OPEN ACCESS

Sensors ISSN 1424-8220 www.mdpi.com/journal/sensors

Article

Identification of Calcium Sulphoaluminate Formation between Alunite and Limestone

Hyung-Seok Kim¹, Gi-Chun Han^{2,*}, Ji-Whan Ahn¹, Kye-Hong Cho¹, Hee-Chan Cho²

¹ Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources, 30 Gajeong-dong, Yuseong-gu, Daejeon 305-350, Korea; E-Mails: hskim@kigam.re.kr (H.K.); ahnjw@kigam.re.kr (J.A.); khcho99@paran.com (K.C.)

² Department of Energy Resources Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea; E-Mail: hccho@snu.ac.kr (H.C.)

* Author to whom correspondence should be addressed; E-Mail: hhsue@daum.net; Tel.: +42-868-3486; Fax: +42-861-3990

Received: 31 May 2009; in revised form: 10 June 2009 / Accepted: 10 June 2009 / Published: 25 June 2009

Abstract: This study was carried out to identify the conditions of formation of calcium sulphoaluminate (3CaO·3Al₂O₃·CaSO₄) by the sintering of a limestone (CaCO₃) and alunite [K₂SO₄·Al₂(SO₄)₃·4Al(OH)₃] mixture with the following reagents: K₂SO₄, CaCO₃, Al(OH)₃, CaSO₄·2H₂O, and SiO₂. When K₂SO₄, CaCO₃, Al(OH)₃, CaSO₄·2H₂O were mixed in molar ratios of 1:3:6:3 and sintered at 1,200~1,300 °C, only 3CaO·3Al₂O₃·CaSO₄ and calcium langbeinite (2CaSO₄·K₂SO₄) were generated. With an amount of CaO that is less than the stoichiometric molar ratio, 3CaO·3Al₂O₃·CaSO₄ was formed and anhydrite (CaSO₄) did not react and remained behind. With the amount of CaSO₄ that is less than the stoichiometric molar ratio, the amounts of 3CaO·3Al₂O₃·CaSO₄ and 2CaSO₄·K₂SO₄ decreased, and that of CaO·Al₂O₃ increased. In the K₂SO₄-CaO-Al₂O₃-CaSO₄-SiO₂ system, to stabilize the formation of 3CaO·3Al₂O₃·CaSO₄, 2CaSO₄·K₂SO₄, and β-2CaO·SiO₂, the molar ratios of CaO: Al₂O₃: CaSO₄ must be kept at 3:3:1 and that of CaO/SiO₂, over 2.0; otherwise, the amount of 3CaO·3Al₂O₃·CaSO₄ decreased and that of gehlenite generated $(2CaO \cdot Al_2O_3 \cdot SiO_2)$ with no hydration increased quantitatively. Therefore, if all $SO_3(g)$ generated by the thermal decomposition of alunite reacts with CaCO₃ (or CaO, the thermal decomposition product of limestone) to form CaSO₄ in an alunite- limestone system, 1 mol of pure alunite reacts with 6 mol of limestone to form 1 mol of 3CaO·3Al₂O₃·CaSO₄ and 1 mol of 2CaSO₄·K₂SO₄.

Keywords: alunite; limestone; calcium sulphoaluminate; calcium langbeinite

1. Introduction

Cement has been prepared using alunite [1], and a type of special cement containing calcium aluminate, anhydrite, and potassium sulfate has been prepared using anhydrite formed by the reaction between $SO_3(g)$ that evolves from alunite and limestone via the following reaction:

 $K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 4Al(OH)_3 + mCaCO_3 \rightarrow K_2SO_4 + 3(nCaO \cdot Al_2O_3) + 3CaSO_4 + mCO_2(g) + 6H_2O(g)$

Choi *et al.* [2] synthesized a calcium sulphoaluminate clinker consisting of $3\text{CaO} \cdot 3\text{Al}_2\text{O}_3 \cdot \text{CaSO}_4$, CaO and CaSO₄ through the sintering for 2 hrs at a temperature of 1,200 °C of alunite, limestone and an anhydrite mixture at a weight ratio of 1:13:5. Their research results showed that alunite could be used in the preparation of a $3\text{CaO} \cdot 3\text{Al}_2\text{O}_3 \cdot \text{CaSO}_4$ clinker provided that adequate mixing conditions are provided, despite that the expansion is relatively small compared to that of a clinker synthesized from reagents. However, the exact formation conditions of $3\text{CaO} \cdot 3\text{Al}_2\text{O}_3 \cdot \text{CaSO}_4$ in the sintering state were not discussed. In addition, Han *et al.* [3,4] synthesized a clinker containing calcium fluoroaluminate (C₁₁A₇ \cdot \text{CaF}_2) from domestic alunite and investigated its characteristics in an effort to develop a type of fast-hardening cement.

