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Abstract: Natural killer (NK) cells can evoke potent anti-tumour activity. This function is
largely mediated through a battery of specialised cell-surface receptors which probe the tissue
microenvironment for changes in surface and secretory phenotypes that may alert to the presence
of infection or malignancy. These receptors have the potential to arouse the robust cytotoxic and
cytokine-secreting functions of NK cells and so must be tightly regulated to prevent autoimmunity.
However, such functions also hold great promise for clinical intervention. In this review, we highlight
some of the latest breakthroughs in fundamental NK cell receptor biology that have illuminated our
understanding of the molecular strategies NK cells employ to perceive malignant cells from normal
healthy cells. Moreover, we highlight how these sophisticated tumour recognition strategies are being
harnessed for cancer immunotherapies in the clinic.
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1. Introduction

Natural Killer (NK) cells are large granular lymphocytes that develop from an early innate
lymphoid precursor (EILP) in the bone marrow and are recognised as the founding member of the
Innate Lymphoid Cell (ILC) family. Both NK cells and group 1 ILCs (ILC1) express the transcription
factor T-bet and can secrete large amounts of IFN-γ and TNF-α following cellular activation. However,
in comparison to ILC1, NK cells are renowned for their potent cytotoxic properties and have the ability
to spontaneously lyse tumour cells by ‘natural’ cellular cytotoxicity or via antibody-dependent cellular
cytotoxicity (ADCC). IFN-γ also possesses tumour cytostatic and cytotoxic properties and can arrest
tumour cell proliferation, tumour angiogenesis, and multistage carcinogenesis [1], as well as induce
the cell-surface expression of ligands for NK cell receptors on cancer cells further enhancing tumour
immunosurveillance [2,3]. Moreover, IFN-γ facilitates classical macrophage activation in addition to
influencing subsequent adaptive immune responses [4,5]. Thus, NK cell activity is associated with
resistance to various intracellular pathogens as well as a more favorable prognosis and lower incidence
of cancer [6–10]. The ability to promote the anti-tumour functions of NK cells could therefore provide
powerful therapeutic tools for cancer immunotherapy.

NK cell function is tightly regulated by a family of activating and inhibitory receptors that
bind to cell-surface and extracellular secreted ligands (Figure 1). For example, according to the now
classical model of NK cell activity, the ligands for inhibitory receptors are constitutively expressed
by healthy cells e.g., Major Histocompatibility Complex class I molecules (MHC-I) but are lost upon
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infection or cellular transformation. Conversely, activating receptors, such as NKG2D, can engage
host-encoded ligands that are induced upon infection or cellular transformation (termed ‘induced self
recognition’) [11]. The loss of inhibitory ‘checkpoints’ allows activating signals to predominate and
forms the basis for ‘missing-self recognition’ (Figure 1). Therapeutically manipulating the balance of
signalling from activating and inhibitory receptors on NK cells as well as other immune cells holds
great promise for cancer immunotherapy, as exemplified by the success of checkpoint blockade.
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MHC-I can prevent target cell cytotoxicity even if there is low level expression of activating receptor 
ligands. In humans, classical MHC-I comprises Human Leukocyte Antigen (HLA)-A, -B and -C 
molecules and non-classical MHC-I comprises HLA-E, -F, and -G. 
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Figure 1. Molecular basis for ‘missing-self’ and ‘induced-self’ recognition by NK cells: (a) NK cells do
not respond if either the ligands for activating receptors or ligands for inhibitory receptors e.g., MHC-I
are not expressed on target cells; (b) If MHC-I ligands engage inhibitory receptors, such as KIR or
NKG2A, on target cells in the absence of ligands for activating receptors then no cytotoxicity is observed;
(c) Downregulation of MHC-I and expression of ligands for activating receptors results in robust NK
cell cytotoxicity and secretion of cytokines, such as IFN-γ and TNF-α; (d) NK cell responses are
regulated by a balance of activating and inhibitory signalling, such that sufficient expression of MHC-I
can prevent target cell cytotoxicity even if there is low level expression of activating receptor ligands.
In humans, classical MHC-I comprises Human Leukocyte Antigen (HLA)-A, -B and -C molecules and
non-classical MHC-I comprises HLA-E, -F, and -G.

Despite possessing many clinically desirable anti-tumour properties, NK cell-based
immunotherapies have yet to achieve full potential in the clinic. Several barriers to the successful
development of NK cell-based cancer therapies exist particularly for solid tumours that establish an
immunosuppressive tumour microenvironment [12]. However, a recent meta-analysis, which analysed
gene expression in ~18,000 human tumours across 39 malignancies, showed that the expression of
genes for the NK cell family receptors, such as members of the Killer lectin-like receptor family
e.g., KLRG1 (see also: https://precog.stanford.edu/index.php), are associated with a more favourable
prognosis [13]. In this review, we will highlight the different cell-surface receptors NK cells employ
to respond to malignant cells and how these various innate recognition systems can be exploited for
cancer immunotherapy.

