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Abstract: Mycobacterium avium subspecies paratuberculosis (MAP) is an environmentally hardy
pathogen of ruminants that plagues the dairy industry. Hallmark clinical symptoms include granulo-
matous enteritis, watery diarrhea, and significant loss of body condition. Transition from subclinical
to clinical infection is a dynamic process led by MAP which resides in host macrophages. Clinical
stage disease is accompanied by dysfunctional immune responses and a reduction in circulating vita-
min D3. The immunomodulatory role of vitamin D3 in infectious disease has been well established in
humans, particularly in Mycobacterium tuberculosis infection. However, significant species differences
exist between the immune system of humans and bovines, including effects induced by vitamin D3.
This fact highlights the need for continued study of the relationship between vitamin D3 and bovine
immunity, especially during different stages of paratuberculosis.

Keywords: vitamin D; Mycobacterium avium subsp. paratuberculosis; cattle; macrophage; PBMC;
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1. Johne’s Disease Overview

Johne’s disease, also called paratuberculosis, is a chronic, progressive enteritis affecting
ruminants and has economic importance particularly within the dairy industry. The
etiological agent, Mycobacterium avium subspecies paratuberculosis (MAP), is an acid-fast
bacillus that is classified as an obligate intracellular pathogen [1]. Estimates of MAP’s
impact on economic losses have varied through the years, with the most recent values
reaching $198 million dollars per year in the United States alone [2,3].

Persistence of MAP within the environment is achieved as a result of its thick, waxy
cell wall composed of long mycolic acids. These fatty acids provide a uniquely imper-
meable barrier that protects the bacterium from desiccation and damage by chemical or
biological agents [4,5]. Pasture-based grazing systems face unique challenges in the control
of paratuberculosis, as MAP can be isolated from grass and top layers of soil following ma-
nure application [6]. Environmental conditions have been shown to impact MAP longevity
with dry, shaded areas of land testing positive up to 55 weeks [7] and water also potentially
being a prominent environmental reservoir, testing positive for up to 36 weeks [8]. Other
barriers to eradication and control include the potential for a wildlife reservoir, such as
deer, that can continue the disease cycle and infect domesticated livestock [9,10].

2. Transmission

MAP infection rates in young calves increase with exposure to larger numbers of
MAP, and infection is most commonly established via the fecal–oral route for upwards
of a year following birth [11,12]. Transmission of MAP through colostrum and milk by
infected dams has been shown to occur and detection rates, along with bacterial burden,
appear to coincide with the level of fecal shedding by the dam [13]. Further, rates of
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in utero transmission also appear to relate to disease severity and MAP burden in the
feces [14,15]. These routes of infection represent important steps in biosafety protocol
during efforts of herd infection control, and largely revolve around maintaining clean, dry
housing environments.

Fecal shedding patterns are intermittent in animals naturally infected with MAP
categorized in the subclinical stage of disease. Dynamics of fecal shedding have been
shown to be largely different between experimentally and naturally infected cattle, with
experimentally infected animals shedding after one year and alternating between positive
and negative status several times while also fluctuating between high and low levels [16].
Most of these animals reached high levels of shedding, which could be impacted by MAP
infection dose and administration route. This study also showed those animals that were
naturally infected at a young age had a propensity to begin shedding approximately 3 years
following infection, had little to no switching between shedding status, and those that
did shed intermittently had a reduced chance of becoming a high shedder compared to
those who shed MAP consistently. Other reports have also shown similar disease outcomes
related to shedding level and frequency [17]. Additionally, naturally infected cattle that
began shedding high levels frequently continued to do so until being removed from the
herd [16].

Cattle that progress to clinical stage paratuberculosis show symptoms including
watery diarrhea, weight loss, and in severe cases submandibular edema. Gross pathology
shows marked inflammation of the intestinal wall, which impairs nutrient absorption from
the diet [18]. This can lead to hypoproteinemia, reducing oncotic pressure of capillary
vessels allowing fluid to leak from the blood vessels and accumulate beneath the jaw in
grazing animals. The clinical stage is often accompanied by shedding of high levels of
MAP and a significant reduction in milk production for lactating animals [19].

Furthermore, MAP has been implicated in Crohn’s disease in humans, although this
is an ongoing controversial relationship [20]. Association has been established through
studies isolating MAP genomic DNA from Crohn’s patients, although inconsistently, and
some individuals have experienced remission of symptoms following antimycobacterial
treatments [21–23]. The plausibility of a relationship is further supported by MAP’s ability
to survive pasteurization of dairy products [24]. Collectively, a definitive causal link has
yet to be established and considerations should be made as to whether MAP is simply an
opportunistic pathogen in humans that is able to establish itself following disease onset.

3. Detection and Diagnostics

One main goal of on-farm paratuberculosis control programs includes identifying
potential carriers and removing them from the herd. Unfortunately, a practical and con-
sistent diagnostic tool does not yet exist for routine implementation by veterinarians and
producers. Challenges in diagnosing early infection include the sensitivity of antibody
enzyme-linked immunosorbent assay (ELISA) and fecal culture, which has been shown
to increase with host age and can therefore better detect infection as it advances [25].
Cattle mounting a cell mediated immune response will produce significant amounts of
antigen-specific IFN-γ, which can be detected by ELISA [26,27]. Additionally, detection
of MAP genomic material in host samples utilizing qPCR tools is commonly achieved by
targeting a species-specific insertion sequence (IS900), of which there are approximately
16–22 copies [28], making this a sensitive diagnostic tool.

