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The association of the receptor binding domain (RBD) of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike pro-
tein with human angiotensin-converting enzyme 2 (hACE2) repre-
sents the first required step for cellular entry. SARS-CoV-2 has
continued to evolve with the emergence of several novel variants,
and amino acid changes in the RBD have been implicated with in-
creased fitness and potential for immune evasion. Reliably predict-
ing the effect of amino acid changes on the ability of the RBD to
interact more strongly with the hACE2 can help assess the implica-
tions for public health and the potential for spillover and adaptation
into other animals. Here, we introduce a two-step framework that
first relies on 48 independent 4-ns molecular dynamics (MD) trajec-
tories of RBD−hACE2 variants to collect binding energy terms
decomposed into Coulombic, covalent, van der Waals, lipophilic,
generalized Born solvation, hydrogen bonding, π−π packing, and
self-contact correction terms. The second step implements a neural
network to classify and quantitatively predict binding affinity
changes using the decomposed energy terms as descriptors. The
computational base achieves a validation accuracy of 82.8% for clas-
sifying single–amino acid substitution variants of the RBD as wors-
ening or improving binding affinity for hACE2 and a correlation
coefficient of 0.73 between predicted and experimentally calculated
changes in binding affinities. Both metrics are calculated using a
fivefold cross-validation test. Our method thus sets up a framework
for screening binding affinity changes caused by unknown single–
and multiple–amino acid changes offering a valuable tool to predict
host adaptation of SARS-CoV-2 variants toward tighter hACE2
binding.
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The ongoing COVID-19 pandemic caused by severe acute re-
spiratory syndrome coronavirus 2 (SARS-CoV-2) continues to

be a major global challenge to public health and has caused un-
precedented losses to the global economy (1) and ecology (2).
Multiple vaccines have received emergency use authorization
(Pfizer, Moderna, and J&J), and additional vaccines are yet to
receive authorization (AstraZeneca and Novavax) in the United
States. However, several new variants of the wild-type (WT) virus
(i.e., isolate Wuhan-Hu-1, GenBank ID code MN908947) have
emerged in United Kingdom (3) (B.1.1.7 or α), South Africa (4)
(B.1.351 or β), Brazil (5) (P.1 or γ), California (6) (B.1.429), New
York (7) (B.1.526), and, more recently, India (8) (B.1.617.2 or δ)
and Peru (9) (C.37 or λ), with increasing prevalence worldwide.
The emergence of novel variants is expected to continue as the
virus faces increasing immune pressure due to an expanding
proportion of the host population being vaccinated and/or getting
immune from natural infection. These variants include one or

more nonsynonymous mutations leading to amino acid changes in
the spike protein. The amino acid changes may confer fitness ad-
vantages and increased infectivity through a variety of mechanisms.
Increased binding affinity of the receptor binding domain (RBD)
of the spike protein with the human angiotensin-converting
enzyme-2 (hACE2) receptor (10) is one such mechanism, al-
though changes in the conformational dynamics of the spike
protein (11) have also been implicated. Although recent reports
suggest that the current vaccines can still effectively protect people
from SARS-CoV-2 variants (12–14), plasma from recipients of
Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) vaccines
is shown to be less effective in neutralizing SARS-CoV-2 variants
encoding E484K or N501Y or the K417N+E484K+N501Y (15)
amino acid changes. In addition, a decrease in neutralizing titers
against the B.1.351(β) but not the B.1.1.7(β) UK variant with
plasma from mRNA-1273 vaccinated humans and nonhuman pri-
mates has been observed (16). Hence, continued surveillance and
methods to accurately predict affinity gains of the RBD−hACE2
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binding event due to amino acid changes in the RBD remain
important.
SARS-CoV-2 is an enveloped virus with a single-stranded

