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Abstract

Background

Plasmodium vivax occurs as a latent infection of liver and a patent infection of red blood
cells. Radical cure requires both blood schizontocidal and hypnozoitocidal chemotherapies.
The hypnozoitocidal therapies available are primaquine and tafenoquine, 8-aminoquinoline
drugs that can provoke threatening acute hemolytic anemia in patients having an X-linked
G6PD-deficiency. Heterozygous females may screen as G6PD-normal prior to radical cure
and go on to experience hemolytic crisis.

Methods & findings

This study examined G6PD phenotypes in 1928 female subjects living in malarious Sumba
Island in eastern Indonesia to ascertain the prevalence of females vulnerable to diagnostic
misclassification as G6PD-normal. All 367 (19%) females having <80% G6PD normal activ-
ity were genotyped. Among those, 103 (28%) were G6PD wild type, 251 (68-4%) were het-
erozygous, three (0-8%) were compound heterozygotes, and ten (2-7%) were homozygous
deficient. The variants Vanua Lava, Viangchan, Coimbra, Chatham, and Kaiping occurred
among them. Below the 70% of normal G6PD activity threshold, just 18 (8%) were G6PD-
normal and 214 (92%) were G6PD-deficient. Among the 31 females with <30% G6PD nor-
mal activity were all ten homozygotes, all three compound heterozygotes, and just 18 were
heterozygotes (7% of those).

Conclusions

In this population, most G6PD heterozygosity in females occurred between 30% and 70% of
normal (69-3%; 183/264). The prevalence of females at risk of G6PD misclassification as
normal by qualitative screening was 9-5% (183/1928). Qualitative G6PD screening prior to
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8-aminoquinoline therapies against P. vivax may leave one in ten females at risk of hemo-
Iytic crisis, which may be remedied by point-of-care quantitative tests.

Author summary

Plasmodium vivax causes patent infection of red blood cells and latent infection of the
liver. Radical cure for malaria effectively kills parasites in both blood and liver stages. Cur-
rently, radical cure for malaria involves either primaquine or tafenoquine, both of which
cause acute hemolytic anemia in patients with an inherited defect in G6PD enzymatic
activity. G6PD deficiency is an X-linked disorder and it is the most common enzyme defi-
ciency in humans. Heterozygous females having one mutated and one normal gene may
screen as G6PD normal in qualitative enzyme activity screening prior to primaquine ther-
apy and be at risk of proceeding to hemolytic crisis. To date, there is no evidence-based
G6PD activity cut-off value to distinguish those females who may not safely receive prima-
quine. This study aimed to inform this cut-off by a large survey of females by quantitative
G6PD activity phenotyping along with genotyping of the G6PD gene. Two thousand
females residing in a meso-endemic area in eastern Indonesia were screened for G6PD
deficiency using qualitative and quantitative tests. Those with <80% G6PD activity of nor-
mal were genotyped. Among them, we found 0.3% were compound heterozygotes, 2.7%
were homozygotes, 68.4% were heterozygotes for five variants of severe G6PD deficiency,
and the rest (28.6%) were G6PD-normal. Applying a 70% cut-off excluded most of the
G6PD-normals with relatively few G6PD-deficient females also being excluded. Our find-
ings showed that 9.5% of the surveyed population would be at risk of misclassification as
normal if using a qualitative test for G6PD deficiency. This study highlights the impor-
tance of quantitative G6PD screening of females living in a rural malarious area of Indo-
nesia where G6PD prevalence is high and the variants are severe. Our evidence indicates a
cut-off value of 70% of normal may be optimal for safe delivery of primaquine or tafeno-
quine therapies with minimal exclusion of those who may safely receive it.