As development of paratuberculosis is not always linear, different methods of diag-
nostics do not always have a high rate of outcome agreement. For example, anti-MAP
antibody production is not a great predictor of fecal shedding, and disparate results among
antibody production, fecal culture, and fecal PCR can occur [29]. Additionally, postmortem
histopathologic examination of host tissues can be less sensitive, so more accurate detection
of infected animals can be achieved by performing another concurrent diagnostic such
as culture of homogenized tissues [30]. To address the issue of time intensive traditional
methods of culture on solid media, culture of samples in liquid media, such as Middlebrook
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7H9, allows for a reduced window of detection and more rapid removal of the infected
animal from the herd during the dry period [31–33].

4. Host Entry and Recognition

To establish infection via the fecal-oral route, MAP must traverse the mucosal ep-
ithelium in the small intestine. It is here where highly specialized areas of gut-associated
lymphoid tissue (GALT) are located, called Peyer’s Patches, which function in continuous
sampling of the gut environment for potential pathogens. Microfold cells (M cells) located
in Peyer’s Patches are gatekeepers for this surveillance role and MAP utilizes them as
a doorway to reach antigen presenting cells in the submucosa [34]. While the general
consensus appears that M cells are the main route of entry into the host subepithelial tissue,
MAP does facilitate entry into the host through intestinal epithelial cells, as reported in a
Peyer’s Patch deficient mouse model [35] and an in vivo lamb small intestine surgical loop
model [36].

Models incorporating simulations of MAP interaction with host epithelial cells have
shown alterations in MAP gene expression and patterns of host cytokine secretion pos-
sibly because of phenotypic changes acquired by the bacteria. Pre-processing of MAP
through Madin-Darby bovine kidney (MDBK) epithelial cells and its serial passage through
RAW264.7 macrophages and MDBK cells showed secondary epithelial infection collectively
increased gene expression of pro-inflammatory mediators interleukin 6 (IL-6) and IL-8
while also reducing anti-inflammatory TGF-β transcripts [37]. This study also showed gene
expression patterns for pro-inflammatory CCL5, also known as Regulated Upon Activation,
Normal T cell Expressed and Secreted (RANTES), and IL-18 were inversely related between
primary and secondary epithelial cell cultures, with gene expression being upregulated in
the secondary cell culture. Other work has observed increased expression of IL-17A and
IL-17F following epithelial processing of MAP [38].

Successful establishment of infection is achieved following MAP uptake by antigen
presenting cells, mainly subepithelial macrophages. The most well documented route of
entry is facilitated through the cell surface pattern recognition mannose receptor binding
MAP cell wall component mannose-capped lipoarabinomannan (ManLAM). Other mecha-
nisms of entry have been identified including CD14, complement receptors CD11b/CD18,
and integrin receptors CD11/CD18 [39]. Additionally, complement receptors CR1, CR3
and CR4 can facilitate uptake of mycobacteria opsonized with serum complement protein
C3b [40]. Fc immunoglobulin receptor (FcR) recognizes and binds the Fc fragment of host
antibody bound to the mycobacterium. Serum from MAP infected cattle used to opsonize
MAP results in higher uptake of bacteria and the effect is maintained even when serum is
heat inactivated [41]. In contrast, serum from naïve cattle that is heat inactivated does not
increase bacterial uptake compared to neat serum. Toll-like receptors (TLRs) are a class of
highly conserved transmembrane receptors that innately recognize pathogen associated
molecule patterns (PAMPs) and damage associated molecular patterns (DAMPs) associated
with a variety of pathogens and their products. TLR9 is thought to bind mycobacterial
DNA within the cell, and TLR2 recognizes cell wall lipoproteins [42–44]. Each of these
methods of macrophage signaling can have varying effects on its responses, and another
influencing factor in that response is previous cellular activation.

5. Immune Responses to MAP

Macrophage phenotype and resulting effector functions are influenced by the cell’s
cytokine milieu, pathogen signaling, and immune cell interactions. Phenotypic differences
can be broadly represented by two groups according to cell surface receptors and cytokines
produced [45]. A pro-inflammatory T helper 1 (Th1) cytokine profile, namely including
IFN-γ, promotes a host defense (M1) macrophage phenotype with bactericidal activity that
contributes to pathogen elimination. These cells have been found to produce high levels
of nitric oxide and express high levels of CD80 and CD86 [46,47]. Binding of CD40 on the
macrophage with CD40L (CD154) on activated T cells is essential for T cell proliferation
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and induction of pro-inflammatory responses including IL-12 expression and nitric oxide
production [48–50]. In bovine monocyte-derived macrophages (MDMs) infected with MAP,
defects in CD40-CD40L signaling resulted in abrogated gene expression for IL-12p40 and
inducible nitric oxide synthase [51]. In contrast, uninfected MDMs were able to upregulate
these responses in addition to increased IL-6, TNF-α, IL-8, and IL-10. The subclinical stage
of disease is often associated with greater capacity to produce pro-inflammatory cytokines
such as IFN-γ and TNF-α [26,27]. In the first year of infection with MAP, it has been
shown CD4+CD45RO+ memory T cells are the main antigen responders, and significantly
upregulate activation markers CD25 and CD26 following in vitro stimulation [52]. This
study also observed that while CD8+CD45RO+ comprised approximately 30% of CD8+ T
cells in the first year, they did not begin to have significant responses to in vitro stimulation
until 18 months post infection, at which time they increased their expression of activation
markers CD25 and CD26 [52].