RNA genome of ∼30-kb size (17). The mutation rates of RNA
viruses upon replication are generally higher than DNA viruses,
which could be as high as 10−4 to 10−3 per nucleotide incorpo-
rated (18). SARS-CoV-2 has a mutation rate of, on average, 7.23
mutations per sample (19, 20), which is significantly lower than
that of HIV and influenza A viruses (20, 21). The simultaneous
incorporation of multiple (i.e., refs. 15–20) amino acid changes
in a few emerging strains such as ΔFVI (Danish mink), B.1.1.7
(α) (United Kingdom), B.1.1.54 (South Africa) is a cause of
concern as it suggests further adaptation of the virus and fitness
gains in humans and other animals (22–24). Several of these
variants involve amino acid changes in the spike protein sus-
pected to increase transmissibility (25), alter infectivity (26, 27),
and/or escape neutralizing antibodies (26–28). The viral spike
protein binding to the hACE2 protein is the first and crucial step
in viral entry (29–34). The spike protein makes contact with
hACE2 using 16 residues of the 223-amino-acid-long RBD form-
ing multiple polar and hydrophobic interactions (35). The binding
strength between RBD and hACE2 thus directly influences in-
fection dynamics and, potentially, disease progression. Starr et al.
(36) exhaustively assessed the impact of single–amino acid changes
in the RBD of the SARS-CoV-2, quantifying the effect on RBD
expression and hACE2 binding. It was revealed that most amino
acid changes (i.e., 84.5%) are detrimental for RBD expression and
hACE2 binding, around 7.5% of amino acid changes are neutral,
but about 8% enhance hACE2 binding. The corresponding amino
acid changes in RBD that lead to enhancements in binding with
hACE2 can potentially become additive in their contribution to
receptor affinity. Even though the RBD accounts for only 2% of
the amino acid changes observed in the entire spike protein (37), it
is the target for more than 90% of the neutralization antibodies
generated by humoral response (38). Therefore, RBD is likely the
most susceptible target to antigenic escape by amino acid changes.
Consequently, amino acid changes in RBD that can increase
binding affinity with hACE2 and/or adversely affect antibody
neutralization have been extensively mapped by high-throughput
mutational studies (39, 40). For example, the amino acid change
Y453F in the RBD present in the ΔFVI (Danish mink) variant
increases the binding affinity to hACE2 by fourfold (41) while also
managing to partially evade the monoclonal antibody REGN10933
present in the Regeneron antibody mixture (42). These studies
highlight the importance of monitoring single and multiple amino
acid changes in the spike RBD and their potential for increased
binding affinity with ACE2 and/or immune escape. It is important
to note that, although the binding of the viral RBD with the
hACE2 receptor is a necessary step, it is not sufficient to cause a
productive viral infection. Proteolytic cleavage of S1/S2 and S2′
sites is also needed to expose the fusion peptide, enabling mem-
brane fusion followed by viral entry at the surface or upon endo-
cytosis (43). Furthermore, the host cellular environment must be
permissive to viral RNA genome replication, translation to pro-
teins, and assembly into new virions (44). Nevertheless, there is an
unmistaken trend line in the accumulation of variants with amino
acid changes that improve binding affinity of the viral RBD with
hACE2. Upon assessing ∼1.5 million sequences deposited in the
Covid-19 Mutation Tracker (CovMT) (45) database [which is
based on data from the Global Initiative on Sharing Avian Influ-
enza Data (GISAID) (46)], we found that approximately 1 million
sequences had at least one single–amino acid change in the RBD.
Of these, 92% (∼970,000 sequences out of 1 million) involved an
amino acid change in the RBD that improves binding to hACE2 as
measured by deep mutational scanning (36). This implies that
binding-improving amino acid changes in the RBD are at least
11-fold enriched among circulating variants. This observation
further underscores the importance of assessing variants with

improved binding to hACE2 using prospective computational
studies.
Computational methods can help assess the mechanistic role

of the amino acid changes occurring in circulating viral variants
and also predict potentially problematic amino acid changes that
have not been identified so far. In a recent study, Chowdhury
et al. (35) biophysically characterized the binding interactions of
human ACE2 with SARS-CoV-2 and SARS-CoV, uncovering
the molecular details associated with the increased infectivity of
CoV-2, relative to CoV. In another effort, Mohammad et al. (47)
calculated that the D614G variant has a higher computational
binding interaction energy with furin. This was later experi-
mentally corroborated, revealing that the D614G change both
increases RBD accessibility to binding with hACE2 (11) and
enhances the efficiency of furin cleavage (48). Zhou et al. (28)
performed molecular dynamics (MD) simulations and molecular
mechanics/Poisson−Boltzmann surface area analysis on the N439K
variant suggesting a higher binding affinity to hACE2 and resis-
tance to the antibody REGN10987. These findings were supported
by experimental evidence for the N439K variant escaping multiple
neutralizing antibodies, including REGN10987 (28). Several stud-
ies focus on testing the effect of one or several key single muta-
tions, but systematic methods to predict and analyze a wider
multimutational landscape are still lacking. It is worth noting that
Chen et al. (49) used an algebraic topology-based machine learning
(ML) model to quantify the binding free energy changes of RBD
from several existing CoV-2 variants. However, the performance of
the method used was tested on the general SKEMPI-2.0 (50)
dataset, which is not SARS-CoV-2 specific. Recently, Laurini et al.
(51) performed a computational mutagenesis of the RBD−ACE2
interface residues and assessed changes binding energies using MD
simulations and validated using experimental data.
Several computational approaches have been developed to

predict the effect of amino acid substitutions on protein−protein
binding affinity. Some of them use energies directly from mo-
lecular mechanics−based empirical force fields such as FoldX
(52) and Rosetta (53, 54) or energies from molecular mechanics–
generalized Born surface area (MM-GBSA) analysis of ensembles
obtained fromMD simulations (55). Other methods, such as Single
Amino Acid Mutation based change in Binding free Energy
(SAAMBE) (56) and BindProfX (57), use a combination of bio-
physical energies and residue-level structural properties or
sequence-based conservation profiles, respectively. Purely statisti-
cal potentials such as BeAtMuSiC (58) and Contact potentials (59)
have also been explored. Updating the weights of energy terms
using experimentally determined ΔΔGbind defined as the change in
the free energy of binding upon amino acid changes (i.e., ΔΔGbind =
ΔGvariant − ΔGWT) has been shown to improve the prediction
performance of molecular mechanics−based force fields such as
Rosetta (60, 61). The recently introduced ML−based method
TopNetTree achieves a better correlation coefficient over sev-
eral existing methods on two benchmark datasets, Antibody-Bind
(AB-Bind) and Structural Kinetic and Energetic database of
Mutant Protein Interactions (SKEMPI) (62). Despite the exis-
tence of many different ΔΔGbind prediction methods, as reviewed
recently (63), performance is not always robust on unseen datasets
not part of training data. The major limiting factor contributing to
test set prediction inaccuracies is the paucity of experimental
datasets (on ΔΔGbind) with good coverage of both types and lo-
cations of amino acid changes (63).
In this work, we first tested the predictive power of both pa-