Introduction

Acute malaria caused by Plasmodium vivax asexual blood stage parasites provokes a debilitat-
ing febrile illness that may progress to severe and life-threatening disease syndromes associated
with death [1,2]. More than 10 million of these attacks occur annually among the 2.8 billion
people living at risk [3]. Each infection requires effective blood schizontocidal therapy to arrest
progression of disease [4]. Unlike Plasmodium falciparum, the other major cause of human
malaria, infection by P. vivax includes latency where dormant hepatic hypnozoites later
awaken and provoke renewed attacks (relapses), each one threatening progression to severe
disease and onward transmission. In cohorts living in endemic areas of Thailand and Papua
New Guinea, hypnozoite-borne infections of blood accounted for >80% of incident P. vivax
parasitemias [5,6]. Although the risk and timing of relapse varies across endemic zones [7], at
least three and often five or more relapses per infectious event may be the rule [8]. In a cohort
of 2,495 American soldiers repatriated from the Pacific theater of World War II, the median
number of relapses over two years was 10-14 [9]. A study in eastern Indonesia followed tens of
thousands of patients diagnosed with P. falciparum or P. vivax over a decade; while risk of
death within 14 days was higher for P. falciparum, risk of multiple attacks, hospitalization, and
premature death among P. vivax patients was two-fold higher [10]. Effective treatment of P.
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vivax malaria that includes therapy against latency would thus provide very substantial clinical
and public health benefits [11].

In contrast to the many therapeutic options for arresting the acute attack, the 8-aminoqui-
noline drugs primaquine or tafenoquine remain the only hypnozoitocidal options for termi-
nating latency of P. vivax malaria. At therapeutic hypnozoitocidal doses, primaquine
invariably provokes a potentially life-threatening acute hemolytic anemia in patients having
glucose-6-phosphate dehydrogenase (G6PD) deficiency, an X-linked trait affecting over 400
million people at a rate of about 8% where endemic malaria occurs [12,13]. Many dozens of
specific single nucleotide polymorphisms occur all across the 13 exons of the G6PD gene [14].
Among male hemizygotes and female homozygotes, G6PD impairment almost invariably
occurs at <30% of normal enzyme activity and they are considered the most vulnerable to
hemolysis caused by primaquine anti-relapse therapy [15]. The World Health Organization
(WHO) recognized four classes of G6PD enzyme based on its activities: Class I as the most
severe, Class II as severe, Class III as intermediate and Class IV as normal. Most variants are
either class IT or ITL

Qualitative laboratory and point-of-care G6PD screening tests detect hemizygotes and
homozygotes with nearly 100% sensitivity and specificity [16-19]. Female heterozygotes, how-
ever, may express G6PD activity phenotypes ranging from fully deficient to completely normal
as a consequence of mosaicism of their red blood cell populations [20]. Apparently random
inactivation of one X-chromosome or the other yields that heterogeneity of phenotype (a pro-
cess called Lyonization that occurs during early embryonic development). Qualitative screening
cannot reliably differentiate G6PD normal patients from those having >30% to <80% of nor-
mal enzyme activity [21,22]. This problem imposes uncertainty regarding a diagnostic reading
of “normal” (and eligible for primaquine therapy) by those tests among females. Patients having
G6PD activities between 30-80% are under-studied, but there have been reports of a drop in
hematocrit up to 30% requiring transfusion therapy following high dose of primaquine, some of
those experiencing hemolytic crises as severe as homozygous females [23,24].

In the current study we aimed to evaluate prevalent G6PD genotypes in relation to G6PD
activity phenotype in a large sample of females living in a malaria-endemic area of Sumba
Island in eastern Indonesia where we have conducted population surveys of G6PD heterogene-
ity [25,26]. This evidence directly informs the distribution of risk with G6PD screening in the
context of primaquine therapy against latent malaria, and may serve to mitigate risk to GGPD
heterozygotes. Reversing the historic neglect of this serious clinical and public health problem
of poor access to hypnozoitocidal therapy should benefit males and females alike [27], and
achieving that requires specific attention to the complexity of the heterozygous state of G6PD
deficiency.

Methods
Ethics statement

A protocol detailing this survey was reviewed and approved by Eijkman Institute Research
Ethics Committee (17th March 2015, EIREC Approval No. 81). Written informed consent was
obtained from each participant and written informed consent was signed by guardian or par-
ent of child participants.