Importantly, prior activation of the macrophage can have a profound effect on intracel-
lular viability of the invading bacterium, which has been shown in IFN-γ pretreatment of
macrophage in vitro [53,54]. Stimulation with a pro-inflammatory mediator after infection,
however, does not confer the same protective effects. Furthermore, physiological responses
such as polarization and signaling of T cells following antigen presentation rely on a variety
of factors including antigen dose, its affinity for the T cell receptor (TCR), duration of
binding, and production of anti-inflammatory IL-4 or pro-inflammatory IFN-γ [55,56].

The resolution and repair (M2) macrophage facilitates an environment in which a T
helper 2 (Th2) cytokine profile predominates, defined by an anti-inflammatory response
with increased IL-10 along with high levels of CD163 [57–59]. In the case of bovine paratu-
berculosis, the greater proportion of M2 macrophages present in the intestinal tissue of
cows in clinical stage of disease ultimately hinders MAP clearance and disease resolution
within the host [60,61]. This stage is characterized by a reduction in IFN-γ production, a
cytokine which is protective for the host and functions by activating macrophages [27].
While the specific mechanisms are unresolved in this transition of immune function from
subclinical to clinical cows, it has been shown that CD4+CD25- naïve T cells are largely
unresponsive to MAP antigen and do not develop a regulatory T cell cytokine profile [62].
MAP-induced Th1 cytokine gene expression in these CD4+CD25- T cells was observed to
be reduced in subclinical cows as well, but to a lesser extent. Furthermore, IL-10 facilitates
reduction in IFN-γ and IL-12 and, has also been shown to reduce major histocompatibility
complex II (MHCII) on monocytes, collectively resulting in reduced cell activation and
antigen presentation [59,63,64]. Signaling through TLR2 has been implicated in facilitating
pathogenic mycobacteria’s ability to upregulate IL-10 [44,59]. T cell subsets largely con-
tributing to IL-10 production are CD4+CD25+ regulatory cells, and in the absence of CD25+
cells IFN-γ production is significantly enhanced [65]. Fresh, unstimulated PBMCs from
cows with clinical paratuberculosis have been shown to have significantly lower CD25
expression compared to subclinical and control cows but following MPS activation no
differences among infection status groups were observed [66]. When T cell subsets were
parsed out, MPS stimulated PBMCs from subclinical and clinical cows had significantly
higher CD4+CD25+ T cells, and this observation has been replicated [67].

An additional T cell subset found in significant proportions in the bovine is the γδ

T cell. This subset can constitute up to 60% of all T cells, and are speculated to bridge
responses between innate and adaptive immunity. They can express cytokines such as
IL-2, IL-10, IL-12, IL-15, and IFN-γ [68] and have been found to have regulatory func-
tion through spontaneous IL-10 secretion which has negative effects on proliferation for
CD4+ and CD8+ T cells [69]. In the presence of Mycobacterium bovis (M. bovis) infected
dendritic cells, γδ T cells upregulate production of pro-inflammatory IFN-γ and IL-12 [70].
Additionally, γδ T cells have been reported to be significantly lower in cattle with clinical
paratuberculosis [66,71].

Furthermore, investigation of γδ T cell distribution in granulomatous tissue in the
bovine has shown significantly higher amount of these cells localized to late stage lesions in



Microorganisms 2022, 10, 1865 5 of 24

naïve calves experimentally infected with MAP when compared to vaccinated calves, which
also had higher lesion scores [72]. This experiment begs the question of whether γδ T cells
are lower in clinical cows due to them exiting the periphery to assist in controlling bacteria
at the site of infection. Granulomatous lesions in paratuberculosis are largely unorganized
and resemble that of Type II lepromatous granulomas, with disordered structure and
macrophages containing high amounts of bacteria [73,74]. Granuloma formation at the
site of infection is dependent upon pro-inflammatory TNF-α expression, and blocking
TNF-α expression can result in downregulation of IFN-γ, IL-12, IL-10, IL-17, and nitric
oxide production [75]. In M. bovis infected cattle, antigen-specific responses by T cells show
CD4+ T cells are significant producers of IL-22, while γδ T cells are the main source of
IL-17A but can also concurrently produce IL-22 [76]. IL-17A has been associated with early
responses in mycobacterial infections [77] and can be produced by CD4+ and CD8+ T cells
outside of antigen presenting cell stimulation [78].

6. Intracellular Survival and Disease Propagation
6.1. Iron Acquisition

One of the most notable features of MAP is its slow growth, which is attributed to its
lack of endogenous mycobactin siderophore production. This is in contrast to Mycobacterium
tuberculosis (M. tb), whose growth within host macrophages is dependent upon mycobactin
synthesis [79,80]. Sequence analysis of the MAP genome revealed a truncated version
of MbtA, the first gene in the cluster responsible for mycobactin production [81]. This
observation provides a possible explanation for the requirement of exogenous mycobactin
in laboratory culture for MAP. Siderophores from unrelated bacterial species have been
shown not to support the growth of MAP in vitro, while alterations of growth conditions
to pH 5.0–6.2 in the presence of bovine transferrin or lactoferrin support MAP growth in
culture medium [82]. This study also investigated the presence of mycobactin in ileal tissue
from cattle naturally infected with MAP, which ultimately showed no mycobactin was
able to be extracted. A genomic island unique to MAP (LSPP15) has also been shown to
encode genes that contribute to alternative means of iron acquisition [83]. Additionally,
MAP infection in a macrophage-epithelial cell co-culture system resulted in MAP gaining
iron acquisition capabilities consequential of nitric oxide accrual, further indicating the
truncated MbtA mycobactin gene is not prohibitive to growth and dissemination through
the host [84].

