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Abstract

occluded view of transcriptional regulation.

production in budding yeast.

Background: The use of genome-wide RNA abundance profiling by microarrays and deep sequencing has spurred
a revolution in our understanding of transcriptional control. However, changes in mRNA abundance reflect the
combined effect of changes in RNA production, processing, and degradation, and thus, mRNA levels provide an

Results: To partially disentangle these issues, we carry out genome-wide RNA polymerase Il (Polll) localization
profiling in budding yeast in two different stress response time courses. While mRNA changes largely reflect
changes in transcription, there remains a great deal of variation in mRNA levels that is not accounted for by
changes in Polll abundance. We find that genes exhibiting ‘excess’ mRNA produced per Polll are enriched for those
with overlapping cryptic transcripts, indicating a pervasive role for nonproductive or regulatory transcription in
control of gene expression. Finally, we characterize changes in Polll localization when Polll is genetically inactivated
using the rpb1-1 temperature-sensitive mutation. We find that Polll is lost from chromatin after roughly an hour at
the restrictive temperature, and that there is a great deal of variability in the rate of Polll loss at different loci.

Conclusions: Together, these results provide a global perspective on the relationship between Polll and mRNA

Background

Gene transcription is one of the major mechanisms by
which a cell responds to its environment, and the regu-
lation of transcription has been one of the most inten-
sively studied processes in biology over the past half
century. In the past decade, the technical revolutions in
whole-genome analysis have enabled unprecedented
insights into the global changes in mRNA production in
response to environmental cues, and into the roles for
countless regulatory factors in the production of these
mRNAs.

The abundance of mRNA in a cell is determined by
the relative rates of production (transcription and pro-
cessing) and destruction, integrated over time. Thus,
while mRNA levels are easily measured using
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microarrays or deep sequencing, the correspondence
between mRNA changes and transcriptional changes in
response to a given perturbation is imperfect. This is
widely understood, but the ease of mRNA measure-
ments has led most genomic analyses of transcriptional
regulation to use this readout rather than actual tran-
scription rates.

A number of genome-wide studies have identified dis-
crepancies between transcription rate per se and mRNA
abundance. There is wide variation in mRNA half-life in
budding yeast [1,2], from roughly 10 minutes to 50 min-
utes, and mRNA degradation is regulated in a condi-
tion-specific manner. In mammals, genome-wide
analysis of ongoing transcription using nuclear run-ons
or deep sequencing of small RNAs identified evidence
for widespread nonproductive transcription by RNA
polymerase II (Polll) [3-5]. Furthermore, global mapping
of PollI localization in budding yeast revealed a large set
of RNAs that were produced very ‘efficiently’, that is,
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where the mRNA level per polymerase was higher than
the genomic average [6]. Finally, a great deal of recent
literature has identified widespread instances of Polll
‘pausing’ at genes poised for rapid induction upon
change in growth condition [7-14].

We therefore set out to explore the relationship
between Polll levels and mRNA levels during response
to environmental stimuli. We mapped Polll levels across
the genome in budding yeast over a heat shock time
course, and over a time course of exposure to the sulf-
hydryl-oxidizing agent diamide. In both cases, changes
in mRNA levels were well-correlated with changes in
Polll occupancy, and in general Polll changes typically
explain approximately 50% of the variance in mRNA
changes. We find evidence for widespread roles for sev-
eral additional factors that cause deviations from
expected mRNA abundance changes, including mRNA
stability and nonproductive transcription. Specific types
of genes are especially prone to nonproductive or regu-
latory transcription, such as genes involved in carbohy-
drate metabolism. Finally, we characterize the loss of
PollI from chromatin over a time course of inactivation
of the temperature-sensitive rpbi-1 allele of the Rpo21
subunit of RNA polymerase [15]. Polll stays associated
with most genes for roughly an hour after shifting to
the restrictive temperature, indicating that assays for
ruling out transcriptional dependence of various nuclear
processes should wait an hour after shifting this strain
to the restrictive temperature.

Results

We carried out genome-wide localization of Polll using an
anti-Rpb3 monoclonal antibody as previously described
[16,17]. Yeast were subjected to two distinct stress condi-
tions that induce overlapping but distinct gene expression
programs [18] - heat shock (to 37°C) and diamide treat-
ment. Polll localization was measured by hybridization to
genomic tiling arrays (60-bp probes every approximately
250 bp) at five time points (up to 2 hours) over each stress
response time course (Additional file 1).