Study population

A cross-sectional prevalence survey of G6PD deficiency, anemia, and malaria status was
undertaken in April 2015 at two sub-districts of Southwest Sumba: villages of Wainyapu and
Waiha of Kodi Balaghar sub-district and Umbu Ngedo of Kodi Bangedo sub-district. In that
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year, these locales had respective annual parasite incidences of 58-16, 85-24 and 26-85/cases
per 1000 residents respectively according to local health district records (P.falciparum and P.
vivax). Only healthy (without fever > 37.5°C or history of fever within 48 hours) females older
or equal to 6 years old who provided informed individual or parental/guardian consents were
included in the survey. Based on our previous studies in Sumba Island, the prevalence of
homozygous and heterozygous G6PD deficient females was 0.19 and thus to get the sample
size we applied this equation:

Z*xPx(1-P)
T e
Z is the statistic corresponding to the level of confidence of 1.96 (95% confidence level) and
d for precision (2%), our sample size was thus calculated:

L 196 x 0.19 x (1-0.19)

2 = 1478
0.02

This value was 1345, and we increased that by 30% as a means of ensuring and adequate
number heterozygous females for our research purposes, yielding a target sample size of 1921.

Venipuncture and malaria screening

Willing subjects who signed written informed consent were asked to allow taking 3 ml of
venous blood collected in EDTA tubes. Residual blood in the syringe was used for microscopic
examinations for malaria parasites (thick and thin blood smears) in the field laboratory
according to standard protocol by technicians certified as competent according to WHO speci-
fications in doing so. Participants found to be positive for malaria infection were offered treat-
ment with therapies as stipulated by the Indonesian Ministry of Health guidance the next day.
Blood in sealed EDTA tubes was put on ice immediately after venipuncture and stored at 4°C
within a few hours. Within 3 days these samples were transported on cold packs by air to
Jakarta for the laboratory analyses detailed here.

G6PD qualitative and quantitative tests

G6PD qualitative testing was done at point-of-care using the Carestart G6PD rapid diagnostic
test (CSG, Accessbio, USA) according to the manufacturer’s protocol. In brief, blood placed
into test cassette with liquid reagents migrates across a white cellulose wick within a maximum
of minutes: GGPD-normal blood causes a distinct purple color to develop, whereas with
G6PD-deficient blood either remains white or develops only a very slight purple hue. Techni-
cians performing the test were instructed and trained to classify no color or only lightly col-
ored tests as G6PD-deficient. Refresher training for this took place for 2 days prior to going to
the field. Most CSG were read by single technician. A second technician was conferred when
the result was found difficult to interpret.

Blood samples in Jakarta were held at 4°C and analyzed less than 24hr arrival from Sumba.
These were first examined for hemoglobin (HemoCue Hb 201, Sweden) according to the man-
ufacturer’s instruction. Samples having hemoglobin measurements of less than 10 g/dL were
excluded from further analyses in order to avoid the impact of anemia causing falsely elevated
G6PD readings [22].

G6PD quantitative test from Trinity Biotech (Cat # 345-B) was used as the reference test for
G6PD activity screening. The test relies on the principle of NADPH formation that is propor-
tional to the G6PD activity directly measured using a spectrophotometer (Shimadzu UV-1800
series) at 340 nm absorbance, precisely as prescribed by the test manufacturer. Briefly, 10 pl of
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blood was added to a snap cap tube containing 1.0 ml of G-6-PDH Assay Solution, mixed thor-
oughly and incubated at 30°C for 5-10 min before adding 2.0 ml of G-6-PDH Substrate Solu-
tion. The tube and was mixed gently by several inversions. The contents were transferred to a
cuvette and incubated in the temperature-controlled spectrophotometer at 30°C for five min.
The cuvette was then read at 340 nm using water as blank and marked as INITIAL A. The
reaction was incubated for another five min at 30°C where the contents were read again and
marked as FINAL A. G6PD activity was then calculated as U/g Hb by subtracting FINAL A
with INITIAL A and divided by five as the manufacturer’s manual instructs. The reading was
done once per sample. The absolute value for normal G6PD activity (as 100%) was calculated
as the mean of G6PD activity among subjects having >5U/g Hb.

G6PD genotyping

G6PD genotyping was restricted to samples showing <80% of normal G6PD activity. DNA
was extracted from EDTA blood samples using a modified salting out method as previously
described [28]. Extracted DNA was amplified in PCR and digested with specific restriction
enzymes for common variants (Vanua Lava, Viangchan, Chatham, Coimbra and Kaiping) in
these regions [25,26]. Samples showing no digestion by those enzymes were whole-gene or
next-generation sequenced using primers described by Saunders et al [29].