2. Killer Cell Ig-Like Receptors (KIR)

The development of the ‘missing-self’ hypothesis was based on the observation that NK
cells spontaneously lyse syngeneic target cells lacking expression of MHC-I [14]. This mode of
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MHC-I-dependent recognition explains why NK cells can attack virus-infected or cancer cells that
have downregulated MHC-I to evade recognition by CD8+ T cells, whereas healthy autologous cells
expressing MHC-I are spared from attack. In humans, the main inhibitory receptors for ‘self’ MHC-I
are the inhibitory KIR and CD94-NKG2A [15] (in mice Ly49 receptors are the functional equivalent of
KIR [16]). However, the missing-self hypothesis failed to explain why some autologous cells that lack
MHC-I expression are protected from NK cytotoxicity e.g., human erythrocytes. The identification
and characterisation of several activating NK cell receptors that sense ligands induced upon cellular
stress or infection led to the proposal of the ‘induced-self’ recognition model, which states that NK
cell triggering also requires the expression of ligands for activating NK cell receptors. Consequently,
it is now well accepted that the activation of mature NK cells is dependent on a balance of activating
versus inhibitory signals with full NK effector activity only triggered once a threshold of inhibitory
signalling is overcome (Figure 1).

2.1. NK Cell Education

More recently, evidence has accumulated that the functional capabilities of NK cells are tuned
to the levels of MHC-I expression, both in cis and in trans, as part of a process of NK cell maturation
termed ‘education’: NK cells expressing inhibitory receptors for MHC-I respond efficiently to activation
stimuli in comparison to NK cells lacking MHC-I receptors that respond poorly. The mechanism of
NK cell education is not very well understood but permits appropriate NK cell responses to host
cells lacking MHC-I and ensures NK cell effector functions are adapted to the host in which they
develop. For example, when NK cells develop in mice or patients deficient in MHC-I, the hosts do not
develop autoimmunity and the NK cells are hyporesponsive to in vitro stimulation [17–19]. To add
to this complexity, the genes encoding KIRs and MHC-I molecules are polymorphic and polygenic
and encoded on different haplotypes that segregate independently leading to diverse KIR/HLA
genotypes [20]. Due to the variegated expression of KIR, a fraction of NK cell clones may express KIR
that lack cognate MHC-I ligands and therefore cannot undergo NK cell education and are rendered
hyporeactive [21]. The inherited KIR/HLA genotype may therefore profoundly influence the education
and functional capacity of NK cells [22]. However, as a consequence of this system, NK cells not only
have the ability to carefully distinguish between normal and aberrant cells but also allogeneic cells
due to their exquisite ability to sense HLA polymorphisms [23].

2.2. KIR and Haematopoietic Stem Cell Transplantation (HCST)

The ability of NK cells to perceive allogeneic cells is thought to play a critical role for patients
with acute myelogenous leukaemia (AML) receiving HLA-haploidentical haematopoietic stem cell
transplantation (HCST) from an NK-alloreactive donor. In this transplantation setting, the recipient
shares only an HLA haplotype with the donor (usually a parent in the case of a paediatric patient)
and is utilised for high risk AML patients in the absence of an HLA-compatible donor. Thus,
haploidentical HCST requires e.g., the extensive depletion of αβ T cells ex vivo to avoid severe
graft versus host disease. However, in the HLA-haploidentical HCST setting, the absence of HLA
ligands for donor inhibitory KIR has been associated with a lower relapse and improved survival in
AML patients. Such patients can develop a significant ‘graft versus leukaemia’ (GVL) response in
which the donor-derived NK cells remain unrestrained by inhibitory HLA ligands expressed on the
recipient’s AML cells [24–26].

This GVL effect was thought to be attributed to the killing of ‘missing self’ targets by fully
educated NK cells. However, NK cell alloreactivity has been reported to occur even in HLA-matched
HCST [27]. These data indicate that uneducated NK cells expressing KIR for HLA ligands that are not
present in either the donor or the recipient (i.e., ‘non-self’ MHC-I) may achieve functional competence
in HCST [28], perhaps due to the pro-inflammatory microenvironment following transplantation [29].
The NK cell repertoire is also known to be shaped by CMV infection, which frequently occurs in
patients that have undergone HSCT [30], and can give rise to a population of CD56dimCD57+NKG2C+
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adaptive NK cells that produce more IFN-γ and TNF-α following target cell recognition [31]. Thus,
it may be possible that NK cells could undergo expansion in response to virus reactivation to contribute
to a GVL effect [32].

Allogeneic NK cell therapy has also been shown to be beneficial in targeted antibody (Ab)
therapies, such as anti-GD2 therapy for the treatment of neuroblastoma and anti-CD20 therapy for the
treatment of lymphoma [33–35]. Both educated and uneducated NK cells actively kill neuroblastoma
target cells with anti-GD2 Ab via ADCC, but educated NK cells were selectively inhibited by MHC-I
present on target cells [33]. These studies show that during the course of cancer, uneducated NK cells
may attain functional activity that is clinically beneficial and challenges the perception of a lack of
education and hyporeactivity. Moreover, for fully ‘educated’ NK, the presence of self MHC-I on cancer
cells may not necessarily predict loss of NK cell effector function due to differences in inhibitory KIR
binding due to HLA allelic diversity. For example, compared to donor NK cells with strong KIR3DL1
binding HLA allotypes, donor NK cells expressing KIR3DL1 with weak or no binding to HLA-B
allotypes were associated with improved control for AML patients and for neuroblastoma patients
receiving anti-GD2 Ab therapy [36,37]. Taken together, these studies suggest that the tuning of NK cell
functional activity to MHC-I levels during the NK cell education process may be sufficient to prevent
NK cell autoreactivity during steady state but can be overridden in stressful conditions e.g., malignancy,
microbial infection, or upon treatment with therapeutic Abs, such as anti-GD2 therapy.