Broadly, our results capture expected aspects of the
transcriptional response to stress in the budding yeast
(examples shown in Figure 1). Data from both time
courses were quite similar (R = 0.76 at t = 30, for exam-
ple), consistent with the discovery that most of the
expression changes in response to a given stressor cor-
respond to a shared environmental stress response [18].
Dramatic gains or losses of Polll occurred at canonical
stress-responsive genes: Polll levels increased dramati-
cally (> 4-fold) over stress response genes such as
HSP104 (Figure la-c, top panels) whereas Polll levels
dropped precipitously (> 4-fold) over genes such as
NOP?7, involved in ribosome biogenesis (Figure la-c,
bottom panels).
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Location of Polll along gene body

We next grouped data according to the location of the
microarray probe within a given coding region, as pre-
viously described [16,19] - probes within the first 500
bp of a gene were annotated as 5' coding sequence
(CDS), probes in the last 500 bp were annotated as 3’
CDS, and any probes between these ends were anno-
tated as mid-CDS (Figure 1c; Additional file 2). We
noted a wide range in behaviors with respect to poly-
merase occupancy profiles over individual genes, with a
spectrum ranging from high 5'/3' ratios to the converse
(Figure 2a). As previously described [6,20], we found
that several genes involved in transcriptional termina-
tion, such as NRD1 (Figure 2a) and HRPI (not shown)
exhibited high 5'/3' ratios of Polll. This is consistent
with the described role for Nrd1 in feedback control of
its own expression - when Nrd1 levels are adequate,
transcription of the NRDI gene undergoes premature
termination, but when Nrd1 levels are low, termination
becomes inefficient, leading to more transcription of
full-length Nrdl and restoration of high levels of the
protein. Interestingly, other genes involved in transcrip-
tional control also show exceptionally high 5/3 ratios,
including EPL1 (a NuA4 subunit) and SMC2 (a conden-
sin subunit), suggesting that these genes may also be
subject to regulation by transcriptional termination fac-
tors (Additional file 3).

Given the wide range of evidence for ‘paused” RNA
polymerase at the 5' ends of genes in flies, worms,
mammals, and stationary phase yeast (see [7] for a
review), we asked whether there was any evidence for
paused Polll under our conditions. We therefore investi-
gated what properties distinguish genes with high 5/3’
Polll ratios from those with the converse pattern. After
selecting only those genes long enough to have a mid-
CDS probe (that is, > 1 kb long), we sorted genes by the
measured 5'/3' ratio of Polll in pre-stress midlog condi-
tions (Figure 2b). Genes with relatively high 5’ Polll
tended to be expressed at higher levels [21] than genes
with high 3’ Polll (Figure 2c¢; Additional file 4). The
high 5'/3' Polll ratios found at highly transcribed genes
could indicate a rate-limiting transition from transcrip-
tion initiation to elongation even at high transcription
rates, which could result from Polll pausing or, alterna-
tively, premature termination.

Conversely, we noted that many genes with high 3'/5'
Polll ratios were associated with noncoding transcripts
in mid-log growth conditions, either cryptic unstable
transcripts (CUTSs) or stable unannotated transcripts
(SUTs) [22] (Figure 2a, bottom panels). This finding was
general - a much higher fraction of genes with high 3/
5" levels of Polll exhibited overlap at their 3’ ends with
alternative transcripts than genes with high 5'/3" Polll
ratios (Figure 2d). The high level of Polll at the 3’ ends
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Figure 1 Polll mapping during the stress response. (a) Heat map
repressed gene, during a time course of heat shock. (b) Data from (a),

R NOP7 Time in Heat shock (min)
15 & ——
log(2) Pol2 enrichment .
5 CDS mid-CDS 3 CDS

shown as log(2). Probes annotated as 5', mid, and 3" CDS are indicated below the gene annotation described (5" CDS = first 500 bp of coding
sequence, 3" CDS = last 500 bp of coding sequence, mid-CDS = remaining coding sequence [16,19]). (c) Data from (a, b) were grouped by
location as shown in (b). Averaged data for each group is plotted versus time at 37°C. HS, heat shock; Pol2, RNA polymerase I.

view of HSP104 (top panel), an induced gene, or NOP7 (bottom panel), a
but plotted as a graph rather than a heatmap. Data on the y-axis are

of these genes likely reflects transcription of the 3' CUT
or SUT (our assay cannot distinguish the orientation of
Polll movement); consistent with this idea, we found
that genes with high levels of Polll at the 3’ end of the
gene exhibited high levels of the ‘initiation’ mark
H3K4me3 at these 3’ ends [19,23] (not shown). This
transcription is nonproductive in the sense that the pro-
tein-coding RNA is not being produced by a significant
fraction of polymerases occupying part of the gene
body. Furthermore, the correlation between high 3'/5’
Polll and low mRNA abundance suggests that overlap-
ping transcription of 3’ noncoding transcripts may play
a more general role in control of productive transcrip-
tion (see below).