rameterized force fields [i.e., Rosetta (53, 54)] and detailed MM-
GBSA (64–66) analysis of MD simulation trajectories with ex-
plicit water molecule treatment (67, 68) (Table 1) in reproducing
experimental RBD−hACE2 binding affinity data reported by
Starr et al. (36). Predictions for both provided only partial
agreement with experimental data (i.e., r = 0.33 for MM-GBSA).
Therefore, we next used experimental RBD−hACE2 binding
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energy terms to train a neural network (NN) regression model
(NN_MM-GBSA) using the decomposed MM-GBSA energy
terms as features and the experimental dissociation constants
(KD,app) ratios between the variants and the wild-type as the
regression target. Fig. 1 pictorially illustrates the computational
pipeline employed to build the model. Agreement between ex-
periment and the NN_MM-GBSA model predictions was sig-
nificantly better than raw MM-GBSA energies, reaching a
correlation coefficient of r = 0.73 and an accuracy of 82.8% for
correctly classifying of the effect of amino acid changes as im-
proving or worsening the binding affinity. The NN_MM-GBSA
model also predicted the enhanced binding affinities of the RBD
from currently circulating SARS-CoV-2 variants (Table 2). The
achieved accuracy of prediction suggests that this model can be a
useful tool for the computational assessment of both current and

emerging SARS-CoV-2 variants. The source code for the
NN_MM-GBSA model is available on GitHub at https://github.
com/maranasgroup/NN_MM-GBSA_CoV2.

Results
Dataset Preparation. The three-dimensional (3D) coordinates of
the SARS-CoV-2 RBD in complex with human ACE2 were
obtained from the Protein Data Bank (PDB) (69) entry 6LZG
(70). There exist 20 RBD residues that directly make contact
with hACE2 and make strong interactions at the binding inter-
face (36). This gives 380 possible single–amino acid variants upon
changing each one of the 20 RBD residues into the remaining 19
amino acids. Of these, we chose all 27 variants with an increased
binding affinity and 54 variants with lower binding affinity com-
pared to the WT. The dataset was balanced by adding another 27
variants that exhibited binding enhancement although not in direct
contact with hACE2. These variants were selected to maintain
roughly an equal number of positive (binding energy improving)
and negative (binding energy decreasing) variants in the dataset.
The 108 variants selected (Fig. 2B) (Dataset S1) formed the training
dataset for this study and are used for the fivefold cross-validation
training (see Methods). Another set of 54 variants (not a part of the
training set of 108 variants) was selected as a blind test set that was
not used in any of the training/validation procedures (Dataset S2).
All RBD variants in the dataset were computationally mod-

eled using Rosetta (54, 55) and analyzed for changes in binding
affinity with hACE2 compared to the WT RBD. Experimental
data on variant binding affinities were obtained from the deep
mutagenesis study by Starr et al. (36). The study reported

Table 1. Comparison of prediction performance of Rosetta and
MM-GBSA with the regression models trained on Rosetta or MM-
GBSA energies

Method Correlation coefficient r %VC

NN_ MM-GBSA 0.73 (0.03) 82.80 (1.98)
NN_Rosetta 0.56 (0.08) 74.03 (2.75)
Linear_regression_MM-GBSA 0.54 (0.17) 67.23 (1.20)
Rosetta 0.47 68.52
MM-GBSA 0.33 61.11

For the regression models, the SD obtained for the five repetitions of the
fivefold cross-validation and training is shown in parentheses.

Fig. 1. Schematic representation of the workflow for building NN_MM-GBSA model. (A) MD simulations are performed for each single-point amino acid
substitution variant in explicit solvent followed by MM-GBSA analysis to calculate the decomposed components of binding energies. (B) MM-GBSA binding
energy components are fed as inputs to the NN with the experimental KD,app ratios as the regression target. The model is trained using five cycles of the
fivefold cross-validation procedure.
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apparent dissociation constant KD,app ratios for all possible vari-
ants with single–amino acid changes at every RBD position. A
KD,app ratio (i.e., KD,app,variant/KD,app,WT) for a variant greater than
one implies stronger binding compared to WT, whereas a value
less than one implies weaker binding (Fig. 2C). KD,app ratios can

be related to changes in the free energy of binding (i.e., ΔΔGbind)
as (KD,app,variant)/(KD,app,WT) = exp(−ΔΔGbind/RT). This enables
direct comparison of experimental measurements with estimates
of changes in binding energies from MM-GBSA and other com-
putational methods (see Methods for details).

Table 2. Predictions of KD,app ratios for amino acid changes found in circulating strains of SARS-CoV-2

Amino acid change(s) SARS-CoV-2 variant lineage (102) Experimental KD,app ratio NN_MM-GBSA KD,app ratio

K417T P.1(5) (γ) 0.55 0.65
K417N B.1.351(4) (β) 0.35 0.61
L452Q C.37 (9) (λ) 1.17 1.11
L452R B.1.429(6), B.1.617.2 (8) (δ) 1.05 1.09
Y453F* B.1.1.298 (23) 1.78 1.21
S477N B.1.526(7)† 1.15 1.09
T478K B.1.617.2 (δ) 1.05 1.11
E484K B.1.351(4), P.1(5)(γ), B.1.1.7†(3)(α) 1.15 1.21
F490S C.37 (λ) 1.00 1.10
S494P B.1.1.7†(α) 1.00 1.04
N501Y* B.1.351(β), B.1.1.7, P.1(γ) 1.74 1.22
E484Q B.1.617(8) 1.07 1.09
E484K+N501Y P.1, B.1.351 – 1.22
E484K+S477N B.1.526† – 1.10
E484Q+L452R B.1.617 – 1.21
T478K+L452R B.1.617.2(δ) – 1.12
F490S+L452Q C.37 (λ) – 1.11
E484K+N501Y+K417T P.1(γ) – 1.22
E484K+N501Y+K417N B.1.351(β) – 1.22
E484K+N501Y+S494P B.1.1.7†(α) – 1.22

*Single–amino acid changes part of the training data.
†Amino acid change detected in some sequences of lineage but not all.

