probability of each label per pixel, and the label

with the highest probability was assigned as the predicted label for that pixel.

Assessment of U-Net’s performance

The Dice coefficient (DC), score of the similarity between two sets, was used to evaluate the

segmentation accuracy. The DC for two sets A and B, which ranges from 0 to 1, is defined as

follows: Because the ground truth (A) and the segmentation result (B) are similar, i.e., the

model’s performance is higher, the DC value becomes larger and closer to one. We calculated

the DC for each label. Cross-validation was performed 20 times, and the median DC value was

calculated.

Agreement rate and time comparison between renal pathologists referring

to and not referring to U-Net-segmented images

To evaluate the usefulness of our U-Net algorithm, we examined the agreement ratio between

two nephrologists with sufficient experience in renal pathology (R.N. and T.Z.), with and with-

out U-Net-segmented images. For this evaluation, we selected another 15 specimens of tubu-

lointerstitial nephritis obtained through renal biopsies between 2000 and 2020 at Kanazawa

University Hospital and its affiliated hospitals. We needed to collect homogenous samples that

involved only the tubulointerstitial compartments for validation. Thus, patients with tubuloin-

terstitial nephritis without other involvement were used to estimate abnormal tubulointersti-

tial structures.

In each sample, a 2 μm section was stained using periodic-acid Schiff staining reagent, and

we created whole-slide images for U-Net segmentation. Each renal pathologist evaluated all

the biopsy specimens twice. The first assessment was performed without the reference of

U-Net-segmented images (U-Net- group), and the other assessment was performed with the

reference of U-Net-segmented images (U-Net+ group). There was a washout period of at least

two weeks between the U-Net- and U-Net+ groups to avoid habituation effects on the samples.

The order of evaluation was crossed: U-Net-!U-Net+ group in nine cases and U-Net

+!U-Net-group in six cases. In each review, renal pathologists examined the (1) glomerular
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count, the (2) Banff t, ct, and ci scores [42], and the (3) percentage of tubulitis, tubular atrophy,

degenerated tubules, and interstitial spaces. Each pathologist recorded the total time taken.

Statistical analysis

Interclass correlation coefficient (ICC) values (2.1) were calculated for the agreement ratio of

continuous variables among the renal pathologists. Cohen’s κ was calculated for the agreement

ratio of categorical variables among the renal pathologists. Non-parametric parameters of the

two groups were compared using the Mann-Whitney U test. The areas of output were com-

pared with those of annotations using linear regression analysis, and the coefficients of deter-

mination were calculated. The significance level for all the analyses was set at 0.05.

Results

Segmentation performance of U-Net for detecting abnormal tubules

First, we performed the semantic segmentation of five classes (glomeruli, normal tubules,

abnormal tubules, arteries, and the interstitium) to clarify whether our U-Net can distinguish

between normal and abnormal tubules. Representative examples of the ground truth and seg-

mentation masks used in the test set are shown in Fig 1. The multiclass segmentation perfor-

mance of U-Net was evaluated and calculated using the DCs listed in Table 3. The highest DCs

obtained were for the interstitium and glomeruli. Normal and abnormal tubules had middle

DCs. A low DC was observed in the arteries. A confusion matrix shows the way in which one

class could be misidentified as a different class (Table 4). Normal tubules were often misidenti-

fied as the interstitium but not as abnormal tubules, whereas abnormal tubules were often mis-

identified as normal tubules (19%) or the interstitium (17%). Arteries were mostly

misidentified as the interstitium (64%).

Detection of different types of abnormal tubules using U-Net

Next, we performed the semantic segmentation of eight classes (glomeruli, proximal tubules,

distal tubules, atrophied tubules, tubulitis, degenerated tubules, arteries, and the interstitium)

to verify whether our U-Net can be used to detect different types of abnormal tubules in detail.

Representative examples of the ground truth and segmentation masks used in the test set are

shown in Fig 2. The multiclass segmentation performance of the U-Net was evaluated using

the DCs listed in Table 3. The highest DCs were obtained from the interstitium and glomeruli

as well as from the five classes of semantic segmentation. Proximal tubules, distal tubules, atro-

phied tubules, and degenerated tubules had intermediate DCs. Arteries and tubulitis had low

DCs. In the confusion matrix, proximal tubules were misidentified as the interstitium (13%)

or as degenerated tubules (11%) (Table 5). Distal tubules were misidentified as the interstitium

(14%). Arteries were mostly misidentified as the interstitium (60%). Tubulitis was misidenti-

fied as the interstitium (21%), distal tubules (15%), or degenerated tubules (15%). Degenerated

tubules were misidentified as proximal tubules (17%) or the interstitium (16%). Atrophied

tubules were misidentified as the interstitium (17%) or as degenerated tubules (10%).