To explore how the localization of Polll along the
gene body dynamically shifts during gene activation and
repression, we calculated 5, mid, and 3' Polll abundance
at all time points in the stress time courses. Genes were
grouped by the extent to which their mRNA levels
change at a given time point during the stress response,

and 5, mid, and 3’ CDS Polll enrichments were calcu-
lated for activated and repressed genes before and after
30 minutes of stress (Figure 3; Additional file 5). We see
that changes in Polll levels generally correlate with
changes in mRNA abundance, as expected. Furthermore,
repressed genes shift from a pre-stress 5'-biased Polll
distribution (characteristic of very highly expressed
genes (Figure 2), which tend to be repressed during
stress responses) to a flatter distribution after repression.
Conversely, genes that are activated during stress initi-
ally exhibit slightly higher levels of PollI at the 3’ end of
the gene (Figure 3b), again suggesting that Polll is not
paused at stress response genes in anticipation of
stressors.

Interestingly, after activation of these genes, there is
little 5’ bias for Polll, on average, indicating that there is
a subtle difference between highly expressed ‘growth’
genes and highly expressed ‘stress’ genes in terms of the
kinetics or processivity of Polll transit over the gene.
Many aspects of stress gene expression could cause this,



Kim et al. Genome Biology 2010, 11:R75 Page 4 of 13
http://genomebiology.com/2010/11/7/R75

P N
(a) (b) (c) log2 mRNA (d) Fraction with
, X , abundance 3-overlap
5 Mid 3 4 5 6 20% 40%  60%
4 N S S R A R S ]
» S
= L]
@
e 3
<
2
c 2
[
[al
e !
174750 NRD1 | 171750
3
=
o 2
£
<
2
c 1
[
o
e}
£ o L E—
SUTI1C
3
<
: | 8
o
_—(C_) ﬁn 7053 163250 e
5 o
[ o
& g
2 e
[}
S
o
£
1
=
€
. e o
s Z cu
Al
o
o
1
<
[}
£
S
S o R —
[
o CUT1
g
El
L]
L]

Figure 2 Analysis of Polll location relative to ORFs. (a) Example of genes with high (top three examples) or low (bottom two) ratios of Polll at
the ORF 5’ end relative to the 3" end. For each gene, Polll abundance is shown on the y-axis, and gene annotation and any cryptic transcripts from
Xu et al. [22] are shown underneath. (b) All genes ordered by 5'/3' Polll ratio. For each gene long enough to have a mid-CDS annotation (that is, at
least one microarray probe located > 500 bp from either end of the gene), the Polll enrichment at the 5’ (first 500 bp), mid-CDS, and 3’ (last 500 bp)
are shown in the three indicated columns. (c) Genes with high 5//3' Polll abundance are highly expressed. Log(2) of mRNA abundance data from
Yassour et al. [21] is shown as an 80-gene running-window average, with genes ordered as in (b). (d) Genes with high 3'/5" Polll abundance are
associated with overlapping transcripts. Genes were scored for 3’ overlap with cryptic unstable transcripts (CUTs), stable unannotated transcripts
(SUTs), or ORFs as annotated in [22], and a running window average is plotted ordered as in (b). Pol2, RNA polymerase I
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Activated genes

such as distinct elongation factors traveling with Polll
loaded onto TATA or non-TATA promoters. Alterna-
tively, we favor a model based on trailing polymerases;
stress genes in yeast exhibit ‘bursts’ of polymerases
rather than the more evenly spaced polymerases seen at
growth/housekeeping genes [24], and it has recently
been shown that a trailing polymerase can aid the lead-
ing polymerase in overcoming the nucleosomal barrier

to transcription [25,26], thus potentially allowing closely
spaced polymerases to more easily overcome nucleo-
some-mediated delays.