The authors [5] carried out an investigation of the conditions under which $3CaO \cdot 3Al_2O_3 \cdot CaSO_4$ is formed when mixtures of alunite and limestone are sintered. It was concluded that calcium langbeinite $(2CaSO_4 \cdot K_2SO_4)$ forms from 700 °C and that calcium sulphoaluminate forms from 800 °C. Both are stable up to 1,300 °C, as shown in the equation below:

 $K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 4Al(OH)_3 + 6CaCO_3 \rightarrow 4CaO \cdot 3Al_2O_3 \cdot SO_3 + 2CaSO_4 \cdot K_2SO_4 + 6H_2O(g) + 6CO_2(g)$

However, when alunite or limestone is incorporated in SiO₂ so as to enable the formation of calcium sulphoaluminate, the molar ratios of CaO/alunite and CaO/SiO₂ must be kept over 6.0 and 2.0, respectively. A clinker composed of calcium sulphoaluminate and calcium langbeinite was transformed into ettringite($3CaO \cdot Al_2O_3 \cdot 3CaSO_4 \cdot 32H_2O$) in water as calcium langbeinite is transformed into CaSO₄ $\cdot 2H_2O(s)$ and K₂SO₄ (aq) in water.

In the present study, the formation of $3CaO \cdot 3Al_2O_3 \cdot CaSO_4$ is identified in a K_2SO_4 -CaO-Al_2O_3-CaSO_4-SiO_2 system using reagents of various types in a detailed investigation of the formation conditions of this species through the sintering of a mixture of alunite and limestone.

2. Experimental

The reagents listed in Table 1 were used to investigate the reaction products arising from the K_2SO_4 -CaO-Al_2O_3-CaSO_4-SiO_2 system. K_2SO_4 and Al(OH)_3 were used in substitution for the components of alunite; calcium carbonate (CaCO_3) substituted for limestone, and CaSO_4·2H_2O, substituted for anhydrite (CaSO_4), which is formed by the sintering reaction between alunite and limestone.

The mixture of reagents were sintered in a programmable electric furnace (Barnstead /Thermolyne F46120 CM High-Temperature Furnace : 240 V, 40 A, 2,500 Watt, 50/60 Hz, 1 Phase) below 1,300 °C in an air atmosphere. The mineral phases of the manufactured clinker were then analyzed by XRD(PW-1700, Philips, 30kV, 25mA, Cu target, Ni filter, at a scanning rate of 2° /min). After the prepared clinker was finely milled with a laboratory ball mill, the mineral phases of the crushed clinker were analyzed by XRD.

Reagents	Chemical formula	Purity	Manufacturer
Potassium Sulfate	K_2SO_4	First grade	Ducksan Pharmaceutical Co., Ltd
Aluminum Hydroxide	Al(OH) ₃	First grade	Shinyo Pure Chemical Co., Ltd
Calcium Carbonate	CaCO ₃	min 98.0%	Kanto Chemical Co., Inc.
Gypsum	CaSO ₄ ·2H ₂ O	Extra pure	Junsei Chemical Co., Ltd.
Silicate Dioxide	SiO ₂	Extra pure	Junsei Chemical Co., Ltd.

Table 1. List of reagents used in this study.

3. Results and Discussion

Alunite $(K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 4Al(OH))$ is transformed into $KAl(SO_4)_2$ and Al_2O_3 by dehydration at $500 \sim 580$ °C and $KAl(SO_4)_2$, K_2SO_4 and Al_2O_3 by desulphurization at $700 \sim 780$ °C via the reaction of $K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 4Al(OH)_3 \rightarrow K_2SO_4 + 2Al_2O_3 + 3SO_3(g) + 6H_2O(g)$, regardless of the partial pressure of $CO_2(g)$. However, limestone decomposes from 650 °C in air and from 900 °C in a $CO_2(g)$ saturated atmosphere [6].

When the mixture of alunite and limestone is sintered in air and in a $CO_2(g)$ saturated atmosphere, the rate of formation of anhydrite is relatively low, at 76.0% and 67.0%, respectively, at a CaCO₃/alunite stoichiometric molar ratio of 3. However, the rate of formation increases as the molar ratio of CaCO₃/alunite (particle size, $37 \sim 44 \mu m$) exceeds 6, showing rates of more than 99.0% and 95.0% in air and in a CO₂(g) saturated atmosphere, respectively [7].