We also quantified the areas of each class using U-Net to determine whether the algorithm

could precisely estimate the area of normal and abnormal tubulointerstitial lesions (Fig 3),

which directly resulted in a reasonable prediction of renal prognosis. We found a strong corre-

lation between annotations and the segmentation model predictions in the glomeruli, proxi-

mal tubules, distal tubules, and the interstitium. Various abnormal tubules, such as tubulitis,

degenerated tubules, atrophied tubules, and arteries, were also moderately correlated between

annotations and segmentation model predictions.
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Fig 1. Representative images of ground truth and eight-class segmentation using U-Net. (A) Whole-slide image of segmentation using

U-Net in a specimen with tubulointerstitial nephritis. (B) PAS-stained slide, ground truth, and segmentation using U-Net. The top row

represents a normal specimen; the middle and bottom rows represent specimens with tubulointerstitial nephritis.

https://doi.org/10.1371/journal.pone.0271161.g001
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Application of U-Net-segmented images to diagnostic situations by renal

pathologists

Finally, we evaluated the usefulness of U-Net-segmented images as an aid for routine diagnos-

tic work performed by renal pathologists. We investigated whether referring to five classes of

U-Net-segmented images would improve the agreement ratios between two renal pathologists

when evaluating tubulointerstitial findings in renal biopsy specimens and the time required

for evaluation.

The ICCs for the glomerular count were 0.97 and 0.95 for the U-Net- and U-Net+ groups,

respectively (Table 6). The Cohen’s κ values of the Banff t, ct, and ci scores were similar at high

levels in both groups, ranging from 0.91 to 0.92 in the U-Net- group and 0.81 to 0.94 in the

U-Net+ group. The ICCs for the quantitative evaluation of areas in tubulitis, tubular atrophy,

degenerated tubules, and the interstitium were low in the U-Net- group (0.14–0.59). However,

in the U-Net+ group, the ICCs improved significantly (0.52–0.81), except for degenerated

tubules (0.17). Furthermore, referring to the U-Net-segmented images improved the median

time for evaluation from 317 s to 214 s [214 s {interquartile range1 (IQR1)180, IQR3 280} in

the U-Net+ group vs. 317 s (IQR1 260, IQR3 371) in the U-Net- group; p = 0.044].

Discussion

In this study, we developed a U-Net-based segmentation model to classify the multisystem

compartments of renal biopsy specimens primarily related to normal and abnormal tubules.

Our developed U-Net could classify normal and abnormal tubules with high accuracy. How-

ever, it was still challenging to identify the exact type of abnormal tubules. On the other hand,

Table 3. Dice coefficients per class.

Features Five classes, median (IQR1, IQR3) Eight classes, median (IQR1, IQR3)

Glomeruli 0.88 (0.55, 0.90) 0.88 (0.56, 0.90)

Normal Tubules 0.76 (0.64, 0.79)

Proximal Tubules 0.69 (0.49, 0.74)

Distal Tubules 0.65 (0.53, 0.68)

Abnormal Tubules 0.67 (0.56, 0.69)

Atrophied Tubules 0.55 (0.38, 0.59)

Tubulitis 0.30 (0.094, 0.35)

Degenerated Tubules 0.48 (0.29, 0.54)

Arteries 0.059 (0, 0.16) 0.027 (0, 0.29)

Interstitium 0.81 (0.74, 0.83) 0.81 (0.74, 0.82)

IQR: interquartile range

https://doi.org/10.1371/journal.pone.0271161.t003

Table 4. Confusion matrix for five-class segmentation using U-Net.