Fig. 2. (A) The crystal structure of complex formed between RBD and hACE2. The ACE2 protein is shown as a cartoon representation in blue, and the RBD is
shown in magenta. Residues of the RBD variants that are in direct contact with hACE2 are depicted as cyan spheres. Residues that are not in direct contact are
orange. (B) Zoomed view of RBD in (A) with residues labeled explicitly. (C) Histogram showing experimental KD,app ratios for all 108 RBD variants in the
training dataset. The histogram bars in black denote the number of variants in the training set with increased binding affinity compared to WT (KD,app

ratio>1.0), and the bars in gray indicate the variant counts with decreased binding affinity (KD,app ratio < 1.0).
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Binding Affinity Change Prediction for Variants Using MM-GBSA
Values from MD Simulations. For each RBD variant, we first per-
formed MD simulation of the hACE2−RBD complex followed
by MM-GBSA analysis on frames derived from the simulation to
calculate binding energies. For each variant, 48 independent
initial configurations of the complex were generated by Monte
Carlo minimization (53, 71) (see Methods). Starting from each
configuration, a 4-ns unconstrained MD simulation was carried
out which, together, sum up to a 192-ns-long trajectory for each
variant. We used a sequence of short simulations (72), starting
from several independent configurations instead of one long
simulation trajectory, as it led to faster convergence. The 3D
coordinates of the complex were extracted from each trajectory
upon removing the solvent molecules after every 0.1 ns, gener-
ating 1,920 different frames for each variant. The simulations
were found to be equilibrated at the interface, as indicated by the
SD in RMSD ranging between 0.45 and 0.61 Å for all 108 var-
iants (SI Appendix, Figs. S1 and S2). MM-GBSA energies were
calculated for all frames (see Methods) and subsequently aver-
aged in 60 bins chosen randomly, to obtain an ensemble of 32
binding energy predictions for each variant. The mean value of
the ensemble of 32 predictions was chosen as the predicted
binding energy ΔGvariant of the variant. The binding energy
change for each variant ΔΔGbind was then obtained by sub-
tracting the binding energy of the WT RBD−hACE2 complex
ΔGWT. A negative ΔΔGbind value (corresponds to KD,app ratio >
1) indicates improved binding affinity with hACE2, whereas a
positive ΔΔGbind value (corresponding to KD,app ratio < 1) im-
plies lowered binding affinity.
Using this computational workflow, we calculated the ΔΔGbind

for the balanced dataset of 108 RBD variants. Note that a bal-
anced training set was maintained, to alleviate the risk of biased
predictions due to having more variants with worsening or im-
proving binding affinities. We scored classification predictions
using the percent recovery of correct variant classification (%
VC) in terms of the direction of change in the binding affinity
compared to WT. The quantitative binding affinity prediction was
scored using the Pearson correlation coefficient r (see Methods)
between predicted and experimental ΔΔGbind values. We found
that (Table 1) Rosetta slightly outperforms MM-GBSA in both
prediction of the direction of change (i.e., %VC) and r value. This
could be because of the poor scaling of the respective energy terms
in MM-GBSA for the experimental system, leading to some out-
liers having very large predicted values (Fig. 3) and a lower r value
(i.e., r = 0.33) than Rosetta (i.e., 0.47). In addition to the energy
function from Rosetta (54), three other computational servers
were tested for the prediction: mCSM-PPI2 (73) utilizing graph-
based signatures, the random forest model MutaBind2 (74)
trained with molecular mechanics energies (75) and evolutionary
scores (76), and SAAMBE-3d (77, 78) which uses an ML model
trained on structural features. Using MutaBind2 and mCSM-PPI2,
the performance in both %VC and r value was worse than that of
both MM-GBSA and Rosetta. The predictions from SAAMBE-3d
led to a good correlation value r but were very poor in %VC
(=53%), almost the same as random prediction. This may be due
to the fact that Rosetta and MM-GBSA attain a higher fidelity in
the description of the underlying biophysics by using a detailed
fully atomistic description of interactions and hence are better at
distinguishing improving vs. worsening variants. Note that, be-
cause the numerical values ΔΔGbind for variants improving the
binding affinity are quite small (maximum of ∼ −0.3 kcal/mol)
compared to those worsening the binding affinity (maximum of ∼
+2.5kcal/mol), both metrics %VC and r need to be simultaneously
high to indicate robust prediction. Nevertheless, prediction met-
rics %VC and r calculated for MM-GBSA (or Rosetta) did not
attain values that reflect reliable quantitative prediction. We thus
focused on improving prediction fidelity by attempting to capture
nonadditive contributions of the respective energy terms. This was

accomplished by not merely using various energy terms in an ad-
ditive fashion to assemble the overall binding energy but, instead,
by relying on an NN to construct a nonlinear reassortment of these
energy terms.