As shown in the results of aforementioned experiment, if alunite and limestone are mixed and sintered in air, most of the generated SO₃ reacts with limestone to form anhydrite (CaSO₄). Additionally, ignoring impurities such as Fe₂O₃, TiO₂, and P₂O₅ included in the alunite, because alunite ore is composed of alunite, quartz(SiO₂), and the aluminum silicate minerals of kaolinite, dickite, and pyrophyllite, the alunite and limestone mixture can be said to have five components, as does K_2SO_4 -CaO-Al₂O₃-CaSO₄-SiO₂.

If 1 mol if pure alunite is heated to temperatures that exceed 800 °C, it is pyrolyzed as $K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 4Al(OH)_3 \rightarrow K_2SO_4 + 3Al_2O_3 + 3SO_3 + 6H_2O$. Therefore, to formulate $SO_3(g)$ of 3 mol into anhydrite, 3 mol of CaCO_3 is required, and to change 3 mol of Al_2O_3 into $3CaO \cdot 3Al_2O_3 \cdot CaSO_4$, 3 additional mol of CaCO_3 and 1 mol of CaSO_4 will be needed. Therefore, to change all of the Al_2O_3 in alunite into $3CaO \cdot 3Al_2O_3 \cdot CaSO_4$, and to generate $SO_3(g)$ by the thermal decomposition of alunite into anhydrite, theoretically, pure alunite and limestone should be mixed at a molar rate of 1:6. This mixture will be composed of five component systems as in K_2SO_4 -CaO-Al_2O_3-CaSO_4.

The present study aims to determine the mineral phases of a clinker generated in the K_2SO_4 -CaO-Al₂O₃-CaSO₄ and the K_2SO_4 -CaO-Al₂O₃-CaSO₄-SiO₂ systems, using several types of reagents, including K_2SO_4 , Al(OH)₃, SiO₂, CaSO₄·2H₂O, and CaCO₃.

Figure 1 shows X-ray diffraction patterns of the materials generated, when a compound consisting of K₂SO₄-3CaO-3Al₂O₃-3CaSO₄ was sintered at 1,100 °C, 1,200 °C, and 1,300 °C, respectively, for 2 hours. As shown in this figure, 3CaO·3Al₂O₃·CaSO₄ and 2CaSO₄·K₂SO₄ is formed, but CaSO₄ does not react and remains at 1,100 °C. Meanwhile, at temperatures in excess of 1,200 °C 3CaO·3Al₂O₃·CaSO₄ and 2CaSO₄·K₂SO₄ were mainly generated. Accordingly, 1 mol of pure alunite reacts with 6 mol of limestone to form 1 mol of 3CaO·3Al₂O₃·CaSO₄ and 1 mol of 2CaSO₄·K₂SO₄ as follows; K₂SO₄·Al₂(SO₄)₃·4Al(OH)₃ + 6CaCO₃ \rightarrow 2CaSO₄·K₂SO₄ + 3CaO·3Al₂O₃·CaSO₄ + 6H₂O(g) + 6CO₂(g).

Figure 1. X-ray diffraction patterns of sintered products of mixtures of K_2SO_4 -3CaO-3Al₂O₃-3CaSO₄ at various temperatures in air.

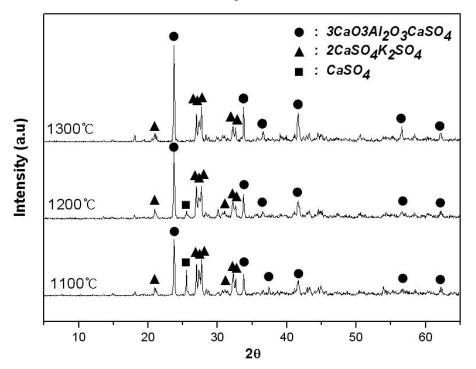
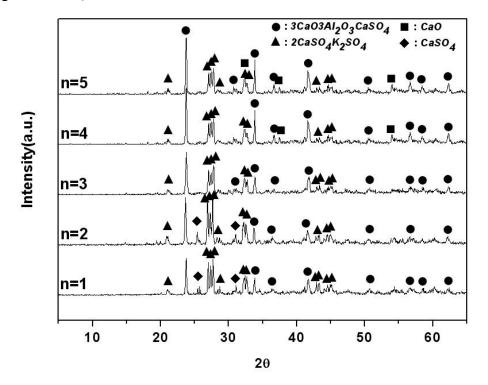
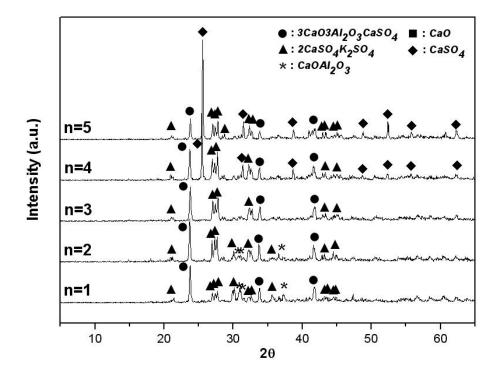