3. Monoclonal Antibodies for Cancer Immunotherapy

Recent studies indicate that monoclonal antibodies (mAbs) can be designed to elicit or
enhance existing anti-tumour immune responses. Such ‘checkpoint blockade mAbs’ rely on the
principle of disrupting suppressive signalling from inhibitory receptors that are expressed by killer
lymphocytes [38–40]. Inhibitory receptors normally function to limit tissue immunopathology during
acute viral infections [41–43] but may also facilitate T cell exhaustion during chronic viral infections
and anti-tumour immune responses [44,45]. Checkpoint inhibitory receptors include the cytotoxic T
lymphocyte-associated protein 4 (CTLA4) [46–48] and programmed cell death 1 (PD-1) [49–51] or their
cognate ligands, such as PD-1 ligand (PD-L1) [52,53]. However, resistance to these first generation
immune checkpoint inhibitors frequently leads to treatment failure, thus providing the necessary
impetus to discover new candidates for checkpoint blockade [54].

3.1. PD-1

Monoclonal antibodies to checkpoint inhibitory receptors have revolutionised cancer treatment
and a variety of combinatorial approaches are now being tested in clinical trials. The therapeutic
efficacy of PD-1 and CTLA-4 checkpoint blockade is thought to be mediated largely through the rescue
of exhausted tumour-specific T cells and subsequent restoration of their effector functions. Few studies
have reported PD-1 expression by NK cells. However, a link between NK cell expression of PD-1 and
CMV serostatus exists [55] and PD-1 expression on NK cells from multiple myeloma patients has also
been described [49].

Many cancer types exhibit low expression of MHC-I and/or low neoantigen burden that should
render tumour cells refractory to CD8+ T cell recognition. High levels of PD-L1 expression have also
been observed for tumours with low MHC-I expression [50,56–58]. Intriguingly, some of these latter
types of cancers are responsive to PD-1/PD-L1 blockade even when the tumours were defective in
MHC-I expression suggesting immune cells other than cytotoxic T cells can play a role [59].

Recently, PD1 was found to be expressed on NK cells in transplantable, spontaneous and
genetically induced tumour models [60]. Moreover, PD-L1 expression on cancer cells resulted in
reduced NK cell responses and precipitated more aggressive tumours in vivo. PD1 and PD-L1 blockade
was subsequently found to induce a strong NK cell response demonstrating that NK cells as well as T
cells mediate the effects of PD1/PD-L1 blockade immunotherapy, which may be critical in scenarios
where tumours express low levels of MHC-I and high levels of PD-L1 [60].



Cancers 2019, 11, 55 5 of 21

3.2. NKG2A

NKG2A is a lectin-like inhibitory receptor that is expressed as a heterodimer with CD94 on NK
cells and activated CD8+ T cells. The CD94-NKG2A heterodimer binds to the non-classical MHC-I
molecule HLA-E [61] and Qa-1 in mice [62]. Both HLA-E and Qa-1 bind to peptides derived from the
signal sequence of classical MHC-I molecules (as well as peptides derived from the CMV UL40 gene
in the case of HLA-E) and engage with NKG2A to inhibit NK and T cell effector functions [62–66].
Blocking the NKG2A/HLA-E interaction therefore has the potential to restore NK cell and CD8+ T cell
cytotoxicity of tumour cell targets.

Recently, high dimensional mapping of tumour-infiltrating lymphocytes (TILs) using 36 colour
Cytof revealed that cancer vaccines can induce the expression of NKG2A on a population of CD103+

effector CD8+ T cells. IFN-γ also upregulated Qa-1 and HLA-E on murine and human tumour
cells, respectively, and blocking NKG2A converted cancer vaccines into effective therapies in four
different solid tumour models (TC-1 lung epithelial tumour, B16F10 melanoma, RMA T cell lymphoma,
and MC38 colon carcinoma) [67]. Interestingly, the expression of Qa-1 by tumour cells, and not stromal
or immune cells, was required for this additive effect [67]. Moreover, the humanised anti-NKG2A
mAb, monalizumab, unleashed the activity of both CD8+ T and NK cells in two murine lymphoma
tumour models (A20 B cell lymphoma and RMA-Rae1β) in combination with anti-PD-1/PD-L1 Ab
blockade [68]. In addition, a combination of monalizumab and cetuximab, an anti-EGFR Ab, led to a
31% objective response rate (i.e., a proportion of patients a reduction in tumour size for a predefined
amount and for a minimum time period) in a clinical trial for head and neck squamous cell carcinoma
patients [68].

3.3. T-Cell Immunoglobulin and Mucin-Domain-Containing-3 (Tim-3)

Tim-3 is expressed by activated and exhausted T cells and NK cells and has been characterised
as a negative regulator of T cell-mediated immune responses. Tim-3 has been reported to bind to
several ligands; galectin-9, phosphatidylserine on apoptotic cells, high mobility group box 1 (HMGB1),
and CEACAM-1 [69–72]. Galectin-9 was reported to inhibit the effector functions of T helper 1 (Th1)
cells by inducing Tim-3-dependent calcium signalling, aggregation, and cell death [70].