NN Regression Model Trained on MM-GBSA Energies and Experimental
Kd,app Ratios. An NN regression model with a single input and a
single output layer was built, targeting quantitative prediction of
the KD,app values for the 108 RBD variants. The MM-GBSA en-
semble of energies obtained from the MD trajectories of each
variant was fed as input features to the NN. The input layer had 18
nodes for feeding in the 18 MM-GBSA energy terms (seeMethods
for description of all terms). The output from the input layers
passed through each of the four fully connected hidden layers with
54 nodes in each layer (see Methods for details on how the NN
parameters were obtained by optimization). After passing through
the hidden and output layers, a single predicted value for KD,app
was generated. The model was trained to minimize the mean sum
of squared error between the predicted KD,app and experimental
KD,app values (seeMethods for details). When making a prediction,
each of the 32 sets of energies was fed into the trained model to
get a single KD,app prediction, and the final prediction value was
recovered as the mean of predictions from all 32 ensembles. The
overall computational workflow is summarized in Fig. 1.
During training and assessment of the model, a fivefold cross-

validation procedure was followed. In each cross-validation cy-
cle, the 108 variants are randomly assigned to five groups of
approximately equal size. Four of these subsets were used as the
training sets, whereas the fifth became the testing set. This ap-
proach was chosen so that the testing set used to assess the
prediction performance of the NN model is never used to train
the predicting NN model. This fivefold cross-validation was re-
peated 10 times using random reassignments for the testing set.
This led to the construction of 5 × 10 = 50 independently trained
NN models which had an average value of r = 0.73 (obtained
across the 50 models) and an SD of only 0.03, implying both

Fig. 3. ΔΔGbind prediction performance of MM-GBSA binding energies on
108 RBD variants. Dashed horizontal and vertical lines are drawn for refer-
ence at experimental and predicted ΔΔGbind = 0. Shown in blue are variants
for which the effect on binding affinity (sign of ΔΔGbind) is predicted cor-
rectly compared to the experimental value. Those predicted incorrectly are
shown in red.
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robust and accurate prediction (Fig. 4A). Notably, the correla-
tion coefficient of prediction improved by more than twofold
compared to the MM-GBSA method (i.e., r = 0.33), indicating
that a higher-order nonlinear structure, relevant to ΔΔGbind
prediction embedded in the energy terms, was captured by the
NN model. Correct variant classification (i.e., %VC) was also
improved from 64 to 82.8% (Table 1). We also evaluated the
performance of the NN on the blind test set of 54 variants using
NN_MM-GBSA trained on the entire dataset of 108 variants
(Fig. 4B). The performance achieved on the blind test had an r
value of 0.79 and %VC of 80.41, very close to those obtained on
the validation data. This blind test analysis alludes to the ro-
bustness of NN_MM-GBSA on unseen data and indicates that it
is not prone to overfitting.
As a methodological check, we also explored whether the

nonlinear nature of the NN model is needed to reach the gains in
prediction or whether a linear regression model could reweight
the energy terms in a linear fashion and achieve similar perfor-
mance. We found that a linear regression model only improved
the correlation coefficient r from 0.33 to 0.54 and %VC from
61.11 to 67.23% in comparison with the MM-GBSA prediction
method. This implies that the higher-order nonlinear reassort-
ment of energy terms is required for reaching improved predic-
tion fidelity. As a follow-up, we also explored whether the energy
terms from Rosetta (53, 54) could be used instead of the ones
from MM-GBSA to construct an NN model of equivalent pre-
dictive ability. We found that the gains in r and %VC for an NN
model trained on the Rosetta energy terms were less than those
seen when trained on MM-GBSA energies (i.e., r = 0.57, %VC =
74.33). This may be because the explicit water treatment em-
bedded in MD simulations is essential for correctly describing
water-mediated hydrogen bonding and other electrostatic con-
tacts at the interface while also enabling the sampling of a larger
conformational landscape necessary for capturing binding af-
finity changes due to nonlocal structural changes (72). Note that
the Rosetta energy function captures solvation effects implicitly
without an explicit treatment of water molecules.
As a further demonstration that the NN_MM-GBSA model

captures variant-specific information and does not simply carry
out numerical fitting, we performed a data scrambling test. Spe-
cifically, we reassigned the variant definition (i.e., corresponding

amino acid change) to randomly chosen input energy terms,
thereby destroying any variant-specific correspondence with the
input features. We gradually increased the fraction of data scram-
bled and reevaluated NN_MM-GBSA model performance. We
found that, as the fraction of scrambled data increased, the per-
formance of the NN_MM-GBSA model declined (SI Appendix,
Table S4). The %VC dropped from the original 82.8% to 50.37%
(almost entirely random). This test reaffirmed that the NN_MM-
GBSA model indeed captured variant-specific information.