Statistical analysis

We described the female sample characteristics including age median and range, hemoglobin
measurements, G6PD point-of-care screening results (G6PD deficient, GGPD normal), and
malaria microscopic findings (negative/positive for malaria, Plasmodium species). The primary
outcome was the proportion of G6PD deficient females in the female sample population. We
analyzed G6PD enzyme activities using quantitative G6PD Trinity Biotech for the samples with
hemoglobin values > 10 g/dl. Mean, median, standard deviations and range of G6PD enzymatic
activities were calculated to determine the reference values in normal and deficient subjects. We
assessed 100% G6PD activity as the mean of the G6PD activity >5U/g Hb as our cut off, and set
our 30%, 70% and 80% diagnostic thresholds based on this value. The 5 U/g Hb cut-off was con-
sidered the lowest limit of truly normal G6PD activity and protected the estimate of 100%
enzyme activity from the diminishing bias of G6PD-deficiency. The diagnostic thresholds
reflected those considered effective for CSG (<30%) or safe for administration of 8-aminoqui-
nolines (>70% or >80%, depending on authoritative recommendations) [25,26] We classified
genotype characteristics (wild type G6PD genotype, heterozygotes, compound heterozygotes,
and homozygotes deficient) for those females with G6PD deficiency. We measured the perfor-
mance of CareStart G6PD rapid test specific to genotypes and G6PD activity ranges among
female subjects below 80% of normal. We also measured sensitivity, specificity, negative and
positive predicted value of CSG against spectrophotometric reference test at 10%, 30%, 70% and
80%. A 95% confidence of each indicator was measured. Statistical significance of G6PD preva-
lence was evaluated by Fisher’s exact test. Scattered boxplot was used to show how the G6PD
activities are within G6PD variants identified in the study. Data were analyzed using R software.

Results
Field survey

A total of 2056 females were screened. Table 1 lists their demographic characteristics along
with G6PD point-of-care screening, hemoglobin measurements, and malaria blood film exam-
ination findings. The prevalence of microscopy positivity for malaria was 6-7% (129/1928),
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Table 1. Survey sample demographics and screening findings.

Sample size 2056
Age in years (median) * 22-5(95%CI, IQR

24)
Age range (years)* 6-90
Subjects having Hemoglobin >10 g/dL 1928
Subjects having Hemoglobin<10 g/dL 128
Subjects having G6PD qualitative test NORMAL 1814
Subjects having G6PD qualitative test DEFICIENT 113**
Subjects Negative for malaria *# 1799
Subjects Positive for malaria*# 129
Numbers of cases of microscopically patent infection by P. falciparum/P. vivax/P. malariae/ 78/38/1/12

Mixed species™

“these are calculated from samples Hb>10 g/dL. All other entries with exception of Age are in actual number of
persons.
**one sample did not have qualitative test result.

# malaria diagnostic was from microscopy only.

https://doi.org/10.1371/journal.pntd.0009610.t001

with P. falciparum being the dominant species by a margin of 2:1. P. vivax was found in 53
females, including 11 of 12 mixed species infections (prevalence of 2:6%). A total of 1928
females (93-8%) had hemoglobin levels >10g/dL and were included in the study (Fig 1). The
point-of-care G6PD rapid test identified 1814 women as normal and 113 women as deficient
(1 sample did not have CSG data), indicating a prevalence of 6:2% for G6PD deficiency using
that device.

Laboratory findings

Quantitative G6PD testing was accomplished for 1928 samples, with all 128 exclusions being
due to hemoglobin values below 10g/dl (Fig 1). Fig 2 illustrates the frequency distribution of
subjects across the range of observed G6PD activity values. The mean value among those >5
U/g Hb was 11-04 U/g Hb and set as 100% of normal enzyme activity. The thresholds of 10%,
30%, 70%, and 80% are illustrated in Fig 2. The distribution of malaria-positive subjects by spe-
cies of diagnosis, also in Fig 2, appeared independent of G6PD activity level.