Tim-3 does not carry any Immunoreceptor Tyrosine-based Inhibition Motifs (ITIM) or
Immunoreceptor Tyrosine-based Switch Motifs (ITSM) in its cytoplasmic tail. Instead, Tim-3 has
five conserved tyrosine residues in its cytoplasmic tail with Y256 and Y263 reported to recruit
HLA-B-associated transcript 3 (Bat3) [73]. Bat3 binds to Tim-3 in steady state and recruits catalytically
active Lck, which promotes T cell signalling and prevented Tim-3-mediated cell death [73]. Galectin-9
and CEACAM-1 binding to Tim-3 induced the Y256 and Y263 phosphorylation, resulting in
disassociation of Bat3 and SH2 domain-dependent recruitment of Fyn, which was suggested to promote
Tim-3 inhibitory signalling [73]. However, other groups could find no evidence of an interaction
between human or mouse Tim-3 and galactin-9 [74] and the crystal structure of a heterodimer between
the V domains of CEACAM-1 and Tim-3 has since been withdrawn [69]. Other groups have reported
Tim-3 interactions with Fyn and the p85 sub-unit of phosphatidylinositol 3-kinase [75] as well as
downstream Akt/mTOR signalling for optimal T cell effector responses in vivo [76].

On NK cells, Tim-3 has also been reported to have either activating or inhibitory functions
depending on the context. For example, blockade of galactin-9 reduced NK cell secretion of IFN-γ
when co-cultured with AML target cells, suggesting Tim-3 is an activating receptor [77]. In contrast,
cross-linking with anti-Tim-3 antibodies resulted in NK cell inhibition [78]. Blockade of Tim-3 can
rescue exhausted NK cells from patients with advanced melanoma and lung adenocarcinoma and
resulted in enhanced NK cell cytotoxicity and IFN-γ production [79–81].

Tim-3 is constitutively expressed on several myeloid lineages, such as macrophages and dendritic
cells (DC). Therapeutic Abs to Tim-3 may therefore have a strong impact on the antigen presenting
functions of these cells, particularly since Abs to Tim-3 have been shown to induce DC activation [82].
Given that the role of Tim-3 in regulating the effector functions in T and NK cells remains to be fully
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clarified and the potential for anti-Tim-3 Abs to activate myeloid cell function, it will be interesting to
understand the mechanism of action for therapeutic approaches that target Tim-3. The therapeutic
Tim-3 blocking mAb TSR-022 is currently in phase 1 clinical trials for patients with advanced solid
tumours [83].

3.4. T-Cell Immunoreceptor with Immunoglobulin and Immunoreceptor Tyrosine-Based Inhibition Motif
Domains (TIGIT)

TIGIT is an inhibitory receptor that binds to CD155, also known as the poliovirus receptor (PVR),
and to CD112, also known as Nectin-2 and poliovirus receptor-like 2 (PVRL2) [84]. PVR and Nectin-2
are also ligands for the activating NK cell receptor CD226, also known as DNAM-1 [85]. Thus, TIGIT
and DNAM-1 can compete for binding to PVR and Nectin-2 which are highly expressed on tumour
cells and are also upregulated by exposure to cytokines, such as IFN-γ and TNF-α [3].

TIGIT contains an ITIM and immunoreceptor tyrosine tail (ITT)-like motifs in its cytoplamsmic tail
and ligand-engagement of TIGIT can result in the recruitment of the SH2 domain-containing inositol
5′-phosphatase (SHIP) leading to downregulation of the PI3 kinase, MAPK and NF-κB signalling
pathways and inhibition of NK cell cytotoxicity and cytokine secretion [84,86]. TIGIT therefore
counterbalances NK cell activation mediated by DNAM-1, which is reversed by Ab blockade of
TIGIT [84]. Interestingly, TIGIT blockade can also render adaptive NK cells resistant to inhibition
by myeloid suppressor cells [87]. Antibody blockade of TIGIT and the PD-1/PD-L1 axis enhanced
tumour cell clearance by CD8+ T cells [88,89] and significantly prolonged control of myeloma in a
mouse model of autologous stem cell transplantation [90]. Despite efficacy in pre-clinical tumour
models, whether individual blockade of TIGIT or in combination with other checkpoint therapies can
enhance NK cell effector function for the generation of effective anti-tumour response in human cancer
patients remains to be demonstrated.

3.5. Interleukin-1 Receptor 8 (IL-1R8)

Interleukin-1 receptor 8 (IL-1R8, also known as single immunoglobulin (Ig) IL-1R-related receptor,
SIGIRR) is a member of the IL-1 receptor (IL-1R) family. IL-1R8 acts as a negative regulator of
IL-1R family and Toll-like receptor function [91]. IL-1R8 is a 410aa protein with a single Ig-like
domain compared to other IL-1R family members that encode three Ig-like domains, a transmembrane
domain, and a cytoplasmic Toll-IL-1 resistance (TIR) domain followed by an uncharacteristically long
stretch of 95 amino-acid residues. The absence of two highly conserved S447 and Tyr536 residues
(replaced by Cys222 and Leu305) in the IL-1R8 TIR domain suggests an unconventional mechanism
of intracellular signalling. IL-1R8 can be recruited to signalling complexes where it competes for
the formation of Myd88 dimers via its TIR domain, thus blocking the recruitment of cytoplasmic
signalling components and inhibiting downstream activation of NF-κB and JNK [92]. In addition,
the ectodomain of IL-1R8 was also shown to block the dimerisation of IL-1R1 and IL-1R3 as well
as inhibit ST2 signalling [92,93]. Moreover, IL-1R8 pairs with IL-18Rα to form a receptor for the
anti-inflammatory cytokine, IL-37 [94]. IL-1R8 deficiency is associated with intestinal inflammation
and increased susceptibility to colitis-associated cancer development [95]. IL-1R8 deficiency also
induced an earlier and more severe expansion of B cell clones and reduced survival in the Eµ-TCL1
transgenic mouse model of chronic lymphocytic leukaemia [96]. Thus, IL-1R8 may play a protective
role in some malignancies that thrive upon inflammation.

