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Hyperuricemia and gout are two of the most common metabolic disorders

worldwide; their incidence is increasing with changes in lifestyle, and they are

correlated with many diseases, including renal and cardiovascular diseases.

The majority of studies on hyperuricemia and gout have focused on the

discovery of the associated genes and their functions and on the roles

of monocytes and neutrophils in the development of gout. Virtually no

studies investigating the epigenomics of gout disease or exploring the clinical

significance of such research have been conducted. In this study, we observed

that the expression of enzymes involved in RNA modifications or RNA editing

was affected in uric acid (UA)- or monosodium urate (MSU)-treated cell lines.

RNA alternative splicing and splicing factors were also affected by UA or MSU

treatment. We used transcriptome sequencing to analyze genome-wide RNA

splicing and RNA editing and found significant changes in RNA splicing and

RNA editing in MSU- or UA-treated THP-1 and HEK293 cells. We further found

significant changes of RNA modifications, editing, and splicing in patients with

gout. The data indicate that RNA modifications, editing, and splicing play roles

in gout. The findings of this study may help to understand the mechanism of

RNA splicing and modifications in gout, facilitating the development of new

diagnostic and therapeutic strategies.
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Introduction

Hyperuricemia and gout are two of the most common
metabolic diseases worldwide. Gout is more common in men
than in women, and the male to female ratio ranges from 3:1
to 10:1. The global prevalence and incidence of gout are in
the ranges of 1–4% and 0.1–0.3%, respectively (1). In Taiwan,
the prevalence and incidence of gout are 6.24% and 2.74 per
1,000 person-years, respectively. The overall prevalence of gout
is 2.9-fold more in men than in women (2). The prevalence and
incidence of gout are increasing with the increasing richness of
diets in recent years and other lifestyle factors.

Gout is a chronic disease characterized by the deposition
of monosodium urate (MSU) crystals in joints and soft
tissues, and its cause is related to an imbalance between
urate intake/production and excretion, which leads to urate
accumulation and crystallization in tissues (3). MSU crystals
trigger the activation of the NLRP3 inflammasome and the
release of proinflammatory cytokines such as interleukin (IL)-
1β, tumor necrosis factor (TNF)-α, IL-8, IL-17, IL-10, and IL-37.
IL-1β is the critical inflammatory mediator induced by MSU
crystals (4–7).

Although the mechanism by which inflammation is
activated in gout has been discovered, the mechanism of
epigenomic regulation of gout remains unclear. Technological
breakthroughs have led to epigenomics becoming one of
the most rapidly expanding fields in biology (8). Epigenetic
regulations include miRNA, histone modifications, RNA
editing, RNA modifications, and RNA splicing. The role
of abnormal epigenomic regulation in the pathogenesis of
various diseases, including cancers, autoimmune diseases,
and neurological diseases, has been widely reported (9, 10).
However, studies on epigenomic mechanisms in gout and
hyperuricemia are scarce, and only several studies on microRNA
and DNA methylation genes such as miR-155 and miR-146a
have been reported (11–18). Other epigenomic regulations may
also play important roles in hyperuricemia and gout. Through
this study, we aimed to investigate the epigenomic changes in
hyperuricemia and gout.

Materials and methods

Cell culture and treatment

THP-1 cells were grown in lipopolysaccharide-free complete
RPMI medium containing 10% fetal bovine serum. HEK293
cells were grown in Dulbecco’s modified Eagle’s medium
containing 10% fetal bovine serum. HUVEC cells were grown
in Cascade Biologics Medium 200 (Gibco, Thermo Fisher
Scientific, Waltham, MA, United States) plus Cascade Biologics
Low Serum Growth Supplement (Gibco, Thermo Fisher
Scientific, Waltham, MA, United States) on a gelatin-coated

dish. Cells were grown at 37◦C in an incubator with 5% CO2.
Uric acid (UA) was dissolved in 1 N sodium hydroxide and
diluted in culture media to 3.5, 7, and 10.5 mg/dL. Media
containing UA were adjusted to pH 7.4. MSU was dissolved in
phosphate-buffered saline and diluted in culture media to 3.5, 7,
and 10.5 mg/dL. Cells were seeded on a culture dish and treated
with UA- or MSU-containing media for 48 h.