Transcriptional changes only partially account for mRNA
abundance changes

To further investigate the relationship between mRNA
abundance changes and transcriptional changes during
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stress, we grouped genes by k-means clustering of
mRNA expression profiles over time in diamide (Addi-
tional file 6). These clusters correspond to various tem-
poral profiles of gene activation/repression, including
transient induction/repression, continuous induction/
repression, and so forth. Broadly, the changes in Polll
abundance at genes in each cluster mirrored the
changes in mRNA abundance (Additional file 6b,c).
Averaging mRNA changes and mid-CDS Polll changes
shows nearly identical average profiles (Additional file
6d,e), indicating that, for example, genes exhibiting tran-
sient mRNA induction during diamide treatment were
transiently transcribed, rather than continuously tran-
scriptionally upregulated with subsequent regulation of
mRNA stability contributing to the later decrease in
mRNA abundance.

However, close examination of Polll changes within
any given cluster reveal numerous examples where
mRNA changes are not matched by Polll abundance
changes. To investigate this phenomenon further, we
compared the change in Polll abundance over mid-CDS
probes and the corresponding change in mRNA abun-
dance at varying times after induction of the stress
response (Figure 4a,c; Additional file 7). We observed
the expected positive correlation between Polll changes
and changes in mRNA abundance, but there was signifi-
cant variation as well - changes in Polll abundance typi-
cally accounted for approximately 50% of variance in
mRNA abundance in this analysis. Examples of genes
exhibiting high or low mRNA production per change in
Polll occupancy are shown in Figure 4b.

To quantify the variability in mRNA produced per Polll
molecule, we first calculated the average mRNA change
per change in Polll as a LOWESS fit (red line in Figure
4a,c). Deviation from the typical mRNA change per Polll
change was then defined as mRNA ‘excess’ or ‘dearth’ -
genes that fall well above the red line in Figure 4a,c cor-
respond to genes where the change in mRNA abundance
measured in heat shock or diamide is significantly greater
than the change in mRNA for most genes with the same
change in Polll abundance. Examples of genes exhibiting
high levels of mRNA excess or dearth are shown in Fig-
ure 4b. Genes exhibiting a relative excess of mRNA pro-
duced per Polll change were enriched in a variety of
related Gene Ontology categories, such as ‘hexose meta-
bolic process’ (P < 1.50e-13), and ‘carbohydrate metabolic
process’ (P < 6.02e-11) (Additional file 8), as well as sev-
eral relatively nonspecific Gene Ontology terms (see Dis-
cussion). Genes producing a relative dearth of mRNA per
PollI change were enriched for Gene Ontology categories
such as ‘cell cycle’ (P < 5.42e-9), and ‘ncRNA metabolic
process’ (P < 3.38e-6).

Interestingly, genes for which excess mRNA was pro-
duced per Polll change often were associated with
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overlapping noncoding mid-log-expressed transcripts as
defined by Xu et al. [22]. We found that this phenom-
enon was general, with a much greater extent of ORF
overlap (P = 1.33e-5) with other transcripts at genes
producing excess mRNA/Polll (Figure 4d; Additional
file 9). This result suggests that in mid-log growth,
much of the Polll occupying these genes is engaged in
nonproductive transcription. Upon stress, we speculate
that this nonproductive or regulatory transcription is
repressed, allowing a greater fraction of productive Polll
molecules to transcribe the coding region (Additional
file 10). Consistent with this idea, we found that genes
exhibiting excess mRNA production after treatment also
tended to be associated with high 3'/5’ Polll levels dur-
ing mid-log growth (Additional file 11). Conversely, we
speculate that genes exhibiting a dearth of RNA pro-
duced per change in Polll might be subject to an
increased level of nonproductive transcription under
stress, but since prior transcript mapping studies have
not touched on heat shock or diamide conditions, these
putative CUTs and SUTs have yet to be identified.

Because we used data from another lab’s study for
mRNA levels, we carried out our own measurements of
mRNA changes at 30 minutes of heat shock (from the
same culture used for Polll chromatin immunoprecipita-
tion (ChIP)) using an oligonucleotide microarray, and
repeated the analyses of Figure 4c,d. Our mRNA data
were well-correlated with that of Gasch et al. [18] albeit
with reduced dynamic range (Additional file 12a).
Importantly, we reproduced the discovery that genes
exhibiting ‘excess’ mRNA produced per Polll were asso-
ciated with greater overlaps with CUTs and SUTs
(Additional file 12b,c), validating the conclusions drawn
using another lab’s mRNA dataset.