Interstitium Glomeruli Normal tubules Arteries Abnormal tubules

Interstitium 0.81 0.0013 0.12 0.0012 0.054

Glomeruli 0.11 0.83 0.034 0.0048 0.022

Normal tubules 0.12 0.0021 0.79 0.00017 0.085

Arteries 0.64 0.096 0.063 0.096 0.10

Abnormal tubules 0.17 0.0039 0.19 0.0005 0.63

The ground truth labels are given vertically, and the segmentation model’s predictions are given horizontally.

https://doi.org/10.1371/journal.pone.0271161.t004
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Fig 2. Representative images of ground truth and eight-class segmentation using U-Net. (A) Whole-slide image of

segmentation using U-Net in a specimen with tubulointerstitial nephritis. (B) PAS-stained slide, ground truth, and segmentation

using U-Net. The top row represents a normal specimen, and the second through fourth rows represent specimens with

tubulointerstitial nephritis.

https://doi.org/10.1371/journal.pone.0271161.g002
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our U-Net was suitable for the quantitative evaluation of the area in each class and was helpful

as an aid for renal pathologists in evaluating tubulointerstitial lesions among renal biopsy

specimens.

In this study, we annotated the most significant number of tubular components to discrimi-

nate the types of abnormal tubules by adopting U-Net, which is used for the semantic segmen-

tation of kidney histology [4, 17, 24, 31, 32]. Hermsen et al. achieved multiclass segmentation

through U-Net, which showed high DCs on multiclass structures, using whole-slide images

obtained from multicenter institutions [4]. Normal tubules were detected highly, but the DCs

of both atrophic and undefined tubules were low (0.49 and 0.30, respectively) [4]. In this

study, we prepared the most significant amount of annotated data for different types of normal

and abnormal tubules, and the detection rate of atrophic tubules was improved. Degenerated

tubules were moderately detected, but the model’s performance in detecting tubulitis was low.

This may be as a result of the diversity of abnormal tubular findings and the fact that different

types of abnormal tubular findings often coincide within the same tubules.

The second notable point of the present study is that we improved U-Net by implementing

finetuning and Dice cross-entropy. For finetuning, we used the VGG-16 model [41], which

was pretrained on the ImageNet dataset, as the U-Net encoder. The introduction of finetuning

did not change the accuracy but shortened the learning time taken. It needed about 150 epochs

without finetuning to maintain high accuracy, whereas approximately 90 epochs were needed

with finetuning. In addition, we adapted Dice cross-entropy as a loss function. Dice cross-

entropy is a combination of Dice loss and cross-entropy [39, 40]. Dice cross-entropy improved

accuracy more than other loss functions such as focal loss and cross-entropy in our prelimi-

nary study. We believe that the use of Dice cross-entropy in renal pathological studies is lack-

ing. Recently, studies have been conducted to detect tubulointerstitial abnormalities using

various methodologies. Ginley et al. developed a DeepLab v2-based algorithm to assess inter-

stitial fibrosis and tubular atrophy (IFTA) and glomerulosclerosis in native and transplanted

kidneys [10]. They achieved the automated detection and quantification of IFTA lesions by set-

ting IFTA collectively without considering each compartment of IFTA. Bouteldja et al. con-

ducted the multiclass segmentation of healthy and five murine disease models using U-Net

[31]. They extracted tubular dilation and atrophy by measuring the tubular diameter. Yi et al.

constructed a deep learning-based model through the combination of a mask region-based

CNN and U-Net algorithms to recognize normal and abnormal tissue compartments in trans-

plant kidneys, including the Banff t, ci, and ct scores [24]. They applied their algorithms to the

prediction of graft survival. Furthermore, Salvi et al. employed two different U-Nets, denoted

TSC and TCC, and obtained excellent performance in tubular segmentation (DC = 0.92) [11].

Table 5. Confusion matrix for eight-class segmentation using U-Net.

Interstitium Glomeruli Proximal tubules Distal tubules Arteries Tubulitis Degenerated tubules Atrophic tubules

Interstitium 0.82 0.015 0.077 0.036 0.0024 0.011 0.029 0.014

Glomeruli 0.083 0.85 0.030 0.013 0.0023 0.0050 0.012 0.0053

Proximal tubules 0.13 0.0030 0.70 0.033 0.00067 0.017 0.11 0.011

Distal tubules 0.14 0.0050 0.067 0.67 0.00096 0.077 0.017 0.015

Arteries 0.60 0.086 0.020 0.036 0.14 0.023 0.039 0.064

Tubulitis 0.21 0.00071 0.087 0.15 0.027 0.28 0.15 0.12

Degenerated tubules 0.16 0.0055 0.17 0.015 0.0033 0.065 0.52 0.054

Atrophic tubules 0.17 0.0026 0.063 0.035 0.0012 0.085 0.11 0.53

The ground truth labels are given vertically, and the segmentation model’s predictions are given horizontally.