NN_MM-GBSA Model Prediction of KD,app Ratios of Circulating
SARS-CoV-2 Strains. Several amino acid changes have been iden-
tified in the spike protein of several of the currently circulating
SARS-CoV-2 variants (20). Of the underlying single–amino acid
changes, some were part of our balanced training set (i.e., N501Y,
L452Q, Y453F), whereas others (i.e., K417T, K417N, E484K,
S477N, L452R, T478K, F490S, S494P) were not. The predicted
KD,app ratios along with experimental values (when available)
and lineage names of variants that contain the corresponding
amino acid changes are tabulated in Table 2. In all cases, amino
acid changes were correctly classified as improving or worsening
(i.e., %VC = 100) with a good quantitative agreement (Table 2).
Notably, variant B.1.351 has the amino acid change N501Y first
seen in B.1.1.7 along with additional changes E484K and K417N
in the spike (79, 80). The E484K change has been shown to be
responsible for evasion of neutralization by several antibodies
(78, 81), whereas the N501Y change has been associated with
increased binding affinity to hACE2 (36) and increased trans-
mission (82). Our MD simulation results suggest that the Y501
residue of the RBD in the variant N501Y forms a new electro-
static interaction with residue Y41 of hACE2 through a T-shaped
pi−pi stacking interaction (Fig. 5A), as also validated by the re-
cently published cryoelectron microscopy (cryo-EM) structure
(79) N501Y-RBD in complex with hACE2 (Fig. 5A). Also, the
amino acid change E484K places a lysine residue close to residues
E75 and E35 of hACE2, causing more favorable electrostatic in-
teractions compared to the WT (Fig. 5B). This led to the com-
putational prediction of the formation of a weak salt bridge
(although only seen in 4% of frames during MD simulations)
contributing to its improved binding affinity (Table 2). Also, the
distances between the nitrogen atom of side chain of K484 from
the carbonyl atoms of side chains of E75 and E35 as sampled by
the MD simulations closely agree with those from the cryo-EM
structure (83) of P.1 variant (Fig. 5B). In contrast, amino acid
change K417T leads to the loss of a salt bridge (Fig. 5C), pre-
sumably causing the observed decrease in binding affinity as also
predicted by NN_MM-GBSA (Table 2). We further assessed the
accuracy of structure recovery of the P.1 (γ) variant by our MD
simulations by comparing it with the cryo-EM structure 7NXC
(83). The MD snapshots yielded an average all-atom RMSD of
0.88 Å of the interface residues and an average RMSD of 1.57 Å
of the entire complex when superimposed on the cryo-EM struc-
ture (SI Appendix, Tables S1 and S2). Good agreement in recov-
ering backbone configurations was also demonstrated by the MD
simulations of P.1 variant (SI Appendix, Fig. S3). Table 2 also
includes predictions for multiple simultaneous amino acid changes
present in some circulating variants. Alas, experimental values are
not available to this date, which prevents any direct comparison.
Nevertheless, significantly higher binding affinities were predicted
for all of the double and triple amino acid variants tested and
present in currently circulating isolates (Table 2).

Discussion
The NN_MM-GBSA model was developed by a two-step proce-
dure that uses binding energy terms calculated for SARS-CoV-2
RBD variants from MM-GBSA to train an NN to reproduce
corresponding experimental values (36) of binding affinity changes
of the RBD variants with hACE2. The model predicts both

Fig. 4. (A) KD,app ratios predicted by NN_MM-GBSA vs. experimental ratios
obtained using five cycles of fivefold cross-validation study on the Training &
Validation dataset of 108 RBD variants. (B) Blind test dataset of 54 RBD
variants. An average correlation coefficient of r = 0.73 (SD = 0.03) and av-
erage %VC of 82.80% (SD = 0.9802) were achieved for the validation set,
and r = 0.79 (SD = 0.03) and average %VC of 82.8% (SD = 2.01) were
achieved for the blind test set. The mean-squared error was 0.28 (SD = 0.04)
and 0.20 (SD = 0.02) for validation and blind test sets, respectively. The
solid diagonal line y = x and the dashed horizontal and vertical lines at
experimental and predicted KD,app ratio = 1 are drawn for reference.
Shown in blue are variants that were correctly classified as improving (or
worsening) binding affinity with hACE2, and, in red, are the ones that were
misclassified.
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qualitative and quantitative effects of amino acid changes in the
RBD of the spike protein on changes in binding affinity with
hACE2. Using a balanced training set of 108 variants, the model
achieved a Pearson correlation coefficient of 0.73 between pre-
dicted and experimental values for the KD,app ratios. In addition,
the recovery of the correct effect of an amino acid change
(i.e., improving or worsening binding) was 82.8%. We also found
the prediction to be quite robust in performance on a blind test set

of 54 variants, achieving an r value of 0.79 and %VC of 80.41.
Notably, Starr et al. (36) exhaustively assessed a total of ∼4,000
RBD variants for their binding affinity changes with hACE2,
whereas, in this study, we used only a small fraction of the dataset
(108 variants). Furthermore, as we continued to add additional
members to the training dataset of 108 variants, no clear trend
line was observed indicating any systematic change in model
performance.

Fig. 5. Local environments altered by the amino acid changes N501Y, E484K, and K417T as seen in MD simulations are compared with the cryo-EM
structures 7MJN of the N501Y variant and 7NXC of the P.1 variant. The RBD is shown in magenta and the hACE2 is shown in blue cartoon representation.
Amino acid side chains from the cryo-EM structures are shown in stick representation, and the corresponding side chains from the MD simulations are
shown in line representation. (A) Comparison of a pi−pi interaction formed in the variant N501Y as seen in cryo-EM structure 7MJN vs. as seen in a
representative set of 10 MD snapshots. The pi−pi interaction is characterized by the distance d between geometric centers of the two tyrosine residues
and the angle <n1, n2> between their normal vectors. For MD snapshots, average and SD of d and <n1, n2> computed across 192 ns simulation are shown.
(B) Comparison of the proximity of lysine in E484K variant to glutamate residues at 35 and 75 of hACE2 as seen in cryo-EM structure 7NXC vs. as seen in a
representative set of 10 MD snapshots. The distances d1 and d2 for 7NXC are shown, and those shown for MD snapshots are average and SD computed
across 192-ns simulation. (C) Figure of the close-by residues of threonine in the variant K417T as seen in cryo-EM structure 7NXC, indicating the loss of salt
bridge from WT (lysine residue of the WT taken from 6LZG crystal structure is shown as transparent stick). The corresponding 10 representative MD
snapshots are shown to the right in comparison.
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The true value of NN_MM-GBSA is not the assessment of variants
with single–amino acid changes, but the surveillance of multiple–
amino acid change variants. We predicted the change in binding
affinity upon the amino acid changes E484K+N501Y+K417N
present in B.1.351(β) and E484K+N501Y+K417T present in
P.1(γ). We found that NN_MM-GBSA predicts a significantly
increased affinity for hACE2 (Table 2) for both. This suggests
that the effect of amino acid changes E484K and N501Y dominates
the effect of K417N or K417T, which are both known to decrease
the binding affinity by themselves, and this is possibly the reason for
the convergent association of these amino acid changes seen in the
lineages B1.351(β) and P.1(γ) (80). Furthermore, the amino acid
changes T478K+L452R and F490S+L452Q that emerged in the
B.1.617.2 (δ) and C.37 (λ) lineages first seen in India (8) and in
Peru (9), respectively, were predicted to have an improving binding
affinity to hACE2 by NN_MM-GBSA (Table 2).
Importantly, the structural recapitulation of these variants by