6.2. Lysosomal Pathway Maturation

Fusion of endosomal compartments in eukaryotic host cells is a fundamental process
involved in recycling of proteins, protein transport, and pathogen degradation. This
process is largely mediated by a branch of the Ras superfamily that consists of over 60 small
GTPase proteins, which are present in all eukaryotic cells and are highly conserved through
evolution due to their essential functions [85,86]. This pathway is a critical function of
phagocytic cells of the immune system, such as monocytes, macrophages, neutrophils,
and dendritic cells. These cells function in taking up a variety of materials from both the
pathogen and host and degrading them.

Mycobacterial regulation of these endosomal trafficking markers has been documented.
Firstly, it is likely important to note that during transitions in endosomal markers, a hybrid
expression profile of early (Rab5) and late markers (Rab7 and LAMP-1) has been observed
in mouse myoblastoma (C2C12) and human alveolar adenocarcinoma (A549) cell lines,
suggesting the endosomal maturation pathway may not be totally linear [87].

A proteomics model in sheep has shown that tissue from MAP infected animals can
have upregulated expression of Rab5 [88]. Phosphatidylinositol 3-phosphate (PI3P) is an
endosomal trafficking receptor that plays a critical role in facilitating fusion of the early
endosome and phagosome [89]. ManLAM in the cell wall of M. tb can prevent binding and
subsequent signaling of PI3P, which has immediate downstream effects through the loss
of interaction with early endosome autoantigen (EEA1) that functions to bind the early
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endosome and tether it to the phagosome, leading to their fusion [90–92]. As the majority
of Rab5 acquired on the mycobacterial compartment comes from early endosomes, this
shows M. tb can inhibit maturation steps early in the process and reduce acquisition of
Rab5 and its downstream effectors.

Facilitating phagosome-lysosome fusion requires the activity of Rab7-interacting lyso-
somal protein (RILP) and work in RAW 264.7 cells infected with M. bovis BCG show that
although Rab7 can be recruited to bacteria-containing phagosomes, acquisition of RILP is
impaired and can be a result of Rab7 being bound in an inactive GDP form [93–95]. Addi-
tional consequences of M. tb blocking Rab7-RILP interactions includes reduced lysosomal-
associated membrane protein 1 (LAMP-1) recruitment [96]. Impaired Rab7 acquisition may
also be explained through excess accumulation of Rab22a, which does not allow for Rab7
recruitment to the compartment containing the mycobacteria [97]. Similar observations
have been reported in human THP-1 monocytes infected with live MAP, showing its ability
to hinder acidification of the bacteria-containing compartment through preventing RILP
binding [98]. Furthermore, the lipid phosphatase SapM produced by M. tb directly hy-
drolyzes and inactivates PI3P [99,100] and a putative SapM protein has been identified in
MAP [101].

M. tb can also disrupt endosomal trafficking and lysosomal maturation through al-
ternatively splicing of GTPase Rab8B (RAB8B) transcripts in human MDMs resulting in
ineffective protein [102]. MAP has also been shown to utilize alternative splicing events in
bovine paratuberculosis targeting vesicle trafficking, macrophage activation, and lysosomal
function [103,104].

A study investigating MAP survival using a J774 murine cell model showed LAMP-1
expression was not significant across 1 hr, 5 hr, and 24 hr timepoints and did not differ
between live MAP, dead MAP, and other mycobacterial species investigated. However,
LAMP-2 expression was reduced in pathogenic MAP and Mycobacterium avium (M. avium)
compared to killed pathogens and fast-growing Mycobacterium gordonae (M. gordonae) [105].
Another study using a J774 cells contrasted these results, showing LAMP-1 colocalization
with MAP was reduced in cells with live MAP when compared to killed MAP, Mycobac-
terium smegmatis (M. smegmatis), and zymosan A [106]. Additional studies have shown
LAMP-2 is another late endosomal marker that is downregulated in bovine macrophages
infected with MAP [107].

Ultimately, the goal of disrupting normal signaling function of endosomal trafficking
markers is to prevent the compartment’s fusion with the acidic lysosome. Intracellular
compartments containing live pathogenic mycobacteria, including MAP and M. avium,
have been shown to maintain mild acidity (pH 6.3) whereas compartments containing these
killed bacteria or non-pathogenic M. smegmatis and M. gordonae can reach a more acidic pH
of 5.2 [105]. Exogenous treatment of macrophages with IL-6 and IL-12 cytokines have been
shown to upregulate Rab5 and Rab7 expression, respectively [108]. Furthermore, IFN-γ
appears to promote endosomal maturation and overcomes mechanisms blocking the path-
way. This has been shown by measuring acidification of M. tb-containing compartments
within macrophages, but this mechanism required sufficient levels of 25(OH)D3 [109]. This
study also showed IFN-γ induced pro-inflammatory IL-15 production, likely for autocrine
activation of the macrophage. A similar IFN-γ mediated mechanism of bacterial destruction
is present in monocytes infected with Coxiella burnetii [110]. A collective look at regulation
of endosomal trafficking markers in mycobacteria shows there are likely species-dependent
mechanisms at play, and those mechanisms can be regulated as a result of feedback from
the cytokines present in the host cell microenvironment.