RNA extraction and reverse
transcription and real-time polymerase
chain reaction

RNA was extracted from UA- or MSU-treated cells or from
the buffy coat of patients with gout by using TRIzol Reagent
(Thermo Fisher Scientific, Waltham, MA, United States) or
the NucleoSpin RNA kit (Macherey-Nagel, Dueren, Germany),
according to the manufacturer’s instructions. Two micrograms
of RNA were subjected to reverse transcription polymerase
chain reaction (RT-PCR) using the Applied Biosystems
High-Capacity cDNA Reverse Transcription Kit (Thermo
Fisher Scientific, Waltham, MA, United States), according to
the manufacturer’s instructions. Real-time polymerase chain
reaction (PCR) was performed on the Roche LightCycler 480
Real-Time PCR System using Universal ProbeLibrary System
(Roche, Basel, Switzerland). The PCR process involved the
following steps: initial denaturation at 94◦C for 5 min, followed
by 35 cycles of 94◦C for 30 s, 60◦C for 45 s, 72◦C for 1 min,
and final extension at 72◦C for 7 min. The PCR products were
separated by 3% agarose gel electrophoresis. The intensity of the
PCR products was analyzed using LabWorks Image Acquisition
and Analysis Software (UVP BioImaging Systems, Upland, CA,
United States). The primers for RT-PCR and real-time PCR are
listed in Supplementary Table 1.

Statistical analysis

Statistical analysis was performed using Microsoft Excel
2010 (Microsoft, Redmond, WA, United States) and GraphPad
Prism 5.01 (GraphPad Software, San Diego, CA, United States).
Student’s t-tests were conducted to evaluate differences between
groups. A probability of less than 0.05 was considered to
be statistically significant. ∗P < 0.05, ∗∗P < 0.01, and
∗∗∗P < 0.0001.

Protein extraction and western blotting

Proteins were extracted from UA- or MSU-treated
cells or from the buffy coat of patients with gout by using
RIPA lysis buffer (50 mM Tris, pH 8.0, 150 mM NaCl,
1 mM EDTA, 1% NP40, 1% sodium deoxycholate, 0.1%
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SDS) and were analyzed through SDS-PAGE: the proteins
were transferred onto polyvinylidene difluoride (PVDF)
membranes (Bio-Rad, Hercules, CA, United States) after
electrophoresis. The PVDF membranes were blocked with 5%
bovine serum albumin (BSA) solution in Tris-buffered saline
with Tween 20 (TBST) for 60 min. The PVDF membranes
were incubated with the primary antibody in 1% BSA overnight
and then incubated with horseradish peroxidase–conjugated
secondary antibody for 60 min. After washing three times
with TBST, the PVDF membranes were exposed to the ECL
Plus substrate (GE Healthcare Amersham, Fisher Scientific,
Göteborg, Sweden) for 5 min. Chemiluminescence signals
were detected, and the expression levels were analyzed
using LabWorks Image Analysis Software. The primary
antibodies used were anti-PUS1 (Invitrogen, Thermo Fisher
Scientific, Waltham, MA, United States), anti-PUS7 (Invitrogen,
Thermo Fisher Scientific, Waltham, MA, United States), anti-
NSUN3 (Abcam, Cambridge, United Kingdom), anti-NSUN4
(Abcam, Cambridge, United Kingdom), anti-METTL14
(Abcam, Cambridge, United Kingdom), anti-YTHDC1
(Abcam, Cambridge, United Kingdom), anti-YTHDF3
(Abcam, Cambridge, United Kingdom), anti-ADAR1 (Abcam,
Cambridge, United Kingdom), anti-RED1 (also known as
ADAR2, Abcam), anti-SRPK1 (BD Biosciences, Franklin Lakes,
NJ, United States), anti-SRPK2 (BD Biosciences, Franklin Lakes,
NJ, United States), anti-SF2/ASF (Zymed Laboratories, South
San Francisco, CA, United States), anti-hnRNPA1 (Sigma-
Aldrich), anti-Sam68 (Santa Cruz, Dallas, TX, United States),
anti-histone H1 (GeneTex, Irvine, CA, United States),
anti-ß-actin (GeneTex, Irvine, CA, United States), and
anti-tubulin (GeneTex, Irvine, CA, United States).

Samples of patients with gout

Blood samples obtained from 67 patients with gout
were approved by the China Medical University and
Hospital Research Ethics Committee (CMUH108-REC2-
051). Approximately 10 mL of blood was collected in an EDTA
tube, and buffy coat was used for RNA and protein extraction.

Transcriptome sequencing

That RNA was of high quality (RNA integrity number,
RIN > 8) was confirmed using the Agilent Bioanalyzer 4200
(Agilent Technologies, Santa Clara, CA, United States). One
microgram of RNA was used for library preparation of the
TruSeq Stranded mRNA Library Prep kit (Illumina, San
Diego, CA, United States), according to the manufacturer’s
instructions. Briefly, mRNA was purified using poly-A
magnetic beads and fragmented through enzyme treatment.
Subsequently, double-strand cDNA synthesis, end-repair,
adaptor ligation, and enrichment PCR were performed.