MD simulations was found to be in good agreement with the
cryo-EM structures 7NXC (83) and 7MJN (79). Hence, using
relatively 48 short (4 ns) trajectories, each starting from a different
backbone conformation generated using Rosetta, proved to be
sufficient for sampling crucial structural features of RBD variants.
This could be because the protein backbone conformations in
RBD variants were not perturbed significantly (SI Appendix, Table
S1) compared to the RBD structure of WT virus. Note that,
previously, a similar combination of Rosetta and short MD sim-
ulations has been used to achieve accurate structure refinement by
iterative sampling (84).
A drawback of NN_MM-GBSA is that it requires a priori MD

simulation of the variant under evaluation and collection of all
energy terms using MM-GBSA analysis. This is computationally
costly, as a single calculation requires, on average, a total of
∼72 GPU-hours on an Nvidia Tesla P100 and 24 CPU-hours on
Intel Xeon 2.8GHz processors. Ideally, one could simply use
existing energy terms generated from the balanced training set of
108 variants to make predictions for novel variants. However,
this would require training an NN model with more than just
energy terms as descriptors. The use of sequence and/or struc-
tural features could provide a tractable path forward in this
direction.
To assess the potential impact of glycosylated sites on RBD

and hACE2 on the binding affinity, we repeated the MD simu-
lation with the presence of glycan residues at position 343 in
the spike and positions 53, 90, and 322 in ACE2 starting from the
crystal structure 6LZG. We found insignificant changes in the
binding affinity for the WT complex (SI Appendix, Table S5).
While a recent experimental study suggested that there is only a
subtle influence of hACE2 glycosylation on its binding strength
to RBD (85), other efforts (86) suggested a more significant
contribution of glycosylation to binding. This implies that care-
fully tailored studies are still needed to quantify the effect of
glycans on changes in binding affinity upon amino acid changes.
In principle, NN_MM-GBSA can also be used to assess the

potential of SARS-CoV-2 to infect and adapt to other nonhu-
man hosts, by assessing the binding energies of the spike RBD
with the animal ACE2 receptors. However, the structures of
nonhuman ACE2 are currently unavailable [except for bats (87)
and felines (88)]; therefore, the first step would require modeling
the 3D structures of ACE2 receptor and ACE2−spike complexes
for the examined species. Several efforts along this direction
have been carried out for livestock and companion animals (35,
89), and accurate assessments for high-risk animals are urgently
needed, since several animal species are proving to be suscepti-
ble by natural infection [gorillas (90), otters (91)] or experi-
mental infection [deer (92), cattle (93), pigs (94)]. Assuming that
training of NN_MM-GBSA using hACE2 data is robust, it could,
in principle, be used to assess the relative affinity of the RBD of
circulating variants for various animal ACE2s prospectively.

Crucially, our methodology can detect problematic amino acid
changes and assess the potential of increased cross-species
transmission for circulating (or predicted) variants.

Methods
Rosetta Calculations for Independent Structure Generation. The 3D coordi-
nates of SARS-CoV-2 viral spike RBD in complex with hACE2 were extracted
from the crystal structure with PDB entry 6LZG (70). The obtained WT model
was first preprocessed by removing all solvent molecules and all non−amino
acid residues. Then, for each of the 108 RBD variants with single-point amino
acid changes, 3D coordinates were generated using RosettaScripts (95). First,
the PackRotamers mover was used to build the variants with amino acid
changes and repack the rotamers. Then, for each variant, 48 independent
configurations for MD simulations were generated using the Relax (71)
energy minimization protocol.

MD Simulations and MM-GBSA Analysis. For each variant, the 3D coordinates
of 48 independent configurations obtained using Rosetta (as described
above) were prepared using the protein preparation wizard (96) protocol of
Maestro in Schrödinger suite (v2019.4). Each configuration was then sol-
vated with water using the tip3p (68) model in an orthorhombic box with
10-Å buffer distance in each dimension. The residual charges were neu-
tralized by adding Na+ and Cl− ions at a salt concentration of 0.15 M. The
solvated systems were minimized and preequilibrated using the default re-
laxation protocol of Desmond (97) followed by a 4-ns production run using
the amber99sb-ildn (67) force field at 300 K and 1 atm. The simulations were
perfromed in isothermal-isobaric ensemble (NPT) ensemble with periodic
boundary conditions using particle mesh Ewald (98) for long-range inter-
actions. A time step of 2.0 fs was used, and a cutoff distance of 9.0 Å was
chosen for nonbonded interactions.

For each variant, the 4-ns trajectory for each of the 48 configurations was
sampled at an interval of 0.1 ns, generating 1,920 snapshots in total. For each
snapshot, the Prime/MM-GBSA analysis (66) was performed using ther-
mal_mmgbsa.py script from the Schrödinger suite. The MM-GBSA analysis
produces the binding energy and its constituent eight individual energy
terms, that is, Coulombic, covalent, van der Waals, lipophilic, generalized
Born electrostatic solvation, hydrogen bonding, π−π packing, and self-
contact correction terms. Another set of values for these nine terms have
also been calculated by not accounting for receptor and ligand conforma-
tional changes needed to form the complex. Due to a high degree of vari-
ation in the energies, we averaged data from 60 snapshots to produce a
single set of averaged energy terms in the dataset. Thus, a total of 1,920
snapshots generate 32 sets of averaged energy terms for each variant. In
total, these 18 energy values were utilized as the input features for NN
construction.