Fig 3 illustrates GGPD measurements among the 367 subjects having <80% of G6PD nor-
mal and according to genotype. Vanua Lava and Viangchan variants co-dominated, with
Chatham, Coimbra, and Kaiping variants in minority representation. The very few homozy-
gotes (10) were represented by Vanua Lava, Viangchan, and Coimbra, and all occurred at the
lowest spectrum of G6PD activity. The 3 compound heterozygotes represented by Viangchan/
Vanua Lava and Chatham/Vanua Lava also occurred at the lower end of G6PD activity (<2 U/
g Hb). The majority of G6PD deficiency among females occurred as heterozygotes having
between 30% and 70% of normal activity, with few exceptions below the lower threshold and
relatively more above the higher threshold; whereas 103 G6PD-normal subjects (Normal and
ND) occurred below the 80% threshold, just 18 did so below the 70% threshold. The ND (not
determined) lane of Fig 3 represents subjects with <80% of normal G6PD activity negative for
RFLP analysis for the SNPs analyzed but who were not whole gene sequenced. Excepting the
two subjects below 5 U/g Hb, ND subjects were presumed G6PD-normal.

The activity values among heterozygotes appeared normally distributed. Among the 251
heterozygotes detected in this survey, 73% (183) occurred between 30% and 70% of G6PD nor-
mal activity, within +1 standard deviation of the 50% mean predicted for a random
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Female subjects
(n =2056)

4

Malaria blood smear
Carestart G6GPD RDT

4

Hemoglobin measurement
+ G6PD quantitative test

Excluded
Females =10 g/dL Females <10 g/dL
(n =1928) (n=128)
v
Genotype Females with Common G6PD variants
<80% G6PD activity = —» identifed by PCR-RFLP
(n = 374) (n = 263)
v
Whole gene sequencing G6PD variant identified
to determine by sequencing
G6PD variants (n=1)
(n=70)
Y No G6PD variant
Samples not sequenced identified by sequencing
(n=41) (n = 69)

Fig 1. Survey process and sample analysis.

https://doi.org/10.1371/journal.pntd.0009610.g001

distribution between 0 and 100%. Fig 4 illustrates the distribution of G6PD genotypes between
0 and 70% of normal G6PD activity. The relative predominance of GGPD-normal subjects
(Normal and ND) above the 70% threshold and paucity of the same below that threshold may
be seen. Heterozygotes overwhelmingly dominated the 30% to 70% range. Likewise, below the
30% threshold, homozygotes and compound heterozygotes dominated the lowest values
therein, with most of the heterozygotes just below 30%.

Diagnostic result of CareStart G6PD rapid test

Table 2 summarizes the essential features of diagnostic result of the CareStart G6PD rapid test
(CSQG) relative to the defining Trinity quantitative spectrophotometric assay and genotype
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Frequency

80
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40

20

70% 80% 100% Activity
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Falciparum
Vivax
Malariae
Mix

EROEO

25

G6PD Activity (U/g Hb)

Fig 2. G6PD activity distribution and malaria microscopy positivity in the survey.

https://doi.org/10.1371/journal.pntd.0009610.9002

result among the 1928 non-anemic subjects (>10 gHb/dL) at varied thresholds of G6PD activ-
ity (% of normal). The CSG detected only 33 of 183 (18-:0%) heterozygotes between 30% and
70% of normal G6PD activity as G6PD-deficient. The overall sensitivity, specificity, positive
predictive value, and negative predictive value of the CSG relative to quantitative testing at the
70% of normal activity threshold was 25.1% (95%CI, 19.7-31.2), 96.8% (95%CI, 95.8-97.6),
21.4% (95%CI, 16.2-27.7), and 97.4% (95%CI, 97.2-97.5), respectively.

Discussion

The findings of this survey in malarious Sumba Island in eastern Indonesia affirms a G6PD
activity threshold of 70% of normal in identifying most G6PD-deficient females for exclusion
from 8-aminoquinoline therapies with minimal exclusion of G6PD-normal females. Among
the 232 subjects below that threshold, 214 (92%) had genotype-confirmed G6PD deficiency.
At a threshold of 80% of normal activity 264 out of 367 (72%) subjects were G6PD-deficient.
The 50 G6PD-deficient subjects having <80% but >70% represented 19% of G6PD-deficient
females present in the sample. Given the relatively high degree of enzyme activity among those
females, which reflect a high proportion of G6PD-normal red blood cells, they presumably
represented the least vulnerable to 8-aminoquinoline hemolytic crisis among G6PD-deficient
females. While an 80% threshold would exclude those 50 potentially susceptible females from
therapy, it would also have excluded 103 G6PD-normal women representing 5% of the popula-
tion as a whole. The unnecessary exclusion of G6PD-normal women from 8-aminoquinoline
therapy is reduced to 0.9% of the population at a threshold of 70%. The actual safety threshold
of G6PD activity for anti-relapse therapy with primaquine or tafenoquine has not been
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Fig 3. Genotypes identified among the subjects having <80% of normal G6PD activity and that phenotype illustrated in relation to 30% and 70% of normal
activity thresholds. CO, VC, and VL Hom are Coimbra, Viangchan, and Vanua Lava homozygous respectively. CO, VC, CT and VL Het are Coimbra, Viangchan,
Chatham and Vanua Lava heterozygous respectively. VL & CT and VL & VC represent the 3 compound heterozygotes of those variants. The ND lane represent subjects
negative for the G6PD variant SNPs analyzed, but not whole gene sequenced, whereas the Normal lane represents those whole gene sequenced as wild type G6PD. The
black dots represent outliers calculated from the boxplot whereas the pink outliers are calculated from the scatterplot of same samples.