Murine and human NK cells express high levels of IL-1R8 which is acquired during NK cell
differentiation and deficiency in IL-1R8 results in higher numbers of mature NK cells in blood and
tissues, such as bone marrow, spleen, and liver [97]. IL-1R8−/− NK cells have a more activated
phenotype with higher expression levels of activating receptors, IFN-γ, and cytotoxic mediators,
such as granzyme B and Fas ligand, and more readily degranulated compared to wild-type NK
cells. Mechanistically, IL-1R8 suppressed IL-18 signalling which is a key cytokine for NK cell
activation [98,99]. In IL-1R8−/− mice, tumour burden was significantly reduced in models of



Cancers 2019, 11, 55 7 of 21

hepatocellular carcinoma and lung and colon metastasis. Moreover, the adoptive transfer of Il1r8−/−

NK cells provided sufficient protection in the metastasis models suggesting that blockade of IL-1R8
may represent a therapeutic approach to enhance NK cell activity and promote anti-tumour activity
in the clinic [97]. However, caution may be warranted for malignancies in which IL-1R8 may play a
protective role [95,96].

3.6. Sialic Acid Binding Immunoglobulin-Like Lectins (Siglecs)

Sialic acids are sugars that are incorporated into the periphery of cell-surface glycans [100].
The Sialic acid-binding Ig-like lectins (Siglecs) are a multi-gene family of cell-surface activating
and inhibitory receptors expressed by lymphoid and myeloid cells in mammals, amphibians,
and fish [101,102]. Consequently, the sialic acid content of host cell-surface glycans has the potential
to regulate immune responses. Tumour cells characteristically express a high density of sialic acid
enriched cell-surface glycoproteins arising from epigenetic or genetic disruption of glycan synthesis
pathways [103]. The resulting ‘hypersialylated’ tumour cell-surface phenotype is associated with poor
patient survival and decreased immunogenicity in a range of tumours [103].

NK cells constitutively express Siglec-7 and a subset of CD56dim NK cells was shown to express
Siglec-9 [104–106]. Evidence has accumulated that NK cells may play a direct role in selecting for
the hypersialylated cancer cell-surface phenotype. For example, tumours that develop in Ifng−/−

mice fail to develop a hypersialylated cell-surface phenotype and a correlation exists between
tumour cell-surface sialylation and resistance to NK cell-mediated cytotoxicity [107–109]. Cell-surface
hypersialylation may therefore provide a selective advantage for tumour cells under evolutionary
selective pressure from killer lymphocytes by directly engaging inhibitory Siglecs. In support of this,
one study found sialic acid ligands for Siglec-7 and -9 were expressed by a wide range of primary
tumours and inhibited NK cell activation [105]. Interestingly, a subset of circulating Siglec-9+ CD56dim

NK cells with enhanced chemotactic responses was reduced in patients with colon adenocarcinoma
and malignant melanoma [105].

Therapeutic interventions that target tumour-associated sialosides from engaging inhibitory
Siglec receptors expressed by killer lymphocytes may provide a promising new avenue for cancer
immunotherapy. Recently, polymorphisms in the gene encoding Siglec-9 were associated with the
development of lung and colorectal cancer [110]. Siglec-9 was also upregulated on a population of
tumour-infiltrating cytotoxic T cells from non-small cell lung cancer (NSCLC), colorectal, and ovarian
cancer patients and T cell expression of Siglec-9 was associated with reduced survival in NSCLC
patients. In mouse tumour models, transgenic expression of Siglec-9 enhanced tumour growth.
Siglec-E is the functional paralogue of Siglec-9 in mice. Targeting of the tumour sialoglycan by
exchanging the inhibitory signalling domain of Siglec-E with that of the activating Siglec-16 receptor
resulted in enhanced anti-tumour immunity [110,111].

4. Augmenting Activating NK Cell Receptor Pathways

Another intuitive approach to cancer immunotherapy is to augment NK cell activation pathways.
Most therapeutic mAbs promote anti-tumour responses either by directly triggering ADCC or by
targeting co-stimulatory receptors expressed on the surface of NK cells. Other approaches target
the ligands for activating NK cell receptors, either by preventing their shedding from cancer cells or
by hindering the ability of the shed ligands to induce NK cell desensitisation. Finally, recombinant
approaches are now being adopted that endow T cells and NK cells with the ability to target tumour
cells directly and with enhanced signalling potential.

4.1. CD16

One strategy to enhance NK cell function is to exploit the ability of NK cells to recognise Ab-coated
targets through CD16 to mediate the potent killing of tumour cells via ADCC [112]. CD16, also known
as Fcγ receptor IIIa, FcγRIIIa, binds the Fc region of immunoglobulin G (IgG) and signals via association



Cancers 2019, 11, 55 8 of 21

with the Immunoreceptor Tyrosine-based Activation Motif (ITAM)-bearing adaptors, CD3ζ and Fc
receptor common γ (FcRγ) chain in NK cells [113,114]. CD16 genotypes vary in their respective affinity
for the Fc region of IgG, which can dramatically influence clinical outcome. For example, NK cells
expressing the CD16 158VV or 158VF genotype have lower affinity for the Fc region of rituximab
(anti-CD20 mAb) than the CD16 158FF genotype [115]. CD16 is the most potent activating receptor
expressed by NK cells and can readily induce potent cytotoxicity and cytokine secretion from freshly
isolated NK cells [116].