NN for MM-GBSA Energies (NN_MM-GBSA).
Dataset generation. MM-GBSA analysis was used to generate 18 energy
components (as described above) fed as the input features for the NN_MM-
GBSA model. Each input energy term across the whole dataset was scaled
independently to have zero mean and a variance of one. The output target
was set to the experimental apparent dissociation constant KD,app ratios,
(KD,app)variant/(KD,app)WT. The experimental data for the 108 RBD variants
(Dataset S1) were obtained from Starr et al. (36).
Model architecture. The NN has a single input layer, a single output layer, and
four fully connected hidden layers with 54 nodes per layer, forming
18−(54−54−54−54)−1 structure. The rectified linear unit was used as the
activation function for all the hidden layers, and the dropout regularization
method was applied to hidden layers, with a dropout rate of 0.5 for the first
and last hidden layers, and 0.75 for the rest.
Hyperparameter optimization. We conducted the Bayesian hyperparameter
optimization (99) as implemented in the Hyperopt package (hyperopt.
github.io/hyperopt) to choose the following five hyperparameters: number
of snapshots to average over (between 60 and 480), number of hidden layers
beside the input and output layers (between 1 and 4), number of neurons
per layer per input element (between 2 and 8), learning rate (between 0.001
and 0.01), and Adam optimizer weight decay parameter (between 0.0001
and 0.01). The loss function to minimize was defined as follows:

loss = (%VCtraining −%VCvalidation)/15 + (MSEvalidation −MSEtraining)/0.2,
where %VC is the correct variant classification percentage, and MSE is the
mean-squared error. The loss function represents the difference between
the training and validation sets. The constants 20 and 0.15 were chosen to
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roughly scale %VC and MSE values to similar orders of magnitude. Three
individual fivefold cross-validations were performed, results were averaged
to evaluate the loss function in each round, and a total of 50 iterations of
optimization were performed to achieve the final set of hyperparameters:
number of MD snapshots to average over = 60, number of hidden layers
beside the input and output layers = 4, number of neurons per layer per
input element = 3, learning rate = 0.003403, and Adam optimizer weight
decay parameter = 0.0001236.
Model training. The model was trained through back-propagation to minimize
the mean-squared error between predicted KD,app and target KD,app values.
Adam optimizer (100) was used to perform the back-propagation, with a
learning rate of 0.003403 and weight decay of 0.0001236. The training was
performed for 2,000 epochs, including the entire training data in each batch.
Model evaluation. The 108 variants are used for model training using fivefold
cross-validation. The evaluation consists of splitting the 108-variant database
into five subsets. In one complete evaluation cycle, each of the five subsets
was used as a validation set once, the rest constituted the training set, and a
total of five such cycles were performed. We constructed a blind test set of
54 variants by randomly picking 27 variants from the categories of improv-
ing and worsening binding affinity. Note that, to make complete use of the
data for predictions on variants listed in Table 2 and the blind test set, we
used a model trained on the entire set of 108 variants.

Two metrics were employed to quantify the performance of NN_MM-
GBSA model predictions: % correct variant classification (%VC), and the
Pearson correlation coefficient (r). The %VC is the percentage of instances in
which a variant is classified correctly as increasing or decreasing the binding
affinity compared to WT. The Pearson’s correlation coefficient is defined as

r = ∑(xi − x)(yi − y)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑(xi − x)2∑(yi − y)2√ ,

where xi and yi are the target and prediction for the ith sample, and x and y
are the mean value for all xi targets and yi predictions.
Model predictions. The NN_MM-GBSA model predictions are based on a single
model trained using 100% of the training data. When making the prediction
for a variant, the ensemble of 32 sets of MM-GBSA energies are collected,

and each set is used to make a single prediction for KD,app using the model.
The mean of 32 predictions is the final predictor of the KD,app of the variant.
Implementation. All codes were developed in Python using the PyTorch library.
Rosetta calculations for ΔΔGbind prediction. The complexes for 108 RBD variants
were subject to Relax (71), with harmonic constraints to prevent the structure
from deviating significantly from the crystal structure. During Relax,
rotamers of amino acid residues within 8 Å of the mutated amino acid were
only allowed to repack (local packing). All default parameters were used for
Relax with the ref2015 energy function (54). At the end of Relax, a gradient
minimization was performed using the lbfgs_armijo algorithm for 2,000
steps, after which the relevant metrics of binding were calculated using
InterfaceAnalyzer (101). The binding energy, ΔGvariant, of each variant was
calculated as the average of dG_separated scores obtained from 30 inde-
pendent Relax simulations. For each variant, a WT binding energy, ΔGWT,
was calculated using the same protocol, by making a dummy amino acid
change (change amino acid to itself). Finally, the change in binding energy
ΔΔGbind was calculated as ΔΔGbind = ΔGvariant − ΔGWT.

Data Availability. All relevant data pertaining to the results discussed in the
paper are available either in the main text and SI Appendix. Representative
raw MD trajectories can be made available upon request. Relevant simula-
tion codes for generating the computational models have been deposited in
the GitHub repository (https://github.com/maranasgroup/NN_MM-GBSA_
CoV2).
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