https://doi.org/10.1371/journal.pntd.0009610.9g003

determined in practice or clinical research on heterozygotes. Any threshold given remains a
supposition and our findings do not offer the assurance of safety at a 70% activity threshold.
Instead, our findings only inform the distribution of G6PD heterozygotes at these thresholds
of diagnostic performance (<30%) or those of safety (70% or 80%).

As elsewhere in much of the malaria endemic world, most acute malaria in eastern Indone-
sia occurs at the under-resourced periphery of healthcare delivery. That setting may not
accommodate sustainable quantitative G6PD assessments allowing the application of a 70%
threshold defining 8-aminoquinoline therapy proceed vs. do not proceed rules. We assessed the
likely impacts of qualitative vs. quantitative G6PD assessments in the Sumba population of
females surveyed. As reported by others and described from our laboratory [30,31], the CSG
qualitative test becomes increasingly insensitive to deficiency at G6PD activities above 30% as
it is not designed to distinguish 30-80% from >80% individuals. The sensitivity, specificity,
negative and positive predicted values at cut off 70% were 25.1%, 96.8%, 21.4% and 97.4%
respectively. The sensitivity and positive predicted values further dropped at 80% cut off (S1
Table and S1 Fig). The current survey showed that 82% of the 183 G6PD-deficient females
having G6PD activities between 30% and 70% screened as G6PD-normal by the CSG. In other
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Fig 4. Distribution of G6PD genotypes among phenotypic activity thresholds. ND-not determined, CO-Coimbra, VC-Viangchan, VL-Vanua Lava, CT-
Chatham, and KP-Kaiping. Hom-homozygous mutant and Het-heterozygous. VL & CT, and VL & VC represent the compound heterozygotes.

httpsz//doi.org/0.1371/journal.pntd.0009610.9004

words, 9-5% (183/1928) of all females at the study sites on Sumba would be at high risk of
being cleared for potentially dangerous 8-aminoquinoline therapies with qualitative G6PD

screening.

Varied national drug regulators have registered tafenoquine as a single-dose alternative to
the standard 14 days daily dosing with primaquine for presumptive anti-relapse therapy
(PART) following a diagnosis of P. vivax malaria [32,33]. The administration of tafenoquine is
not recommended in patients having <70% of normal G6PD activity; thus, imposing quantita-
tive testing as a necessity corroborated by our findings from females residing in Sumba.

Table 2. Summary of diagnostic performance of the CSG specific to genotypes and G6PD activity ranges among individual subjects below 80% of normal.

Genotype Percent of Normal G6PD Activity Threshold
71-80% 30-70% <30%
# Genotype # CSG Deficient # Genotype # CSG Deficient # Genotype # CSG Deficient

Homozygous 0 0 0 0 10 8 (80%)
Compound Heterozygous 0 0 0 0 3 3 (100%)
Heterozygous 50 4 (8%) 183 33 (18%) 18 14 (77.8%)
Normal 85 2 (2.4%) 18 0 0 0
TOTAL 135 6 (4.4%) 201 33 (16.4%) 31 25 (80.6%)

https://doi.org/10.1371/journal.pntd.0009610.t002
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Indeed, a Kenyan female A- (Class III) heterozygote accidently dosed with 400mg tafenoquine
required transfusion therapy [34]. Among healthy ethnic Karin women in Thailand heterozy-
gous for the moderate Class IIT Mahidol variant of G6PD deficiency and having between 40%
and 60% of normal G6PD activity, all three subjects receiving the 300mg single dose of tafeno-
quine hemolyzed approximately 8% of their red blood cells [35]. All of the five variants identi-
fied at Sumba (Vanua Lava, Viangchan, Chatham, Coimbra, and Kaiping) were Class II and
perhaps more vulnerable to 8-aminoquinoline toxicity than Mahidol Class III variant.