CD16 activity on resting NK cells is therefore dependent on Abs produced by B cells. However,
several therapeutic mAbs have now been designed that mediate their clinical effects through the
induction of ADCC by resting NK cells. Moreover, CD16 can even promote ADCC from uneducated
NK cells that are normally hyporesponsive [33]. The lack of inhibitory MHC-I receptors expressed
by uneducated NK cells may well be a distinct advantage since MHC-I expression by cancer cells
selectively inhibited ADCC by educated NK cells indicating that uneducated NK cells may play a
central role in cancer patients undergoing mAb-based immunotherapies [33].

Strategies to enhance ADCC for Ab-based cancer therapies are also being formulated. NK cell
activation can result in decreased CD16 cell-surface expression, which could drastically influence the
efficacy of mAb-based cancer therapies [117]. The decrease in cell-surface expression was attributed to
cleavage of CD16 by a disintegrin and metalloproteinase-17 (ADAM17) resulting in shedding of the
CD16 receptor from the surface of NK cells. The selective inhibition of CD16 cleavage by an ADAM17
inhibitor led to increased IFN-γ production [118]. Clinical studies are now being conducted using
ADAM17 inhibitors in combination with anti-CD20 rituximab after HCST in patients with diffuse
large B cell lymphoma [119].

4.2. Signalling Lymphocytic Activation Molecules Family 7 (SLAMF7)

The SLAM family contains six members named SLAM, 2B4, Ly-9, natural killer (NK)-, T- and
B-cell antigen (NTB-A), CD84 and SLAMF7 (also known as CRACC and CS1) [120]. NK cells express
at least three SLAM family receptors, 2B4, NTB-A, and SLAMF7. 2B4 binds CD48 whilst SLAMF7 and
NTB-A mediate homophilic adhesion. The cytoplasmic domains of SLAM receptors contain the amino
acid motifs, TxYxxV/I, termed the ITSM. Engagement of SLAM family receptors results in tyrosine
phosphorylation receptor of ITSMs and the recruitment of SLAM-associated protein (SAP) family of
adaptors, such as SAP (also called SH2D1A or DSHP) or the EWSFli1-activated transcript-2 (EAT-2).
All SLAM family members can bind SAP or EAT-2. However, SLAMF7 is unique in recruiting EAT-2
that activates the PI3-kinase and phospholipase C-γ signalling pathways in human NK cells [121].

Interestingly, SLAMF7 expression was observed in normal and neoplastic plasma cells in nearly
all patients with monoclonal gammopathies of undetermined significance (MGUS), smouldering
myeloma and multiple myeloma, but not in normal tissues or a variety of solid tumours [122,123].
A humanised Ab to SLAMF7, HuLuc63, exhibited NK-mediated ADCC of primary myeloma cells
in vitro and anti-tumour activity in vivo that was depended on NK cells and Fc-CD16 interactions.
HuLuc63 is now marketed as Elotuzumab and is one of the first mAbs to be approved for the treatment
of multiple myeloma [124]. Interestingly, in addition to binding SLAMF7 on myeloma cells and
engaging Fc-CD16 interactions, Elotuzumab may further enhance NK cell cytotoxicity by directly
stimulating cell-surface SLAMF7 on NK cells by redirected cytotoxicity (a mechanism whereby the
antibodies are immobilised e.g., by Fc receptors on target cells leaving the Fab regions free to engage
activating SLAMF7 expressed by the NK cells) and may highlight the effectiveness of strategies to
develop therapeutic antibodies that can target activating receptors expressed by both the cancer cells
and NK cells to complement CD16 signalling and enhance ADCC [125].

4.3. Natural Killer Group 2D (NKG2D)

NKG2D is a highly conserved receptor that can either activate or co-stimulate NK cells and
subsets of T cells. In humans, NKG2D transmits signals through its association with the DAP10



Cancers 2019, 11, 55 9 of 21

adaptor molecule [126,127]. The ligands for the NKG2D receptor comprise an array of proteins that are
structurally related to MHC-I. In humans, the complement of NKG2D ligands (NKG2DLs) comprise
the MHC-I-polypeptide-related sequence family, MICA and MICB (collectively known as ‘MIC’),
and six members of the UL16-binding protein (ULBP) family that are also known as the retinoic
acid early transcript (RAET) proteins (RAET1E, RAET1G, RAET1H, RAET1I, RAET1L and RAET1N),
which can be expressed from various alternatively spliced transcripts [127–131].

In general, the expression of NKG2DLs is strictly regulated at the level of transcription, translation
and post-translation in healthy tissues [132–134]. The human NKG2D ligand MICA was first
described as a stress response molecule induced by heat shock [127] but it is now appreciated
that NKG2DLs are readily induced upon infection with a wide range of different viruses [132].
NKG2DLs are also expressed on many solid tumours and leukaemias [131,135,136] and are also
induced by cancer-associated pathways, such as the DNA damage response (DDR) and the expression
of oncogenes [133]. Moreover, there is evidence that NKG2D mediates anti-cancer responses to solid
tumours and leukaemias in vivo [137,138].