Samples were subjected to 2 × 150-bp paired-end sequencing
using the Illumina NovaSeq 6000 platform.

Bioinformatics analysis

Base calling and quality scoring were performed with
an updated implementation of Real-Time Analysis on the
NovaSeq 6000 system. We used bcl2fastq Conversion Software
(v2.20.0.422) to demultiplex data and convert BCL files to
FASTQ files. To facilitate downstream analysis, a quality control
(QC) step was performed that involved the use of Trimmomatic
tools (v0.39) (19). Sequencing primers and adapters in the
reads were trimmed off, and a read was dropped out if
the average quality score was less than 20 or the length of
the read was shorter than 100 bp. Transcriptome sequencing
reads were aligned to human genome hg38 with reference
annotation GENCODE version 30 by using STAR (v2.7.5a)
(20). featureCounts (v35) (21) and edgeR (v 3.32.1) (22) were
used to quantify and normalize the mRNA expression level. To
identify alternative splicing events (ASEs), rMATS (v4.1.0) (23)
was applied to alignment results from STAR. A total of five
types of ASEs were observed, namely annotated, skipped exon
(SE), mutually exclusive exons (MXE), alternative 3′ splice site
(A3SS), alternative 5′ splice site (A5SS), and retained intron (RI).
To analyze RNA editing, whole genome sequencing (WGS) data
were obtained from NCBI SRA (HEK293: SRR2123657, THP-1:
SRR8670675); fastp (v0.20.1) (24) was used for QC. WGS reads
were aligned to human genome hg38 with reference annotation
GENCODE version 30 by using BWA-MEN (v0.7.17) (25) and
were then sorted to generate an index by using SAMtools (v
1.9) (26). RedITools (v 1.0) (27) plus the relevant protocol (28)
was used for RNA editing. QC was performed by filtering out
the editing events with read counts less than 30 and editing
ratios less than 0.1.

Results

Effect of uric acid and monosodium
urate on RNA modifications

Epigenomic regulations include DNA and RNA levels,
and over 17 and 160 types of modifications have been
detected in DNA and RNA, respectively (8, 29, 30). Previous
studies have shown that RNA modifications modulate innate
immune response and are linked to many human diseases
(31, 32). We hypothesized that RNA modifications may
be regulated in hyperuricemia and gout. To identify the
effect of UA and MSU on RNA modifications, we treated
the THP-1 monocyte cell line, HEK293 embryonic kidney
cell line, and HUVEC umbilical vein epithelial cell line
with UA or MSU for 48 h. These cell lines were selected
because the evidence indicates that hyperuricemia and gout
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FIGURE 1

RNA expressions of RNA modification enzymes were affected in MSU- or UA-treated cell lines. The expressions of enzymes involved in
pseudouridine (left), 5-methylcytidine (middle), and N6-methyladenosine (right) in UA-treated THP-1 cells (A), MSU-treated THP-1 cells (B),
UA-treated HEK293 cells (C), MSU-treated HEK293 cells (D), UA-treated HUVEC cells (E), and MSU-treated HUVEC cells (F) were quantitated
through real-time PCR. Error bars represent standard deviation. The results of three independent experiments were averaged to obtain the final
results. *P < 0.05 by Student’s t-test, compared with mock cells.
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FIGURE 2

Protein expressions of RNA modification enzymes were affected in MSU- or UA-treated cell lines. The expressions of RNA modification
enzymes that changed with RNA levels were detected through Western blotting. (A) NSUN3 and NSUN4 were detected in UA-treated THP-1
cells. (B) YTHDC1, METTL14, and NSUN3 were detected in MSU-treated THP-1 cells. (C,D) NSUN3 was detected in UA-and MSU-treated
HEK293 cells. (E) YTHDF3, PUS7, PUS1, NSUN4, YTHDC1, and METTL14 were detected in UA-treated HUVEC cells. (F) YTHDC1, METTL14, and
NSUN3 were detected in MSU-treated HUVEC cells. β-actin and histone H1 served as the internal control. Representative results from three
independent experiments are presented.

are involved in the development of chronic kidney disease
and hypertension. In addition, MSU crystal-stimulated
monocytes and macrophages secret IL-1 and initiate gouty
inflammation. Subsequently, we measured the expression
levels of enzymes involved in RNA modifications, including
pseudouridine, 5-methylcytosine, and N6-methyladenosine;
these enzymes have been associated with human disease-
related RNA modifications. We determined that UA and
MSU had diverse effects on RNA modifications in different
cell lines (Figure 1). The expression of enzymes involved in
5-methylcytosine was affected in THP-1 cells treated with UA
(Figure 1A). The effect of MSU on RNA modifications in
THP-1 cells was ubiquitous in pseudouridine, 5-methylcytosine,