Qualitative G6PD screening prior to PART applying low-dose primaquine (0-25mg/kg/d x
14d) may be viewed as adequately safe for females because the prolonged dosing allows mitiga-
tion of potential harm by cessation of therapy after the onset of symptoms of acute hemolytic
anemia. However, that onset occurs late and abruptly; typically, a day after the 3™ or 4™ dose
with a sudden drop of hemoglobin accompanied by haemoglobinuria and jaundice, i.e., with
hemolytic crisis in progress [36,37]. There is no validated means of monitoring for those
events in averting serious harm, i.e., specification of any specific clinical or laboratory parame-
ter at a designated time point during treatment reliably indicating cessation of treatment
before serious harm is done. In eastern Indonesia severe Class II variants are both dominant
among G6PD-deficient people and highly prevalent in the general population [38]. Dosing
G6PD unknowns, especially when using the more efficacious high-dose regimens of prima-
quine (0-5mg/kg/d x 14d or 1-0mg/kg/d x 7d), cannot be recommended at sites like Sumba
without quantitative test screening.

Primaquine efficacy is further complicated by both impacts of partner blood schizontocides
and natural polymorphisms of cytochrome P450 2D6 impairing the necessary metabolic pro-
cessing of primaquine [39-42]. Inadequately treated P. vivax latency in Sumba—where most
people at risk of malaria live in impoverished rural settings with chronic malnourishment and
co-endemic neglected tropical infections-likely exerts the same insidiously harmful effects
observed elsewhere in eastern Indonesia [43]. Furthermore, studies [44,45] have shown the
increased risk of anemia due to relapses in no or low dose (0-25 mg/kg) of primaquine. Access
to efficacious primaquine therapy against latent malaria at sites like Sumba will require either
clinically validated cease-dosing criteria or quantitative G6PD screening. Currently, there are
several point-of-care quantitative G6PD screening tests available, but none has yet been vali-
dated as reliable and practical for lay users in village settings. In Indonesia during 2021, we
found one such commercially available kit costs USD 824 for the instrument, USD12 per test
strip and USD 104 for controls, with promising performance that may be used in these
instances in lieu of reference test [46,47]. However, the high cost per strip and 1 year expiration
date may hinder its wide use in Indonesia.

Primaquine has been in clinical use for nearly 70 years despite of its hemolytic toxicity in
G6PD-deficient patients. Global health authorities and national malaria control programmes
alike advise using primaquine to prevent relapse of latent malaria applying varying doses, dos-
ing strategies, and G6PD precautions [48]. As the findings reported here illustrate, the thera-
peutic dilemma of 8-aminoquinoline anti-relapse therapy is complex and involves significant
proportions of local populations being vulnerable to potential harm. Protecting the vulnerable
minority by withholding therapy exposes all infected to the harm of repeated acute attacks.
The health authorities in eastern Indonesia, as in many endemic areas, cannot confidently
attack the latent reservoir of that harm because rational and practical guidance for safely and
effectively doing so is lacking. The findings reported here aimed to aid in formulating that
guidance with specific respect to G6PD screening parameters that help to mitigate risk of
hemolysis by 8-aminoquinolines. Practical guidance for efficacious radical cure without quan-
titative G6PD testing may require validated parameters of clinical monitoring for acute hemo-
lytic anemia.
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Study limitation

This study is limited in the biochemical aspect since it did not compare the Kcat of GGPD
from genotypically G6PD normal and heterozygous females with G6PD activities below 80%.
This knowledge on top of G6PD genotype and activity can help fine tune the hemolytic risk of
G6PD heterozygous females in oxidative stress.

Supporting information

S1 Table. Performance of CSG G6PD Test against reference test Pointe Scientific quantita-
tive assay.
(DOCX)

S1 Fig. CSG G6PD results relative to G6PD activities derived from the reference test. Red
boxes are deficient results by CSG and blue boxes are normal results by CSG.
(TIF)
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