6.3. Host Lipid Manipulation

Mycobacterial species utilize intracellular cholesterol for survival and persistence
within the host [111] through mechanisms including facilitating efficient uptake in
macrophages [112] and inhibition of phagolysosome maturation [113]. Macrophages laden
with cholesterol are known as foam cells, which provide a microenvironment for M. tb that
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nurtures disease progression in human tuberculosis [114]. MAP manipulates host cellular
cholesterol metabolism, with pathogenic cattle strains inducing alterations in efflux and
influx pathways creating a competitive environment between the host and bacteria [115]. A
study utilizing bovine PBMCs infected with MAP that had been passaged through bovine
epithelial cells showed a reduction in activity of cholesterol efflux transporters regulated
by the LXR/RXR pathway, including ATP-binding cassette (ABC transporters) ABCA1,
ABCG1, and Apolipoprotein E (APOE) [38]. More studies looking at gene expression in
epithelial cell processed MAP have also showed upregulation in lipid biosynthesis and
metabolism in MAP isolated from secondary epithelial cell cultures, which gain a distinctive
pro-inflammatory phenotype as previously discussed [37].

7. Vitamin D
7.1. History

The story of vitamin D began in the early 1900′s during a time when vitamin deficien-
cies were more common, and their underlying root cause elusive to physicians. Accessory
dietary requirements that were shown to prevent a variety of clinical manifestations led
scientists to subscribe to the concept of “vital amines” [116–118]. As a result, conventional
wisdom of simply balancing dietary proportions of protein, carbohydrates, fats, and salts
began to evolve.

Soon after the discovery of Vitamins A, B, and C, McCollum et al. discovered that
feeding cod liver, oxidized or not, healed rickets [119]. He also made the observation that
developing clinical symptoms of rickets in preparation for disease resolution experiments
takes significantly longer in the summer than the winter, one of the first hints that sunlight is
important in the mechanism. Work done in the 1930′s confirmed this observation, showing
ultraviolet rays convert 7-dehydrocholesterol to vitamin D3 in the skin of hogs [120].

7.2. Metabolism and Signaling

Two isoforms of vitamin D3 are known currently. Vitamin D2 is converted from er-
gocalciferol found in plant material and is known to be a less potent regulator of serum
25-hydroxyvitamin D3 (25(OH)D3) concentration in humans [121,122]. Animal derived
vitamin D3 originates from 7-dehydrocholesterol and can be absorbed through the diet or
converted in the skin through exposure to ultraviolet rays from sunlight. Further steps in ac-
tivation of 7-dehydrocholsterol occur through multiple hydroxylation reactions. 25(OH)D3,
also called previtamin D3, is formed in the liver through action of several cytochrome P450
hydroxylases, of which the most common is thought to be CYP27A1 [123,124]. Specifically
in cattle, CYP27A1 and CYP2J2 have been associated with regulating incidence of milk
fever, which results from dysregulation of calcium homeostasis [125,126]. Next, 25(OH)D3
is shuttled through the periphery for local conversion by 1α-hydroxylase (CYP27B1) [127].
Activation of 25(OH)D3 by CYP27B1 occurs at a variety of cellular sites, including the
kidney [128,129], maternal uterine tissue [130], bone cells [131,132], macrophages [133],
and skin cells [134,135]. A visual summary of vitamin D3 metabolism is presented in
Figure 1.
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Figure 1. Vitamin D is synthesized in the skin or obtained from the diet. The most common and 
more potent form, vitamin D3, is focused on in this review. Vitamin D3 is converted to 25(OH)D3 in 
the liver. Classical effects on calcium homeostasis begin in the kidney, where 25(OH)D3 is converted 
to bioactive 1,25(OH)2D3. 1,25(OH)2D3 increases osteoclast differentiation and activation, and upreg-
ulates calcium and phosphate absorption in the gut. Concurrently with 1,25(OH)2D3, parathyroid 
hormone stimulates osteoclasts. It additionally upregulates 1α–OHase (CYP27B1) activity and cal-
cium reabsorption in the kidney. 25(OH)D3 and 1,25(OH)2D3 are both inactivated by 24–OHase 
(CYP24A1) and are excreted in the bile. Non-classical signaling of vitamin D3 involves local activa-
tion of 25(OH)D3 to 1,25(OH)2D3 by 1α–OHase (CYP27B1) in cells of the immune system. Figure 
created using BioRender.com (accessed on 28 July 2022).  

Figure 1. Vitamin D is synthesized in the skin or obtained from the diet. The most common and
more potent form, vitamin D3, is focused on in this review. Vitamin D3 is converted to 25(OH)D3

in the liver. Classical effects on calcium homeostasis begin in the kidney, where 25(OH)D3 is con-
verted to bioactive 1,25(OH)2D3. 1,25(OH)2D3 increases osteoclast differentiation and activation, and
upregulates calcium and phosphate absorption in the gut. Concurrently with 1,25(OH)2D3, parathy-
roid hormone stimulates osteoclasts. It additionally upregulates 1α–OHase (CYP27B1) activity and
calcium reabsorption in the kidney. 25(OH)D3 and 1,25(OH)2D3 are both inactivated by 24–OHase
(CYP24A1) and are excreted in the bile. Non-classical signaling of vitamin D3 involves local activation
of 25(OH)D3 to 1,25(OH)2D3 by 1α–OHase (CYP27B1) in cells of the immune system. Figure created
using BioRender.com (accessed on 28 July 2022).

BioRender.com
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The half-life of 25(OH)D3 is estimated to be around 15 days, allowing for this form to
be a reliable indicator of vitamin D3 status in the host [136,137]. Comparably, the half-life
of 1,25(OH)2D3 is a fraction of that, estimated at 4–6 h [137]. As a result, concentrations
of 25(OH)D3 can be found over 1000 times greater compared to 1,25(OH)2D3 [138]. Addi-
tionally, 25(OH)D3 is highly stable in serum under proper storage conditions and is largely
unaffected by exposure to up to 4 freeze–thaw cycles [139].