Characterization of the rpb1-1 allele

The rpbi-1 [15] temperature-sensitive allele of the gene
encoding the major Polll subunit Rpo21 (or Rpbl) is
widely used to establish whether a given change in some
cellular behavior (such as chromatin structure) is tran-
scription-dependent. We therefore sought to fully char-
acterize the behavior of Polll along the genome upon
shift to the restrictive temperature. We carried out Polll
ChIP as above, in this case shifting rpbI-1 yeast from
24°C to 37°C for the same time points used for the
stress time courses (Figure 5a).

At early time points (up to 30 minutes), Polll occupancy
patterns were similar in wild-type and rpblI-1 yeast - Polll
was recruited to HSP104 at early heat shock time points,
for example (not shown). However, at 1 and 2 hours post-
shift, we observed a dramatic decrease in the dynamic
range of Polll abundance over the genome (Figure 5).
Since microarrays are normalized to an average log2
enrichment of zero, this loss of dynamic range is the
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expected behavior if Polll association with the genome
was globally diminished at these time points. This finding
indicates that Polll is still associated with the genome 30
minutes after shifting rpbI-1 yeast to the restrictive tem-
perature - extensive Polll dissociation from the genome
does not occur until between 30 minutes and 1 hour after
temperature shift, and is by no means complete even after
1 hour. Consistent with this, a prior study also found

continued PollI association with the genome 45 minutes
after inactivating the rpbI-1 mutant [27].

Is Polll loss uniform across the genome? There is
some correlation evident between Polll abundance
before and after Polll inactivation - loci that are highly
enriched with Polll at the permissive temperature gener-
ally are associated with more Polll at 2 hours than are
probes that are initially depleted of Polll (Additional file
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13). Do some types of genomic loci maintain Polll more
than others? For each of several types of genomic loci
[16,19], we aligned loci by initial Polll abundance and
plotted a running window average of Polll abundance
after 2 hours at 37°C (Additional file 13a). This analysis
reveals that Polll is maintained at the middle and 3’
ends of genes to a greater extent than at the 5’ end, sug-
gesting that some polymerases may be capable of finish-
ing a round of transcription prior to dissociation from
the genome. Alternatively, it is possible that Polll
located at the 3’ ends of genes is somehow protected
from dissociation.

Finally, we asked whether PollI could be recruited to
the genome in rpb1-1 yeast at the restrictive temperature.

rpbl-1 yeast were shifted to 37°C for 10 minutes, then
subjected to diamide stress for 15, 30, or 60 minutes
while maintaining the restrictive temperature. While heat
shock and diamide both induce a common stress
response, diamide also induces transcription of a specific
set of genes that do not respond to heat shock [18], pro-
viding test loci to determine whether diamide-specific
transcriptional changes are possible after 10 minutes of
Polll inactivation.

Surprisingly, Polll was recruited to a subset of diamide-
specific genes under these conditions (Figure 6), indicat-
ing that not only can Polll maintain contact with the
genome under these conditions, but it can still be
recruited. Polll occupancy over some of these genes was
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not restricted to the promoter, suggesting that it might
even transit the ORF under these conditions. Interest-
ingly, only a subset of diamide-specific genes were cap-
able of recruiting Polll after 10 minutes at the restrictive
temperature. The difference between these two sets of
diamide-specific genes is not apparent to us at present.

Discussion
Here, we report dynamic whole-genome mapping of
PolIl occupancy during several different stress time
courses. Our major findings are: 1, transcriptional
changes in response to stress are only partly reflected in
mRNA abundance; 2, widespread cryptic transcription
likely contributes to gene regulation during stress
response; and 3, some Polll maintains contact with the
genome, and is even recruited, well after mRNA synth-
esis is thought to have stopped in the rpb1-1 mutant.
Most interestingly, we find widespread mismatches
between changes in Polll and changes in mRNA abun-
dance during two stress response time courses. While
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Polll recruitment to a given gene is correlated with an
increase in expression of that gene, the quantitative level
of mRNA change for a given relative change in Polll
recruitment is highly variable. A number of factors
could explain variability in mRNA production per Polll,
such as regulated mRNA stability [2]. Indeed, we find
that genes with excess mRNA production tended to
exhibit longer half-lives (Additional file 14). However,
genome-wide mRNA half-lives have typically been mea-
sured in the rpbI1-1 strain, which appears to upregulate
stress genes for at least some time during the shift to
the restrictive temperature [1], indicating that the long
mRNA half-lives for stress-related transcripts likely
include effects of increased mRNA production during
these time courses.