and N6-methyladenosine (Figure 1B). The expressions of
the enzymes involved in 5-methylcytosine in UA-treated
HEK293 cells changed significantly (Figure 1C). The
effect of MSU on RNA modifications in HEK293 cells was
ubiquitous in pseudouridine, 5-methylcytosine, and N6-
methyladenosine (Figure 1D). UA treatment of HUVEC
cells altered the expressions of the enzymes involved in
pseudouridine, 5-methylcytosine, and N6-methyladenosine
(Figure 1E). MSU treatment of HUVEC cells affected the
expressions of the enzymes involved in pseudouridine and
N6-methyladenosine (Figure 1F). The results indicated
that both UA and MSU affected RNA modifications. We
further detected the protein expression levels of RNA
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FIGURE 3

RNA expressions of RNA editing enzymes were affected in MSU- or UA-treated HEK293 cells. The expressions of ADAR1 and ADAR2 in
UA-treated THP-1 cells (A), MSU-treated THP-1 cells (B), UA-treated HEK293 cells (C), MSU-treated HEK293 cells (D), UA-treated HUVEC cells
(E), and MSU-treated HUVEC cells (F) were quantitated through real-time PCR. Error bars represent standard deviation. The results of three
independent experiments were averaged to obtain the final results. *P < 0.05 by Student’s t-test, compared with mock cells.

modification enzymes that were affected by RNA levels.
We found no significant changes of NSUN3 and NSUN4
protein expressions in THP-1 cells treated with UA (Figure 2A).
The expression of METTL14 decreased in THP-1 cells
treated with MSU; however, no changes were observed
in the expressions of YTHDC1 and NSUN3 (Figure 2B).
The expression of NSUN3 decreased in HEK293 cells
treated with UA or MSU (Figures 2C,D). No significant
changes in protein expressions of RNA modification enzymes
were observed in HUVEC cells treated with UA or MSU
(Figures 2E,F). The quantitative results are presented in
Supplementary Figure 1.

Effect of uric acid and monosodium
urate on RNA editing

RNA editing is another critical mechanism in gene
regulation. RNA editing is different from other RNA
modifications because it alters the cellular fate of RNA
molecules and their sequence relative to the genome. Adenosine
to inosine (A-to-I) RNA editing is the most common type of
RNA editing in vertebrates (higher eukaryotes). This editing
reaction is catalyzed by the adenosine deaminase acting on
RNA (ADAR) protein family (33). A-to-I RNA editing has
been determined to be involved in many biological functions;
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FIGURE 4

Protein expressions of RNA editing enzymes were affected in MSU- or UA-treated cell lines. The expressions of ADAR1 and ADAR2 were
detected through Western blotting in UA-treated THP-1 cells (A), MSU-treated THP-1 cells (B), UA-treated HEK293 cells (C), MSU-treated
HEK293 cells (D), UA-treated HUVEC cells (E), and MSU-treated HUVEC cells (F). β-actin served as the internal control. Representative results
from three independent experiments are presented.

one of them is innate immune response (34–36). According
to these studies, A-to-I RNA editing may be regulated in
hyperuricemia and gout. To identify the effect of UA and MSU
on A-to-I RNA editing, we detected the expression levels of
enzymes involved in A-to-I RNA editing, including ADAR1
and ADAR2, and found no significant changes of ADAR1 and
ADAR2 expressions in THP-1 and HUVEC cells treated with
UA or MSU (Figures 3A,B,E,F). The expression of ADAR2
increased in HEK293 cells treated with UA (Figure 3C), and
the expressions of ADAR1 and ADAR2 increased in HEK293
cells treated with MSU (Figure 3D). We also detected the
protein expressions of ADAR1 and ADAR2 in three cell lines
treated with UA or MSU and observed that the expression of
ADAR1 increased in THP-1 cells treated with UA and MSU,
but no change was observed in the expression of ADAR2
(Figures 4A,B). Increases in the expression of ADAR2 in
HEK293 cells treated with UA were observed (Figure 4C),

whereas no changes of ADAR1 and ADAR2 in HEK293 cells
treated with MSU were observed (Figure 4D). No changes in the
expressions of ADAR1 and ADAR2 were observed in HUVEC
cells treated with UA (Figure 4E), but the expression of ADAR1
increased in HUVEC cells treated with MSU (Figure 4F). The
quantitative results are presented in Supplementary Figure 2.
These findings indicate that not only RNA modifications but
also RNA editing was affected by UA or MSU treatment. To
further explore RNA editing, we analyzed genome-wide RNA
editing by transcriptome sequencing in UA- or MSU-treated
THP-1 and HEK293 cells. We found 10,264 editing variants in
THP-1 cells and 12,189 and 12,819 editing variants in MSU-
treated THP-1 cells and UA-treated THP-1 cells, respectively
(Figure 5); 6,845 editing variants were commonly observed
in untreated THP-1 and MSU-treated THP-1 cells, and 3,419
and 5,344 unique editing variants were observed in untreated
THP-1 and MSU-treated THP-1 cells, respectively. A total of
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FIGURE 5