The central importance of NKG2D in mediating anti-viral and anti-tumour responses is
emphasised by the various strategies that viruses and tumour cells have formulated to evade
NKG2D-mediated surveillance. For example, human CMV encodes several molecules and microRNAs
that prevent the expression of NKG2DLs at the infected cell-surface [132,139] and tumours can
express proteases that cleave NKG2DLs from the cell-surface, or release cytokines, such as TGF-β,
that downregulate NKG2D, or simply switch off the expression of NKG2DLs as they grow and
metastasise [140–143]. These data strongly suggest that NKG2D participates in immunosurveillance of
various forms of cellular stress and that the NKG2DLs appear to have evolved as an innate mechanism
whereby a host cell might signal distress and thus mark itself for elimination by NK cells.

In terms of cancer therapy, it is well appreciated that MICA and MICB are abundantly expressed
in human tumours [135]. However, high levels of circulating soluble NKG2DLs shed from the cancer
cell-surface have been shown to be immunosuppressive. Soluble MIC ligands are associated with poor
prognosis for multiple tumour types and a diminished response to checkpoint blockade in clinical and
pre-clinical studies, most likely by inducing the endocytosis and degradation of NKG2D [135,143].
Various approaches to reinvigorate the immune response have been devised that target the generation
of soluble MIC, such as targeting sequences in the α3 domain of MIC [144] or the disulphide-isomerase
ERp5 that regulates the proteolytic shedding of MIC [145], as well as the removal of soluble MIC using
anti-MIC monoclonal antibodies (mAbs) [146] or via plasma absorption apheresis prior to adoptive NK
cell therapy [147]. The mAb-mediated clearance of soluble MIC has shown promising synergy with
the IL-15 agonist ALT-803 mAb and enhanced anti-tumour responses with anti-CTLA4 checkpoint
blockade therapy in clinically relevant models [148]. More recently, Ab-based inhibition of MICA and
MICB shedding promoted anti-tumour immunity through the activation of NK cells through dual
stimulation of the NKG2D and CD16 Fc receptor pathways [149].

In some tumour models, forced expression of the membrane-bound NKG2DLs, MICA and
murine Rae-1ε, were reported to impair NKG2D function through chronic receptor stimulation [133,
150,151]. Remarkably, the shed form of the high affinity murine NKG2D ligand, MULT1, induced
NK cell activation and tumour rejection via a mechanism that was reported to reverse global NK cell
desensitisation imposed by membrane-bound NKG2DLs expressed by tumour-associated cells [152].

Recent studies have also shown that soluble ligands for activating NK cell receptors, such as
platelet-derived growth factor (PDGF)-DD that engages NKp44, can also stimulate NK cell
activation [3]. It is likely that PDGF-DD and soluble MULT1 may induce NK cell activation via
different signalling and/or cell biological mechanisms. However, these studies indicate that a
model whereby soluble ligands for activating NK cell receptors are predominantly inhibitory may
be over-simplified and natural variation in NK tumour surveillance systems exists. A greater
understanding of how soluble ligands interact with their cognate receptors to modulate NK cell
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activation and generate functional anti-tumour responses is required for the rational design of novel
NK cell-based cancer immunotherapies.

5. Recombinant Approaches to Cancer Immunotherapy

5.1. NKG2D Chimeric Antigen Receptors (CARs)

The use of T cells engineered to express receptors for cancer-specific antigens, such as the
anti-CD19 chimeric antigen receptor (CAR), has shown encouraging promise in the treatment of
heamatological malignancies resulting in remission rates of up to 90% in individuals with paediatric
lymphoblastic leukaemia [153]. Conventional approaches to CAR-based cancer immunotherapy take
advantage of single-chain variable fragment (scFv)-based CARs to target tumour surface antigens.
However, emerging strategies to target tumour cells also include the use of NK cell receptors, such as
NKG2D to target NKG2DL+ tumours.

Various NKG2D-based CARs have been designed either with DAP10 or with the 4-1BB or CD28
signalling modules but all in combination with CD3ζ [154]. NKG2D-CARs can bestow T cells with
cytotoxic and cytokine secreting functions against tumour cell targets and control the growth of
a number of tumour types in mouse models of multiple myeloma [155], ovarian carcinoma [156],
osteosarcoma [157], breast cancer [158], and glioblastoma [159], and have also been adopted to enhance
the activity of NK cells in osteosarcoma [160]. NKG2D-CARs are currently undergoing clinical
evaluations for haematological [136] and metastatic tumours [161].

5.2. Bi- and Tri-Specific Killer Engagers (BiKEs and TriKEs)

Whilst recent focus has concentrated on the generation of CAR-expressing T and NK cells, such
approaches are expensive and time consuming, have proven to lack efficacy for solid tumours, and are
often associated with significant toxicity issues. BiKEs and TriKEs are small molecules (50–75 kDa
compared to 300–450 kDa of bi- and tri-specific antibodies [162]) encoded by a single-chain variable
fragment (scFv) comprised of a variable heavy and variable light chain (VH and VL) against CD16
linked to the scFv of either one (BiKEs) or two (TriKEs) variable regions from other Abs that target
tumour antigens. Thus, BiKEs and TriKEs are designed to enhance the interaction between tumour
cells and NK cells and promote ADCC whilst minimising collateral damage to healthy cells and tissues.