https://doi.org/10.1371/journal.pone.0271161.t005
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Fig 3. Correlation of areas between annotations and segmentation model predictions. There were high correlations

in the interstitium, glomeruli, proximal tubules, and distal tubules. Tubulitis, degenerated tubules, atrophied tubules,

and arteries were moderately correlated between annotations and segmentation model predictions.

https://doi.org/10.1371/journal.pone.0271161.g003
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Essentially, although it is still challenging to determine the types of abnormal tubules using

U-Net alone, in addition to increasing the validity and the number of annotations, the

improvement of deep learning-based methods and their combination with clinical informa-

tion would be required to improve accuracy in the detection of different types of abnormal

tubules and enhancing its significance in clinical outcomes.

Another noteworthy aspect of this study is that referring to the U-Net-segmented images

can help renal pathologists in evaluating tubulointerstitial lesions accurately and rapidly. The

five-class segmented images were visually easier to understand and more accurate than those

of the eight-class segmentation. Therefore, the five-class segmentation images were used to

assist renal pathologists in evaluating renal biopsy specimens. The glomerular count and tubu-

lointerstitial compartments of Banff scoring showed the highest agreement with and without

U-Net-segmented images. However, interestingly, in the quantitative evaluation of tubular

abnormalities, which are more difficult for renal pathologists to assess, U-Net significantly

improved the interpathologist agreement ratios, except for degenerated tubules. This may be

as a result of the high correlation between the U-Net-segmented and annotated regions in

each class. Because abnormal tubulointerstitial areas are associated with worsening renal prog-

noses in various kidney diseases [26, 33–37], the accurate assessment and quantification of

odd tubular areas would improve the quality of the prediction of renal prognosis. Further-

more, the improvement in the time required for evaluation by referring to the segmented

images using U-Net is another advantage of U-Net in the reduction of the physical burden on

renal pathologists [10]. This includes the development of an application for automated detec-

tion and quantification, which would help renal pathologists estimate renal prognosis

promptly. In addition, the link between U-Net-based segmentation and clinical information

would be useful to predict renal prognosis more precisely. This would notably improve the

estimation of renal prognosis compared with the current method of semi-quantification of

tubulointerstitial compartments in both native kidney specimens [43] and the Banff-grading

system of kidney allografts [42].

This study has several limitations. First, our developed U-Net did not recognize tubules as

single structures, and different normal and abnormal tubules were mixed within a single

tubule, thereby resulting in lower DCs. Second, a relatively small number of renal pathologists

participated in this study to validate the usefulness of referring to U-Net-segmented images.

Finally, our developed U-Net had a significantly low accuracy for the “arteries” class. The

number of annotated arteries was small. Specifically, the number of annotated arteries was 256

of 311 regions taken and 80% of them were used for training and the remaining 20% for

Table 6. Agreement ratios between renal pathologists with and without U-Net-segmented images.

U-Net- group U-Net+ group

κ ICC κ ICC

Glomerular count ― 0.97 ― 0.95

t score 0.92 ― 0.90 ―
ct score 0.91 ― 0.95 ―
ci score 0.91 ― 0.82 ―
%Tubulitis ― 0.14 ― 0.52

%Tubular atrophy ― 0.28 ― 0.76

%Degenerative tubules ― 0.18 ― 0.17

%Interstitial space ― 0.59 ― 0.81

ICC, intraclass correlation coefficient

https://doi.org/10.1371/journal.pone.0271161.t006
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testing. This is insufficient for U-Net to train for detecting arteries in the test set. In addition,

the size of the arteries was extremely small compared with other compartments. The areas of

“arteries” are approximately one-fortieth of those of “interstitium.” Thus, “arteries” tended to

be misrecognized as “interstitium.” This study focused on tubulointerstitial structures, and fur-

ther examination is required to scan the entire renal biopsy specimens, including the arteries.

In conclusion, our deep learning algorithm assisted renal pathologists in detecting and

quantifying different types of normal and abnormal tubules in renal biopsy specimens. How-

ever, because the current algorithm is still insufficient for the automated detection and classifi-

cation of different types of abnormal tubules, we must improve its predictive accuracy.

Nevertheless, our current algorithm can be expected to help renal pathologists evaluate renal

biopsy specimens accurately and rapidly, thereby contributing to highly appropriate clinical

decisions.
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