Figure 2 displays the materials generated from K₂SO₄-nCaO-3Al₂O₃-3CaSO₄ with various amounts of CaO sintered at 1,200 °C for two hours, as determined via an XRD analysis.

Figure 2. X-ray diffraction patterns of sintered products of mixtures of K_2SO_4 -nCaO-3Al₂O₃-3CaSO₄ with various amounts of CaO in air (sintering temp.: 1,200 °C, sintering time: 2 hrs).

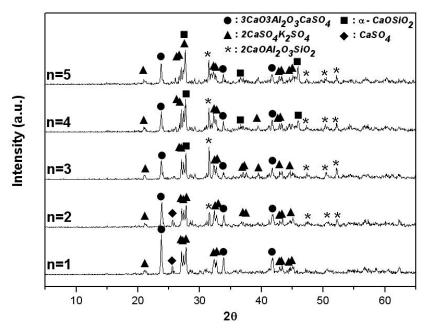

When it CaO is included in at an amount of 3 mol, $3CaO \cdot 3Al_2O_3 \cdot CaSO_4$ and $2CaSO_4 \cdot K_2SO_4$ are mainly generated. However, it was found that as the amount of CaO is increased from 3 mol to 5 mol, CaO does not participate in the formation reaction of $3CaO \cdot 3Al_2O_3 \cdot CaSO_4$. Thus, it can be said that $3CaO \cdot 3Al_2O_3 \cdot CaSO_4$ and $2CaSO_4 \cdot K_2SO_4$ are generated stably when CaO is 3 mol in the K_2SO_4 -nCaO- $3Al_2O_3$ -3CaSO_4 system.

According to Fukuda [8] $3CaO \cdot 3Al_2O_3 \cdot CaSO_4$ is the only compound in the CaO-Al_2O_3-SO_3 system. This line of research was started in 1962 by Halstead, *et al.* [9] with Ca²⁺ and SO₄²⁻ ions in a three-dimensional crystal structure sharing the angular point of a AlO₄ tetrahedron; an Al³⁺ ion is coordinated with four O²⁻ ions, a Ca²⁺ ion is surrounded asymmetrically by O²⁻ ions, and an isolated SO₄²⁻ ion is characterized by its ability to readily react with water. Kondo [10] discovered that these ions become hardened in water. In general, they are produced by re-sintering after producing $3CaO \cdot Al_2O_3$ and regulating the mixture ratio of $3CaO \cdot Al_2O_3$, CaSO₄ · 2H₂O and Ca(OH)₂ and by sintering a mixture of CaCO₃, Al₂O₃, and CaSO₄ · 2H₂O.

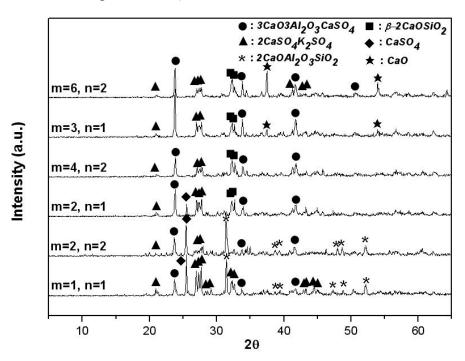
 $2CaSO_4$ · K₂SO₄ is easily generated in the CaO-Al₂O₃-SiO₂-Fe₂O₃-MgO-CaSO₄-K₂SO₄ system and has a considerable influence on the condensation time and the hardening characteristics of cements. Known as a water-soluble alkali, as $2CaSO_4$ · K₂SO₄ can be easily separated from the liquid state of a clinker oxide and is said to become K₂SO₄·CaSO₄·H₂O(syngenite) and CaSO₄·2H₂O upon exposure to water [11].