Here, we additionally find that genes exhibiting unu-
sually high levels of mRNA produced per change in
Polll generally exhibit greater overlap with cryptic and
stable noncoding/unannotated transcripts (Figure 4d;
Additional file 12c). Furthermore, we note that many
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poorly expressed mRNAs are associated with overlap-
ping transcripts before stress (Figure 2d). Together,
these observations support a model where some of the
Polll associated with such a gene in mid-log growth is
engaged in nonproductive (in some cases regulatory)
transcription [22,28-35] (Additional file 10). Upon stress,
upregulation of the ORF promoter, downregulation of
the CUT/SUT promoter, or both, would result in a
higher proportion of Polll molecules associated with a
gene being engaged in productive transcription. We sus-
pect that each of these three possibilities occurs at
different genes.

We further speculate, then, that mismatches in which
less mRNA is produced per Polll change represent
genes where nonproductive transcription is induced in
stress (see, for example, altered SUT expression in stress
in [36]). As genome-wide datasets that identified CUTs
and SUTs in budding yeast were not derived under
stress conditions, these putative stress-specific tran-
scripts would not have been identified in prior studies.

Interestingly, we found that genes involved in carbo-
hydrate metabolism as a class are more subject to excess
mRNA production than other gene sets (Additional file
8). Previous studies of cryptic unstable transcripts found
that genes involved in glucose metabolism were signifi-
cantly enriched for sense CUTs [37], consistent with our
finding that genes exhibiting excess mRNA production
were associated with overlapping CUTs or SUTs (Figure
4d). What is the biological rationale for regulation of
carbohydrate-related genes by overlapping transcription?
In the cases of nucleotide metabolism and termination
factors [6,37], regulation by CUTSs appears to provide a
mechanism for feedback regulation of the relevant
genes. In the case of carbohydrate metabolism the basis
for direct feedback is less clear, although given the wide-
spread mechanisms by which a cell’s metabolic state can
influence chromatin regulators’ activities [38], we specu-
late that control of CUT transcription or termination
could globally respond to NAD/NADH ratios or some
other aspects of global cellular metabolism.

Finally, we extensively characterize the widely used
temperature-sensitive rpb1-1 mutant in Polll. Many or
most published studies use 15 minutes of inactivation of
this allele to address the role of transcription in a given
process (nuclear pore association, nucleosome position-
ing, and so on). However, here we find that Polll
remains associated with the genome for approximately
an hour before dissociating. Furthermore, we find that
after 10 minutes in restrictive temperature Polll can still
be recruited to newly activated genes. Prior studies with
this mutant have shown a decrease in mRNA produc-
tion [15] and in permanganate sensitivity [39] after
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15 minutes of heat inactivation of this mutant, while
our results show continued genomic association of Polll
with the genome for at least another 15 minutes after
this time. These different assays suggest that inactivating
this mutant results first in loss of productive transcrip-
tion without concomitant dissociation from the genome,
followed after some time by dissociation from DNA.
Thus, these experiments indicate that care must be used
when interpreting the results of experiments with this
mutant, and that longer incubation at restrictive tem-
perature is required before Polll disengages from the
genome.

Together, our results provide a broad perspective on
the relationship between Polll and gene expression.
These results have particular importance for studies
attempting to use genomic sequence to understand tran-
scriptional regulation - while the role of promoter
sequence in the regulation of transcription is of course a
major factor in the transcriptome, a great deal of varia-
bility in mRNA abundance may result from upstream or
downstream regulatory promoters. Future computational
studies will no doubt need to take local genomic struc-
ture-mediated effects such as these into account [40] in
order to achieve a quantitative predictive understanding
of how gene regulation derives from genomic sequence.

Conclusions

Our results emphasize the ubiquity and plasticity of
nonproductive transcription in budding yeast. Quantita-
tive models of transcriptional regulation will be better
served by focusing on Polll than on RNA abundance
measures, as RNA abundance reflects a multitude of
regulated processes from production to degradation.
Finally, results from experiments utilizing the rpbI-1
mutant strain must be treated with caution, as Polll
remains associated with the genome for much longer
than previously appreciated at the restrictive
temperature.