Circulation of 25(OH)D3 and 1,25(OH)2D3 in the blood is facilitated largely by vitamin
D binding protein (DBP). DBP belongs to the serum albumin protein family. Additionally, a
small proportion of 1,25(OH)2D3 and 25(OH)D3 can be transported by serum albumin [140].
Properties of binding affinity to DBP and albumin vary among vitamin D3 metabolites,
with 25(OH)D3 showing the highest affinity but proportions of bound 25(OH)D3 and
1,25(OH)2D3 are similar [140]. However, vitamin D2 and its metabolites have a lower
affinity for DBP, with an accompanying increased rate of plasma clearance [141]. 25(OH)D2
is cleared from the circulation 11 times faster than 25(OH)D3, and even greater differences
are seen for bioactive 1,25(OH)2D2 which has been shown to be cleared up to 33 times
faster than its D3 counterpart [142]. Collectively, these observations are likely attributed
to vitamin D2

′s inferior ability to influence serum 25(OH)D3 levels [121]. Execution of
biological activity is inhibited by the presence of DBP [143–145], so following uptake of the
bound molecules by endocytosis, acidification of the compartment facilitates disruption
of the DBP-vitamin D bond freeing it for chaperone protein-mediated transport to the
mitochondria for activation by CYP27B1 [146]. While considered a minority population,
unbound vitamin D3 can freely diffuse across cellular membranes [147].

Physiologic activity of 1,25(OH)2D3 is facilitated through its binding of the nuclear
hormone vitamin D receptor (VDR) (Figure 2). Collectively, VDR has been shown to have
over 1000 target genes and is found in most tissues [147]. Genomic signaling pathways
result in VDR dimerizing with retinoid X receptor (RXR) [148]. This complex directly binds
the promoter of genes that possess vitamin D response elements, directly modulating their
transcription. In a mouse VDR knockout model, animals observed abnormally increased
1,25(OH)2D3 serum levels, overexpression of CYP27B1, and nearly undetectable expres-
sion of vitamin D3-inactiving hydroxylase CYP24A1. Addition of 1,25(OH)2D3 did not
downregulate CYP27B1 or increase CYP24A1 expression in the absence of VDR, indicating
that when bound to its ligand VDR helps modulate essential hydroxylase expression [127].
Furthermore, non-genomic signaling of 1,25(OH)2D3 is thought to be facilitated through the
binding of modified membrane VDRs, one of which is called protein disulphide isomerase
family A member 3 (PDIA3) [149]. Uptake of the vitamin D3 bound PDIA3 complex has
been shown to be a result of caveolae-mediated endocytosis [150]. Vitamin D3 signaling
through these membrane VDRs are thought to modulate rapid responses to 1,25(OH)2D3
and signaling through PDIA3 can initiate cellular responses through the pro-inflammatory
nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3)
pathways [151,152].

CYP24A1, the 24-hydroxylase, functions as a regulator of 1,25(OH)2D3 by hydroxylat-
ing the number 24 carbon, which inactivates the molecule and prevents further physiologi-
cal activity. Additionally, 25(OH)D3 is also a substrate for this enzyme and can similarly
be inactivated [153]. Ultimately, the newly inactivated metabolites become more polar
and water soluble, allowing for excretion in the bile [154,155]. In target cells, CYP24A1
expression and activity is highly induced by increasing amounts of 1,25(OH)2D3 [156–158].
A mouse CYP24A1 knockout model showed dysregulation of 1,25(OH)2D3 metabolism
resulting in excessively high concentrations in the serum [159].
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Figure 2. 25(OH)D3 and 1,25(OH)2D3 travel in the circulation mainly bound to vitamin D binding 
protein (DBP). They are taken up by caveolae mediated endocytosis, where DBP then disassociates. 
Free 25(OH)D3 and 1,25(OH)2D3 are lipophilic and can diffuse across the cell membrane. 25(OH)D3 
is activated by 1α-OHase (CYP27B1) in the mitochondria. Activated 1,25(OH)2D3 binds the vitamin 
D receptor (VDR) and forms a complex with retinoid X receptor (RXR). Together, they bind vitamin 
D response elements (VDREs) in vitamin D target gene promoters to facilitate gene expression. Ad-
ditionally, alternate receptors at the cell membrane have been shown to bind 1,25(OH)2D3. One such 
receptor, protein disulphide isomerase family A member 3 (PDIA3) can bind 1,25(OH)2D3 and in-
teract with NF-κB and STAT1–3 pathways, showing 1,25(OH)2D3 can also indirectly influence gene 
expression outside of VDR target genes. PDIA3 is also expressed in the mitochondria, but its full 
role is currently unknown. Figure created using BioRender.com (accessed on 28 July 2022). 
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Figure 2. 25(OH)D3 and 1,25(OH)2D3 travel in the circulation mainly bound to vitamin D binding
protein (DBP). They are taken up by caveolae mediated endocytosis, where DBP then disassociates.
Free 25(OH)D3 and 1,25(OH)2D3 are lipophilic and can diffuse across the cell membrane. 25(OH)D3

is activated by 1α-OHase (CYP27B1) in the mitochondria. Activated 1,25(OH)2D3 binds the vitamin
D receptor (VDR) and forms a complex with retinoid X receptor (RXR). Together, they bind vitamin
D response elements (VDREs) in vitamin D target gene promoters to facilitate gene expression.
Additionally, alternate receptors at the cell membrane have been shown to bind 1,25(OH)2D3. One
such receptor, protein disulphide isomerase family A member 3 (PDIA3) can bind 1,25(OH)2D3 and
interact with NF-κB and STAT1–3 pathways, showing 1,25(OH)2D3 can also indirectly influence gene
expression outside of VDR target genes. PDIA3 is also expressed in the mitochondria, but its full role
is currently unknown. Figure created using BioRender.com (accessed on 28 July 2022).