Figure 3 shows the materials generated from the K₂SO₄-3CaO-3Al₂O₃-nCaSO₄ system sintered at 1,200 °C for two hours with varying amounts of anhydrite, as determined via an XRD analysis.

Figure 3. X-ray diffraction patterns of sintered products of mixtures of K_2SO_4 -3CaO-3Al₂O₃-nCaSO₄ with various amounts of CaSO₄ in air (sintering temp.: 1,200 °C, sintering time: 2 hrs).


As shown in this figure, when anhydrite is included in an amount of 3 mol, $3CaO \cdot 3Al_2O_3 \cdot CaSO_4$ and $2CaSO_4 \cdot K_2SO_4$ are generated. However, as the amount of anhydrite is decreased from 3 mol to 1 mol, it was observed that the K₂SO₄ that did not react with CaO \cdot Al₂O₃ remained. As the amount of anhydrite is increased from 3 mol to 5 mol, only the diffraction strength of the CaSO₄ that does not react increases. Thus, it can be said that an amount of CaSO₄ in excess of the stoichiometric molar ratio is necessary to generate $3CaO \cdot 3Al_2O_3 \cdot CaSO_4$ stably.

As noted above, $3CaO \cdot 3Al_2O_3 \cdot CaSO_4$ and $2CaSO_4 \cdot K_2SO_4$ were mainly generated in the $K_2SO_4 \cdot 3CaO \cdot 3Al_2O_3 \cdot 3CaSO_4$ system. However, because alunite from nature has impurities of SiO₂ and aluminum silicate minerals such as kaolinite, dickite, and pyrophyllite, the alunite and limestone mixture is believed to be comprised of a $K_2SO_4 \cdot CaO \cdot Al_2O_3 \cdot CaSO_4 \cdot SiO_2$ system to which SiO₂ is added.


XRD Figures 4 and 5 show, by analysis, the materials generated from the K₂SO₄-3CaO-3Al₂O₃-3CaSO₄-nSiO₂ system and the K₂SO₄-(3+m)CaO-3Al₂O₃-3CaSO₄-nSiO₂ system, respectively, sintered at 1,200 °C for 2 hours, with various amounts of CaO (3 + m : mol number) and $SiO_2(n; mol number)$. In Figure 4, when there is no SiO_2 in the mixture, the result is identical to that obtained when 3 mol of CaO is used (Figure 2). It is expected that 3CaO·3Al₂O₃·CaSO₄ and 2CaSO₄·K₂SO₄ will be generated. However, as the amount of SiO₂ is increased from 1 mol to 5 mol, the amount of $3CaO \cdot 3Al_2O_3 \cdot CaSO_4$ generated is reduced, because gehlenite ($2CaO \cdot Al_2O_3 \cdot SiO_2$) and wollastonite (α -CaO·SiO₂), which do not react with water, are generated. In addition, as shown in Figure 5, when the mol rate of CaO/alunite is less than 6 (m less than 3), and that of CaO/SiO₂ is less than 2, the synthetic clinker contained 2CaO·Al₂O₃·SiO₂ and CaSO₄; these compounds do not participate in the formation reaction of 3CaO·3Al₂O₃·CaSO₄ because 3CaO·3Al₂O₃·CaSO₄ is the only compound in the CaO-Al₂O₃-SO₃ system as noted above[8] and CaO and Al₂O₃ participate

preferentially in the formation reaction of $2\text{CaO}\cdot\text{Al}_2\text{O}_3\cdot\text{SiO}_2$. Accordingly, if all SO₃(g) generated by thermal decomposition of alunite reacts with CaCO₃ (or CaO, the thermal decomposition product of limestone) to form CaSO₄ in the alunite-limestone system, when the molar ratios of CaO/alunite exceed 6 and that of CaO/SiO₂ exceeds 2, $3\text{CaO}\cdot3\text{Al}_2\text{O}_3\cdot\text{CaSO}_4$, $2\text{CaSO}_4\cdot\text{K}_2\text{SO}_4$ and β -2CaO·SiO₂ are generated stably.

Figure 4. X-ray diffraction patterns of sintered products of mixtures of K_2SO_4 -3CaO-3Al₂O₃-3CaSO₄-nSiO₂ with various amounts of SiO₂ in air (sintering temp.: 1,200 °C, sintering time: 2 hrs).