Materials and methods

Yeast culture

Two strains were used - the rpbI-1 mutant (gift from
Fred Winston), and parental strain BY4741. For the
diamide time course, five flasks each of 250 ml rpb1-1
cells were grown in YPD to an Aggo OD of 0.5 in 1-1
flasks shaking at 200 rpm at room temperature (25°C).
Diamide was added to a final concentration of 1.5 mM
to flasks at time zero. At t = 0, 15, 30, 60, and 120
minutes, formaldehyde was added to a final concentra-
tion of 1%. For the heat shock time courses (both wild
type and rpbI-1), an equal volume of YPD prewarmed
to 49°C was added to flasks, which were immediately
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transferred to a 37°C incubator and incubated for vary-
ing lengths of time prior to fixation. Finally, for heat
shock plus diamide treatment, three flasks of rpbi-1
cells were shifted to 37°C as above for 10 minutes,
then diamide was added for 15, 30, or 60 minutes
prior to fixation.

Chromatin immunoprecipitation and DNA amplification
We carried out Polll ChIP as previously described with
minor modifications [16,17]. protein G beads (20 pl)
and anti-Rpb3 monoclonal antibody (5 ul) were mixed
with 1 ml of chromatin solution containing 1 mg of
proteins and incubated overnight at 4°C. Beads were
washed sequentially with 1 ml each of FA lysis buffer
containing 275 mM NaCl, FA lysis buffer containing
500 mM NaCl, wash buffer (10 mM Tris, pH 8.0, 0.25
M LiCl, 1 mM EDTA, 0.5% NP-40, 0.5% Na deoxycho-
late), and TE (10 mM Tris pH 8.0, 0.1 mM EDTA).
Immunoprecipitated chromatin was eluted from the
beads by heating for 20 minutes at 65°C in 200 pl of 50
mM Tris, pH 7.5, 10 mM EDTA, and 1% SDS. After
recovery of the supernatant, beads were washed with
200 ml TE that was then added to the first supernatant.
For Input DNA, 150 pl of FA lysis buffer and 200 pl of
TE were added into 50 ul of chromatin solution. Rever-
sal of crosslinking was done as described [41], and then
the precipitated DNA and Input DNA were resolved in
45 pl and 50 pl of distilled water, respectively. Precipi-
tated DNA (40 ul) and 1/50 diluted Input DNA were
used for amplification. DNA amplification was done as
described previously [17].

Microarray hybridization

DNA produced from the amplification (3 pg) was used
to label probe via Klenow labeling. Labeled probes were
hybridized onto a yeast tiled oligonucleotide microarray
at 65°C for 16 hours and washed as described [23]. The
arrays were scanned at 5 micron resolution with an
Axon Laboratories GenePix 4000B scanner running
GenePix 5.1 (Molecular Devices, Sunnyvale, CA, USA).

Data availability
Data have been deposited to the Gene Expression

Omnibus, accession number [GEO:GSE22675].

Additional material

Additional file 1: Table S1. Complete dataset. Polll localization dataset
for 18 experiments, as indicated in the column headings. Microarray
probes are identified both by Agilent probe ID as well as by
chromosome coordinate.

Additional file 2: Table S2. Granularized data. Probes were grouped as
described in [16], and data were averaged for varying annotations (that
is, YALOOTW-5CDS indicates probes falling within 500 bp of YALOOTW's
ATG) as indicated.
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Additional file 3: Table S3. Polll localization sorted by 573" bias. For
genes with a mid-CDS annotation (that is, genes over 1 kb in length),
data are shown for 5" CDS, mid-CDS, and 3’ CDS. Genes are ordered by
the ratio of 5’ to 3’ Polll abundance.

Additional file 4: Figure S1. Genes with 3"-biased Polll are poorly-
expressed. (a) Genes are sorted by 5" bias in Polll abundance as in Figure
2b, but all genes with overlapping CUTs and SUTs have been removed.
(b) Genes with high 57/3" Polll abundance are highly expressed. Log(2) of
mRNA abundance data from Yassour et al. [21] is shown as an 80-gene
running-window average, with genes ordered as in (a).

Additional file 5: Figure S2. Comparison of Polll location on gene body
to mRNA induction level. (a, b) Polll enrichment was calculated for 5/,
mid-, and 3" CDS at t = 0 (pre-stress) and t = 30 minutes (stress) for heat
shock (a), and diamide (b) stresses. Genes are ordered by mRNA change
from highly repressed (left) to highly activated (right), and Polll
abundances are plotted as an 80-gene running-window average. Genes
that are highly repressed (left) tend to exhibit 5-biased Polll pre-stress.