7.3. Classical Function

25(OH)D3 is considered a prohormone, as it shares similar steroid chemical struc-
ture as adrenal and sex hormones [160]. When calcium levels are insufficient, bioactive
1,25(OH)2D3 facilitates upregulation of calcium transport mechanisms to increase calcium
and phosphate absorption by the intestine and renal tubule cells [126]. 1,25(OH)2D3 fa-
cilitates bone growth and remodeling by stimulating differentiation and maturation of
osteoblasts and osteoclasts, while remineralization is downregulated by high phosphate
and osteopontin levels [161]. Reduced serum calcium concentrations stimulate produc-
tion of parathyroid hormone from the parathyroid gland. 1,25(OH)2D3 together with
parathyroid hormone also facilitates demineralization of bone to release stored calcium
by increasing activity of osteoclasts [162]. When sufficient serum calcium levels have
been achieved, calcium inhibits production of parathyroid hormone, which then leads to
inhibition of 1,25(OH)2D3 synthesis by CYP27B1 in the kidney [163]. While these classical
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functions of vitamin D3 are generally well understood in several species, much still stands
to be elucidated about vitamin D3′s immunomodulatory role, particularly in cattle.

7.4. Hydroxylase Expression in Immune Cells

Evidence of 25(OH)D3 conversion to 1,25(OH)2D3 was first shown in macrophages
from humans suffering from sarcoidosis [164] and is shown not to be regulated by parathy-
roid hormone and calcium [165]. Stimulation of 1,25(OH)2D3 production in monocytes
and macrophages is a product of cellular activation through pro-inflammatory cytokines
such as IFN-γ, TNF-α, and IL-1β [166–168]. Activation of peripheral bovine monocytes
by lipopolysaccharide (LPS) induces CYP27B1 expression, but the concurrent addition of
1,25(OH)2D3 to cell cultures interrupts expression, bringing it back closer to baseline [169].
Gene expression for both CYP27B1 and CYP24A1 have been shown to be reduced by
1,25(OH)2D3 in bovine PBMCs and MDMs activated by MAP sonicate or live MAP [67,170].
The reduction in vitamin D inactivating hydroxylase in this model may highlight a mech-
anism that enables monocytes and macrophages to maintain 1,25(OH)2D3 levels during
infection. Cattle with clinical stage paratuberculosis experience abrogated expression
of CYP27B1 in the ileum, which may be a feature of inadequate access to its substrate
25(OH)D3 as a result of significantly reduced circulating levels in these animals. Inter-
estingly, increased levels of IFN-γ have been associated with upregulation of CYP27B1
activity [109,171]. Additionally, a Streptococcus uberis (S. uberis) bovine mastitis model
observed localized expression increased for CYP27B1 in milk CD14+ cells during active
mastitis, while CD14- cells saw increased CYP24A1 [172]. Bovine peripheral blood mono-
cytes treated with 1,25(OH)2D3 show increased CYP24A1 transcripts, which are then
reduced following activation with LPS [173]. Similar observations have been made in M.
bovis-BCG vaccinated calves, where secondary purified protein derivative (PPD) antigen
exposure abrogated the 1,25(OH)2D3 induced upregulation of CYP24A1 [174]. Intramam-
mary treatment of healthy cows with 1,25(OH)2D3 upregulates expression of CYP24A1 in
total milk somatic cells as early as 4 h post treatment [175], as well as increases CYP24A1
expression in milk macrophages and neutrophils [173]. Furthermore, the S. uberis infected
mammary gland overall expressed increased VDR as well [172], however VDR expression
does not undergo changes in the bovine ileum from MAP infected cows [171,176]. These
studies show vitamin D signaling pathways and metabolism may be differentially mediated
depending on the offending pathogen.

7.5. Host Vitamin D Status and Cathelicidins

Minimum thresholds of 25(OH)D3 concentrations reflecting deficiency, insufficiency,
and therapeutic immune function have not been concretely established for neither humans
nor cattle. An estimation for minimum levels required for immune function is speculated
to be 30 ng/mL, whereas baseline concentrations for proper calcium signaling mechanisms
is 20 ng/mL [177–180]. As previously mentioned in the case of bovine paratuberculosis,
circulating levels of 25(OH)D3 have been shown to be significantly reduced in animals with
late stage clinical disease [171]. Work in cattle has shown concentrations of serum 25(OH)D3
in adult dairy cows from across the United States at various stages of lactation and supple-
mented with 30,000–50,000 IU of vitamin D3 per day vastly fall between 40–100 ng/mL,
with an average of 68 ng/mL [181]. Additionally, seasonality has been shown to impact
25(OH)D3 status, with serum concentrations being higher in the summer [182]. This study
also reported a high incidence of 25(OH)D3 deficiency in calves following birth, observing
concentrations mainly between 3–17 ng/mL and over 80% having lower than 20 ng/mL.
These data highlight the importance of vitamin D3 supplementation beginning from birth,
especially during a time of greatest susceptibility to MAP infection.