BiKEs and TriKEs specific for CD16 and CD19/22 can direct NK cells for the killing of acute
lymphoblastic luekaemia cells in addition to augmenting NK cell cytokine secretion [163]. Moreover,
an anti-CD16xCD33 bespoke BiKE can overcome inhibitory signalling mediated by HLA class I to
promote the potent cytotoxicity of primary cancer cells as well as CD33+ myeloid-derived suppressor
cells in patients with myelodysplastic syndrome [164–166]. Moreover, either one of the scFvs can be
replaced by a cytokine, as in TriKE constructs, to engineer a ‘TetraKE’ construct and newer generation
TriKEs and TetraKEs all incorporate an IL-15 moiety that substantially enhances the function of NK
cells [167,168]. BiKEs and TriKEs have distinct advantages compared to therapeutic mAbs; their smaller
size results in increased biodistribution, they are non-immunogenic, and can be swiftly engineered,
which alleviates many of the caveats surrounding CAR-based technologies [162].

6. Chemotherapy

Immunotherapies, such as checkpoint blockade, are proving to be an effective clinical approach
for cancer. However, poor anti-tumour responses appear to be a major factor in the failure of cancer
immunotherapy. Strategies designed to arouse anti-tumour immune responses may be of considerable
benefit prior to immunotherapy and accumulating evidence suggests that immunotherapy may
be more effective when combined with other treatment approaches, such as surgery, radiotherapy,
and chemotherapy [169,170].

Chemotherapy agents that induce genotoxic stress or DNA replication inhibitors can upregulated
the expression of NKG2DLs on target cells by activating the DDR checkpoint kinases, ATM and ATR,
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to promote elimination by NK cells [171]. The DDR is a program that maintains genome integrity
through cell cycle arrest and activation of DNA repair, or through the induction of apoptosis or cellular
senescence and permanent cell cycle arrest [172]. Most chemotherapy agents used in the clinic can
trigger the DDR and treatment with the chemotherapeutic drugs; doxorubicin, etoposide, melphalan,
bortezomib, and cisplatin, induced stress-induced senescence and the upregulation of ligands for
DNAM-1 and NKG2DLs on multiple myeloma cells leading to NK cell activation [173].

A recent screen of several chemotherapy agents in a KRAS-mutant lung cancer mouse
model identified two clinically approved cancer drugs that promoted anti-tumour immunity.
Interestingly, only a combination of the two drugs, a mitogen-activated protein kinase inhibitor
and a cyclin-dependent kinase 4/5 inhibitor, promoted retinoblastoma protein-mediated cellular
senescence and activation of the senescence-associated secretory phenotype (SASP), which did not
occur when either drug was used alone. Two SASP components, TNF-α and ICAM-I, were critically
required for promoting NK cell surveillance of the drug-treated tumour cells, tumour regression and
prolonged survival in the KRAS-mutant lung cancer model [174].

7. Conclusions

NK cell-based therapies have changed the standard of cancer care, most notably with FDA
approval of rituximab for lymphoma. Current methods to unleash NK cell functions are therefore
promising. However, long-term anti-tumour efficacy remains modest, particularly for solid tumours
that establish an immunosuppressive microenvironment [12]. It is likely that a combination of strategies
is ultimately required to improve existing NK cell therapies. Such strategies might include efforts
to expand, differentiate, and maintain NK cell numbers with cytokines, such as IL-15 [175–178],
and to stimulate those NK cell activation pathways most effective for the tumour type (either by
checkpoint blockade and/or augmentation of activating pathways), as well as improving methods
to target NK cells to tumour cells in vivo and efforts to neutralise immunosuppressive factors in
the solid tumour microenvironment [12,179]. Further characterisation of the interactions within the
tumour microenvironment and of NK cell receptors, particularly their ligands and checkpoints, is
urgently required to improve understanding of how NK cells sense different tumour types and how
this can be optimised for the clinic. Moreover, recent studies have shown that extracellular secreted or
shed tumour ligands, such as PDGF-DD and MULT1, respectively, can promote NK cell activation.
These data challenge the prevailing view that binding of soluble tumour-derived ligands to activating
receptors invariably leads to NK cell inhibition. Thus, more basic research into the molecular basis
and cell biology of activating NK cell receptor signalling in response to soluble tumour ligands,
such as PDGF-DD and MULT1, is required and will inform methods to enhance NK cell targeting
to tumours and stimulate their functions in vivo. For most cancers, only a subset of patients exhibit
durable anti-tumour responses following immunotherapy and relapse remains a significant problem
for haematological malignancies following HCST [54,119] and so strategies to exploit favourable
donor immunogenetics are also warranted (e.g., KIR/HLA as well as CD16 genotypes). These latter
strategies will have the added benefit of informing basic research into NK cell education and the
generation of adaptive ‘memory’ NK populations. More recently, the tremendous potential of immune
engagers, such as BiKEs and TriKEs, to enhance targeting through CD16 and further stimulate NK
cell function with cytokines will lead to the development of a new generation of recombinant agents
for NK cell-based immunotherapies. Finally, recent results have shown that chemotherapy can boost
the immune response and sensitise immunologically recalcitrant tumours to immunotherapy. It will
be interesting to screen combinations of clinically approved drugs for anti-tumour activity and to
investigate the precise underlying molecular mechanisms for different tumour types, such as enhanced
NK cell immunosurveillance.
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