Figure 5. X-ray diffraction patterns of sintered products of mixtures of K_2SO_4 -[(3+m)CaO]-3Al₂O₃-3CaSO₄-nSiO₂ with various amounts of CaO and SiO₂ in air (sintering temp.: 1,200 °C, sintering time: 2 hrs).

4. Conclusions

formation of calcium This study investigated the characteristics sulphoaluminate (4CaO·3Al₂O₃·SO₃) in a K₂SO₄-CaO-Al₂O₃-CaSO₄-SiO₂ system using reagents of various types in an effort to identify the formation conditions of 3CaO·3Al₂O₃·CaSO₄ by the sintering of a mixture of alunite and limestone. In experiments with reagents for the mineral phases generated from the compound system (the K₂SO₄-CaO-Al₂O₃-CaSO₄-SiO₂ system), if all SO₃(g) from alunite reacts with limestone to form anhydrite, it was found that 1 mol of pure alunite reacts with 6mol of limestone to form 1 mol of 3CaO·3Al₂O₃·CaSO₄ and 1 mol of 2CaSO₄· K₂SO₄, as of 3CaO·3Al₂O₃·CaSO₄ and 2CaSO₄· K₂SO₄ are generated stably at a component ratio of K₂SO₄-3CaO-3Al₂O₃-3CaSO₄. Over-mixing of CaO and CaSO₄ has a slight effect on the generation of 3CaO·3Al₂O₃·CaSO₄. However, it is thought that under-mixing will have a substantial effect on the mineral phase of the clinker and on the amount of 3CaO·3Al₂O₃·CaSO₄ that is generated. Moreover, if the impurities of SiO₂ are incorporated in the alunite and limestone, the molar ratio of CaO/alunite must exceed 6 and that of CaO/SiO2 must exceed 2 in order to ensure the stable formation of calcium sulphoaluminate, calcium langbeinite, and the β -2CaO·SiO₂ phases. Otherwise, the amount of gehlenite(2CaO·Al₂O₃·SiO₂), which does not react with water, may be increased.

References

- 1. Sanada, Y.; Saito, C.; Miyanawa, K. Studies on preparation of speacial high aluminous cement from alunite(I). *J. Korean Ceram. Soc.* **1949**, *57*, 32-34.
- Choi, S.H.; Han, S.M. Studies on hydration expansibility of calcium sulfoaluminate clinkers. J. Korean Ceram. Soc. 1971, 8, 98-103.
- 3. Han, K.S. Studies on alumina cement from alunite(I) (synthesis of monocalcium aluminate). *J. Korean Ceram. Soc.* **1978**, *15*, 199.
- 4. Han, K.S.; Choi, S.H.; Song, T.-U. Studies on alumina cement from alunite(II) (physical properties of alumina cement). *J. Korean Ceram. Soc.* **1979**, *16*, 164-168.
- 5. Kim, H.S.; Ahn, J.W.; Hyun, J.Y.; Cho, D.S. Synthesis of calcium sulfoaluminate clinker using alunite. *Mater. Sci. Forum* **2003**, *439*, 106-114.
- 6. Kim, H.S.; Cho, D.S. A study on the thermal decomposition of alunite. *J. Korean Inst. Resour. Recyc.* **1998**, *7*, 33.
- 7. Kim, H.S.; Ahn, J.W.; Kim, H.; Shin, G.H.; Cho, D.S. Synthesis of anhydrite in the mixtures of alunite and limestone by roasting. *J. Korean Cryst. Growth Cryst. Technol.* **2001**, *11*, 190.
- 8. Fukuda, N. Fundermental studies on the expansive cement. In *Proceedings of the 5th International Symposium on the Chemistry of Cement*, Tokyo, Japan, May 1968; p. 311.
- 9. Halstead, P.E.; Moor, A.E. The composition and crystallography of an anhydrous calcium aluminosulphate accuing in expanding cement. *J. Appl. Chem.* **1962**, *12*, 413-417.
- 10. Kondo, R. The synthesis and crystallography of a group of new compounds belonging to the hauyne type structure. *J. Ceram. Soc. Jpn.* **1965**, *73*, 1-8.

11. Kapralik, I.; Hanic, F.; Havlica, J.; Ambruz, V. Sub-solidus phase ralations in the system CaO-Al₂O₃-SiO₂-Fe₂O₃-MgO-CaSO₄-K₂SO₄ at 950 °C in air referred to sulphoaluminate cement clinker. *Trans. J. Brit. Ceram. Soc.* **1986**, *85*, 107-110.

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).