Genome-wide analysis of RNA editing in MSU- or UA-treated
THP-1 cells. The upper panel shows the numbers of variants and
genes with RNA editing in mock, MSU-treated, or US-treated
THP-1 cells. The numbers of variants in the coding sequence
were further analyzed. RNA editing affected the coding
sequence, including gain of stop codon, loss of stop codon,
missense mutations, and non-synonymous mutations. The left
lower panel displays the common variants and unique variants in
untreated and MSU-treated THP-1 cells, and the right lower
panel presents the common variants and unique variants in
untreated and UA-treated THP-1 cells.

6,995 common variants and 3,269 and 5,824 unique variants
were observed in untreated THP-1 and UA-treated THP-1
cells, respectively (Figure 5). A total of 4,222, 5,159, and 4,071
editing variants were observed in untreated, MSU-treated,
and UA-treated HEK293 cells, respectively (Figure 6); 2,612
editing variants were common in untreated and MSU-treated
HEK293 cells, and 1,610 and 2,547 unique editing variants were
observed in untreated THP-1 and MSU-treated HEK293 cells,
respectively. In total, 2,607 common variants and 1,615 and
1,464 unique variants were observed in untreated HEK293 and

FIGURE 6

Genome-wide analysis of RNA editing in MSU- or UA-treated
HEK293 cells The upper panel displays the numbers of variants
and genes with RNA editing in mock, MSU-treated, or
US-treated HEK293 cells. The numbers of variants in a coding
sequence were further analyzed. RNA editing affected the
coding sequence, including gain of stop codon, loss of stop
codon, missense mutations, and non-synonymous mutations.
The left lower panel presents the common variants and unique
variants in untreated and MSU-treated HEK293 cells, and the
right lower panel displays the common variants and unique
variants in untreated and UA-treated HEK293 cells.

UA-treated HEK293 cells, respectively (Figure 6). Subsequently,
we analyzed editing variants correlated with gene expression
levels. Four genes exhibited expression level changes with RNA
editing variants in MSU-treated THP-1 cells, namely GATD3B,
GLO1, IL21R, and SIGLEC6. In UA-treated THP-1 cells, four
genes exhibited changed expression levels with RNA editing
variants, namely FADS2, IL21R, SIGLEC11, and SIGLEC6.
In total, 78 and four genes exhibited changed expression
levels in MSU- and UA-treated HEK293 cells, respectively
(Supplementary Table 2). We further analyzed the functions
of 78 genes in MSU-treated HEK293 cells through the KEGG
pathway and found that amino acid metabolism was affected
(Table 1). We also analyzed these genes using Enrichr (37–
39). Five of the 26 tools in Enrichr showed that amino acid
metabolism was affected (see Supplementary Figure 3; more
details at https://maayanlab.cloud/Enrichr/enrich?dataset=
4f1656f33465251920dc111be4070988). In addition to gene
expression, we analyzed RNA splicing changes with RNA
editing and found significant changes in alternative splicing
of CARD8 with RNA editing on the splice site in MSU- or
UA-treated THP-1 cells. Alternative splicing of non-coding
RNA AC012313.3 with RNA editing on the splice site induced
substantial changes in UA-treated HEK293 cells. These findings
suggest that RNA editing was affected by MSU and UA
treatment in a genome-wide manner.

Effect of uric acid and monosodium
urate on RNA alternative splicing

In addition to chemical modifications, some other
mechanisms are included in epigenomic regulations. For
example, mRNA alternative splicing is critical for all cellular
processes, as over 90% of all human genes undergo alternative
splicing. Many studies have shown that alternative splicing is
involved in apoptosis, inflammation, autoimmune diseases,
and immune response regulations (40–45), indicating the
possibility that alternative splicing is regulated in hyperuricemia

TABLE 1 KEGG pathway analysis of RNA editing genes that indicates
changes in expression levels in MSU-treated HEK293 cells.