Additional file 6: Figure S3. Comparison of Polll changes to mRNA
changes during the diamide stress response. (@) mRNA data from Gasch
et al. [18] were subjected to k-means clustering with k = 8. (b, ) Polll data
for 5" (b) or 3' (c) CDS were normalized by subtracting t = 0 data from
each time point, and genes long enough to have a mid-CDS annotation
are ordered as in (a). (d) Average mRNA changes for the eight clusters
from (a), with cluster number indicated by the color to the right of the
data in (a). (e) As in (d), but for mid-CDS Polll occupancy changes.

Additional file 7: Figure S4. Comparison of Polll changes to mRNA
changes during two stress responses. (a-f) mRNA data from Gasch et al.
[18] are plotted on the y-axis, with the change in Polll at mid-CDS for
the same gene plotted on the x-axis. The red line shows an 80-gene
running-window average. HS refers to heat shock, D refers to diamide,
and 15, 30, and 60 refer to minutes of stress. Note for diamide the mRNA
data come from 20 rather than 15 minutes.

Additional file 8: Figure S5. Genes involved in carbohydrate
metabolism exhibit significant excess mMRNA produced per Polll change.
(a) Scatterplot as in Figure 4a,c and Additional file 7. Red triangles
indicate genes annotated with ‘carbohydrate metabolic process'. (b)
Cumulative distribution plots for carbohydrate metabolism genes (red)
and all others (blue) showing that a significantly higher fraction of
carbohydrate metabolism genes exhibit excess mRNA production relative
to the background distribution.

Additional file 9: Figure S6. Genes producing ‘excess’ mRNA exhibit
significant overlap with CUTs and SUTs. Cumulative distribution (y-axis) of
genes overlapping a given length of alternative transcript [22], summed
over both 5" and 3’ overlaps, for genes exhibiting excess (red), predicted
(blue), or a dearth of (green) mRNA production per Polll change (Figure 4c).

Additional file 10: Figure S7. Model for excess mRNA production per
Polll. Before stress, a gene with an overlapping CUT will be associated
with Polll molecules producing mRNA (right arrow) as well as Polll
molecules producing rapidly degraded ‘cryptic’ transcripts (left arrows).
After stress, repression of the CUT promoter and activation of the ORF
promoter will result in a greater proportion of mRNA-producing Polll
molecules associated with the ORF. Note that either ORF promoter
activation or CUT promoter repression alone would be sufficient to
increase the relative proportion of productive Polll relative to overall Polll,
but both are shown here to illustrate the point.

Additional file 11: Figure S8. Genes with high 3/5' Polll ratios pre-stress
tend to produce excess mRNA during stress. (a) Scatterplot of Polll 57/3'
ratio at t = 0 (as in Figure 2b), x axis, versus mRNA excess produced after
30 minutes of heat shock. (b) Eighty-gene running-window average of the
data from (a). Note the y-axis scale changes between these two panels.

Additional file 12: Figure S9. mRNA data collected in this study
correlate with Gasch et al. [18]. (a) Comparison of mRNA changes from
Gasch et al. [18] with those measured in this study after 30 minutes of
heat shock. Axes are log(2) of the fold-change relative to t = 0. (b)
mRNA changes compared to Polll changes over mid-CDS. As in Figure
4¢, but for mRNA data collected in this study. (c) Genes exhibiting
‘excess’ mMRNA production per Polll more extensively overlap CUTs and
SUTs than do other genes. As in Figure 4d.
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Additional file 13: Figure S10. Polll abundance before and after
inactivation of rpbi-1. (a-c) Scatterplots of Polll abundance before stress
(a), after 120 minutes of heat shock in wild type (b), or after 30 minutes
of inactivation of rpbi-1 (c), on the x-axis, versus Polll abundance after
120 minutes of heat shock in rpbT-1 (y-axis). Running window averages
are indicated for 5, mid-, and 3’ CDS probes.

Additional file 14: Figure S11. Excess mRNA production correlates with
mRNA half-life. Genes are ordered according to deviation from expected
MRNA produced per change in Polll (Figure 4c) for 30 minutes of heat
shock, and an 80-gene running-window average of mRNA half-life [2] is

plotted on the y-axis.
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bp: base pair; CDS: coding sequence; ChIP: chromatin immunoprecipitation;
CUT: cryptic unstable transcript; ORF: open reading frame; Polll: RNA
polymerase Il; SUT: stable unannotated transcript.
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