Term P-value Genes

hsa00250:Alanine,
aspartate and glutamate
metabolism

0.002886 IL4I1, GPT2, ASS1

hsa01230:Biosynthesis of
amino acids

0.011792 GPT2, ENO3, ASS1

hsa01100:Metabolic
pathways

0.013963 IL4I1, GCDH, COX7B,
NAGLU, GPT2, ACSL6,

ENO3, ASS1

hsa00220:Arginine
biosynthesis

0.045566 GPT2, ASS1
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and gout. We detected alternative splicing changes of BCL-x,
SMAC, and HIPK3 in UA- or MSU-treated cell lines; these genes
were involved in apoptosis regulation. We found significant
changes of BCL-x splicing in THP-1 cells treated with UA
(Figure 7A). The splicing patterns were also affected in
UA- or MSU-treated cell lines, although no significance was

observed owing to variation in the patterns (Figures 7B–F).
We then detected the expression of splicing factors that
had been reported to affect alternative splicing in UA- or
MSU-treated cell lines and found that SRPK1 decreased
in UA-treated THP-1 cells (Figure 8A). The expression of
SRPK1, ASF/SF2, and hnRNPA1 increased in MSU-treated

FIGURE 7

RNA alternative splicing was affected in MSU- or UA-treated cell lines. The alternative splicing changes in BCL-x, SMAC, and HIPK3 were
detected through RT-PCR in UA-treated THP-1 cells (A), MSU-treated THP-1 cells (B), UA-treated HEK293 cells (C), MSU-treated HEK293 cells
(D), UA-treated HUVEC cells €, and MSU-treated HUVEC cells (F). The PCR product sizes of BCL-x were 318 and 129 bp, those of SMAC were
250 and 118 bp, and those of HIPK3 were 244 and 181 bp. The bottom bar graphs indicate the fold change of full-length form (FL) and
truncated form (D) mRNA ratios quantified using LabWorks Image Acquisition and Analysis Software (UVP BioImaging Systems, Upland, CA,
United States). Error bars represent standard deviation. Representative results from three independent experiments are presented. The results of
three independent experiments were averaged to obtain the final results. *P < 0.05 by Student’s t-test, compared with mock cells.
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THP-1 (Figure 8B). The expressions of SRPK1 and hnRNPA1
decreased in UA-treated HEK293 cells (Figure 8C), and those
of the detected splicing factors did not change significantly in
MSU-treated HEK293 cells (Figures 8D,F). The expression
of hnRNPA1 decreased and that of Sam68 increased in
UA-treated HUVEC cells (Figure 8E). The quantitative
results are presented in Supplementary Figure 4. These
results indicated that the expressions of splicing factors
were affected by UA or MSU treatment and subsequently
caused alternative splicing changes. We suspected that the
effects of UA or MSU on RNA splicing were universal in

the genome. Therefore, we analyzed genome-wide splicing
changes by transcriptome sequencing in UA- or MSU-
treated THP-1 and HEK293 cells. The ASEs were divided
into five groups: SE, MXE, A3SS, A5SS, and RI. We found
that 447 splicing events significantly changed in UA-treated
THP-1 cells and 431 splicing events changed in MSU-
treated THP-1 cells. Similarly, 455 and 435 splicing events
significantly changed in UA- and MSU-treated HEK293
cells, respectively (Table 2). These results indicate that
alternative splicing was affected by UA or MSU treatment
universally in the genome.

FIGURE 8

Protein expressions of splicing factors were affected in MSU- or UA-treated cell lines. The expressions of Sam68, ASF/SF2, hnRNPA1, SRPK1, and
SRPK2 were detected through Western blotting in UA-treated THP-1 cells (A), MSU-treated THP-1 cells (B), UA-treated HEK293 cells (C),
MSU-treated HEK293 cells (D), UA-treated HUVEC cells (E), and MSU-treated HUVEC cells (F). β-actin and tubulin served as the internal control.
Representative results from three independent experiments are presented.
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TABLE 2 Genome-wide analysis of RNA alternative splicing in MSU-
or UA-treated cell lines.

AS Types THP-1
+ UA

THP-1
+ MSU

HEK293
+ UA

HEK293
+ MSU

SE 222 222 219 218

RI 69 73 88 93

MXE 47 40 40 26

A5SS 31 42 40 34

A3SS 78 54 68 64

SE, skipped exon; MXE, mutually exclusive exons; A3SS, alternative 3′ splice site; A5SS,
alternative 5′ splice site; RI, retained intron.

RNA modifications, editing, and
splicing in patients with gout

We observed changes in RNA splicing and the expression
of RNA modifications and RNA editing enzymes in patients
with gout compared with healthy controls. The patients were
divided into three groups: acute gout, intercritical gout, and
chronic tophaceous gout. The clinical characteristics of patients

with gout are presented in Table 3 and Supplementary Figure 5.
The expressions of RNA modification enzymes significantly
differed between the three patient groups compared with normal
controls (Figure 9). The expressions of RNA editing enzymes
ADAR1 and ADAR2 also decreased significantly in patients
with gout (Figure 10). Alternative splicing of BCL-x changed
in the intercritical gout group. Alternative splicing of SMAC
and HIPK3 did not differ significantly between the various
patients with gout. We further detected the alternative splicing
of TP53 and NFKB1 and identified differences in patients
with acute and intercritical gout (Figure 11). The quantitative
results are presented in Supplementary Figure 6. These results
indicate that RNA modifications, editing, and splicing were
also affected in gout and may influence the mechanisms of
hyperuricemia and gout.

Discussion

The findings of this study reveal that epigenomic
regulations, including RNA modifications, RNA editing,

TABLE 3 Clinical characteristics of patients with gout.

Normal Acute Intercritical Chronic Tophaceous

Number of subjects 5 30 20 17

Age (years; mean± SD) 32.20± 3.25 44.87± 12.74 56.45± 12.36 57.94± 18.52

Age range 28∼38 28∼78 39∼87 31∼98

Disease duration (years; mean± SD) 8.80± 7.27 10.90± 8.45 18.88± 13.31

Disease duration range 0∼23 0∼35 5∼60

Gender

Male 3 29 20 15

Female 2 1 0 2

BMI (mean± SD) 23.26± 1.73 27.42± 4.94 28.36± 5.02 28.11± 3.82

BMI range 20.2∼25.5 18.4∼38.6 20.38∼39.4 24.1∼38.73

Alcohol consumption

Yes 9 5 6

No 21 15 11

Uric acid (mg/dl; mean± SD) 6.99± 2.01 5.47± 2.14 6.14± 1.41

Uric acid range 2.9∼11.4 1.3∼9.8 3.2∼8.7

Serum creatinine (mg/dL; mean± SD) 1.02± 0.30 1.30± 0.85 1.09± 0.53

Serum creatinine range 0.65∼2.4 0.76∼4.82 0.25∼2.89

Tophus No No Yes

Medications

NSAID 28 5 2

Colchicine 29 12 10

Benzbromarone 4 15 9

Allopurinol 1 1 3

Feburic 0 3 4

Sulfinpyrazone 0 1 0

Hypertension 3 6 7

Metabolic syndrome 2 5 7
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FIGURE 9

RNA expressions of RNA modification enzymes were affected in patients with gout. The expressions of PUS1, PUS7, NSUN3, NSUN4, METTL14,
YTHDC1, and YTHDF3 were detected through real-time PCR in 67 patients with gout, including 30 patients with acute gout, 20 with intercritical
gout, and 17 with chronic tophaceous gout. Five normal samples were used as the control. Lines represent medians, and error bars represent
standard deviation. *P < 0.05, **P < 0.005, ***P < 0.0001 by Student’s t-test, compared with normal samples. RNA expression levels are shown
as dCt (ALAS1 as internal control).

and alternative splicing, are affected in hyperuricemia and
gout. We identified different expressions of RNA modification
enzymes in different cell lines, indicating tissue-specific
regulations of RNA modifications. Accumulating evidence
indicates that asymptomatic hyperuricemia is involved in
the development of hypertension and chronic kidney disease
(46). Hypertension causes activation of the renin–angiotensin
system and inhibition of nitric oxide synthesis, which promote

endothelial dysfunction and the proliferation of vascular
smooth muscle cells. Therefore, HEK293 and HUVEC cell lines
were used as cell models in this study. In addition, IL-1 secreted
by MSU crystal-stimulated monocytes and macrophages is the
starting point of gouty inflammation (47). Hence, the THP-1
cell line was used as one of the cell models in this study. The
consistent expressions of NSUN3 at the RNA and protein level
in HEK293 cell lines suggest the importance of 5-methylcytosine

Frontiers in Medicine 12 frontiersin.org

https://doi.org/10.3389/fmed.2022.889464
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-889464 September 6, 2022 Time: 11:52 # 13

Huang et al. 10.3389/fmed.2022.889464

FIGURE 10

RNA expressions of RNA editing enzymes were affected in patients with gout The expressions of ADAR1 and ADAR2 were detected through
real-time PCR in 67 patients with gout, including 30 patients with acute gout, 20 with intercritical gout, and 17 with chronic tophaceous gout.
Five normal samples were used as the control. Lines represent medians, and error bars represent standard deviation. **P < 0.005, ***P < 0.0001
by Student’s t-test, compared with normal samples. RNA expression levels are shown as dCt (ALAS1 as internal control).

FIGURE 11

RNA alternative splicing changed in patients with gout. Alternative splicing of BCL-x, SMAC, HIPK3, TP53, and NFKB1 were detected in nine
patients with gout, including three patients with acute gout, and six with intercritical gout. Three normal samples were used as the control.
Right panels indicate the trend of alternative splicing changes in patients with gout; FL represents full-length; arrow represents increase or
decrease; and the sign of equality represents no significant change. The PCR product sizes of BCL-x were 318 and 129 bp, those of SMAC were
250 and 118 bp, those of HIPK3 were 244 and 181 bp, those of TP53 were 201 and 92 bp, and those of NFKB1 were 346 and 187 bp.

(m5C) in hyperuricemia and gout. Studies have also reported
that N6-methyladenosine (m6A) increases the expression
of inflammatory cytokines and inflammatory response (48).
RNA modifications may also regulate inflammation and
immune response in hyperuricemia and gout. The role and
mechanisms of m5C and other RNA modifications warrant
further investigation. The inconsistency of mRNA and protein

expression may be because of post-translational modifications.
Enzyme activity plays a larger role than expression does in the
regulation of enzyme functions. RNA modifications can be
detected through specific sequencing, such as RIP-seq, Chem-
seq, or third-generation sequencing (32). RNA modification
changes should be further investigated to elucidate the specific
role of RNA modifications in hyperuricemia and gout.
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RNA editing has been known to regulate UA metabolism
through edited miR-376, which is targeted to phosphoribosyl
pyrophosphate synthetase 1, an enzyme involved in the UA
synthesis pathway (49). In our study, we determined that RNA
editing was also affected in UA- and MSU-treated cells and in
patients with gout. The consistent expressions of ADAR1 and
ADAR2 at the RNA and protein level in the HEK293 cell line
suggest that A-to-I RNA editing is affected by MSU and UA. The
results of transcriptome sequencing indicated that RNA editing
was affected genome-wide in hyperuricemia and gout. The role
and the mechanism of RNA editing in hyperuricemia and gout
also warrant further investigation.

RNA alternative splicing is known to be involved in
many biological functions. Alternative splicing is affected by
many factors, one of them being extracellular pH (50). Acidic
extracellular pH also triggers NLRP3 inflammasome activation
and affects innate immunity (51). High UA levels in the
serum, kidney, and joints of patients with hyperuricemia
and gout may cause pH changes in the microenvironment,
leading to changes in alternative splicing. Alternative splicing
also plays a major role in immune response, indicating that
alternative splicing is regulated by UA and MSU and may
be involved in the inflammation mechanism in hyperuricemia
and gout. Although the number of patients in the sample
was low, alternative splicing changes could be observed in
patients with gout. To investigate the role and genome-
wide changes of alternative splicing, a study involving
transcriptome sequencing in patients with hyperuricemia and
gout is being planned.

Studies have reported that microRNAs are involved
in inflammatory regulation in hyperuricemia and gout.
miR-876-5p targets NLRP3 and suppresses MSU-induced
inflammation through the TLR4/MyD88/NF-κB pathway in
THP-1 macrophages (52). miR-302b can regulate IL-1β

production in MSU-induced inflammation by targeting NF-
κB and caspase-1 signaling (53). Some miRNAs were observed
to be significantly upregulated in the plasma of patients with
hyperuricemia and gout. The plasma levels of several miRNA
were also observed to correlate with the plasma levels of MCP-
1, CRP, serum creatinine, and eGFR (54). The genetic locus
rs9952962 of miR-302f identified in a genome-wide association
study is associated with the progression of hyperuricemia to
gout, and it may affect the inflammation that occurs in gouty
arthritis by modulating gene expression (55). In addition, long
non-coding RNA (lncRNA), such as ANRIL and AJ227913,
were also reported to promote inflammasome activation and
to trigger an inflammatory response in gout (56). In this
study, we observed RNA editing events in lncRNAs through
transcriptome sequencing. The mechanism of RNA editing in
lncRNA and the effect of lncRNA on hyperuricemia and gout
warrant further investigations. However, studies indicate that
epigenetic regulation, such as that by microRNA and lncRNA,
plays a key role in hyperuricemia and gout.

Gout is associated with a number of comorbidities,
including cardiovascular disease, renal disease, hypertension,
diabetes, obesity, and hyperlipidemia (57, 58). Previous studies
have demonstrated the role of RNA modifications and RNA
editing in hypertension and metabolic syndrome (59–62).
Investigations into the cause of hypertension and metabolic
syndrome in patients with gout and the role of epigenomic
regulations are of critical importance. Only 34.3% patients
exhibited hypertension or metabolic syndrome in our gout
patient cohort. The recruitment of more patients is necessary
to explore the relationship between gout and hypertension or
metabolic syndrome.

In this study, we investigated epigenomic regulations in UA-
and MSU-treated cell lines and found genome-wide changes in
RNA editing and alternative splicing. However, the epigenomic
regulations in patients with hyperuricemia and gout warrant
further investigation. We plan to conduct future studies using
transcriptome sequencing to study the role of epigenomic
regulations in such patients.
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