Efficiency of vitamin D-induced antimicrobial activity is determined by the vitamin
D status of the host, as availability of 25(OH)D3 substrate is ultimately a limiting factor.
Evidence for this observation is reported in human monocytes and macrophages activated
by M. tb or LPS signaling via TLR2/1 heterodimer or TLR4 binding, where serum with
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low levels of 25(OH)D3 had reduced ability to induce cathelicidin expression [183,184].
Cathelicidins are small cationic peptides that can upregulate expression of chemokines
by macrophages, along with increasing phagocytosis of bacteria [185,186]. One functional
cathelicidin gene has been identified in humans and mice, while 7 out of 11 cathelicidin
genes in cattle have been shown to produce active protein [187,188]. Three of the bovine
genes have purported vitamin D response elements, but studies thus far have shown their
expression is not induced by 1,25(OH)2D3 [169]. Other immunologic species differences
exist. Cattle are estimated to have over 100 defensin genes while human and mice are
estimated to have 39 and 52, respectively [189,190].

Studies on immunologic consequences of low circulating vitamin D levels in cattle
are lacking. One related study investigating respiratory syncytial virus (RSV) reported
cattle with low serum 25(OH)D3 do not see an increase in pro-inflammatory IL-12p40
expression in their lung lesions, whereas animals with high 25(OH)D3 observe this ben-
efit [191]. However, severity of the lung lesions was not significantly different between
25(OH)D3 status groups. Of additional importance, conventional methods of vitamin D3
dietary supplementation in dairy cattle has recently been challenged in a study showing
supplementation with 25(OH)D3 rather than cholecalciferol may have potential to induce
immunologic protective effects against experimentally induced mastitis [192].

7.6. Macrophage Phagocytosis and Phenotype

Enhanced capacity for phagocytosis has been observed to be induced in monocytes
and macrophages following treatment with 1,25(OH)2D3 [170,193,194]. In another study,
phagocytosis was upregulated in macrophages from healthy individuals that had a low
phagocytic index, but those with a current pulmonary tuberculosis infection did not see
a benefit [195]. This study used cultured PBMCs in the presence of 1,25(OH)2D3 for 48 h
followed by infection with M. tb for 3 h, so in considering the short half-life of 1,25(OH)2D3
it is possible any 1,25(OH)2D3-induced effects were not captured for this cell culture method.
Small et al. showed increased phagocytosis of Staphylococcus aureus and Candida albicans
with a concurrent upregulation of complement receptor immunoglobulin (CRIg) in human
macrophages treated with 1,25(OH)2D3 [196]. This study utilized complement opsonized
microbes; however, CRIg can function as an innate macrophage pattern recognition receptor
(PRR) and directly bind some Gram-positive bacteria through recognition of lipoteichoic
acids [197]. This posits the question of whether CRIg can also directly recognize any cell
wall constituents in mycobacterial species; however, more definitive studies need to be
performed to validate the PRR functions of CRIg outside of recognizing opsonized particles.

A study using human monocytes differentiated to macrophages by pro-inflammatory
IL-15 showed antimicrobial effects against intracellular Mycobacterium leprae (M. leprae)
were induced by the presence of 25(OH)D3 during differentiation [198]. Compared to IL-10
differentiated macrophages, IL-15 differentiated macrophages expressed lower amounts
of CD163 and higher amounts of CD209, possibly indicating a more M2-like phenotype.
This study did not observe any changes in phagocytosis related to 25(OH)D3 treatment,
further indicating a M1-like phenotype, as M2 macrophages have been shown to have
better phagocytic capabilities [199]. Macrophage phenotype markers CD163 (M1) and
CD80 (M2) have recently been shown to have vitamin D3-induced changes in expression in
bovine MDMs. When infected in vitro with MAP, MDMs from cows with subclinical and
clinical stage paratuberculosis exhibit reduced CD80 expression following treatment with
1,25(OH)2D3 [200]. In control cow MDMs infected in vitro with MAP, both 1,25(OH)2D3
and 25(OH)D3 reduced CD80. CD163 was largely upregulated by 1,25(OH)2D3 treatment
regardless of activation with MAP. An exception was observed in subclinical cows, which
showed 1,25(OH)2D3 and 25(OH)D3 reduced CD163 expression [200]. To fully understand
changes elicited by vitamin D3, further work including a more expansive macrophage
phenotype panel is needed.
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7.7. Cytokines, Nitric Oxide, and β-Defensins

Modulation of immune responses by exogenous vitamin D3 during infectious disease
has shown positive outcomes following treatment. PBMCs from M. bovis infected cattle
treated in vitro with 1,25(OH)2D3 show antigen-specific recall responses through increased
nitric oxide production, although pro-inflammatory IFN-γ production was inhibited [201].
A similar reduction in IFN-γ expression has been observed in stimulated PBMCs treated
with 1,25(OH)2D3 from M. bovis vaccinated cattle [202]. Nelson et al. also showed a concur-
rent reduction in gene expression after vitamin D3 treatment for IFN-γ, IL-17A, and IL-17F,
although only significant for IL-17F during 1,25(OH)2D3 treatment [174]. Contrasting
previous reports, 1,25(OH)2D3 treatment and activation with MAP has shown to induce
a significant increase in IFNG transcripts and a concurrent reduction in IFN-γ secretion
in PBMC-MDM co-cultures from cattle with naturally acquired paratuberculosis [170].
Similar observations have been reported in PBMCs, with these disparate effects being
highlighted in cows in the clinical stage of Johne’s disease [67]. This may highlight a key
defense mechanism employed by MAP; however, in another perspective, by reducing
IFN-γ production the host may be protected from unnecessary tissue damage while it
employs other antimicrobial mechanisms.

Activation of monocytes from healthy cattle by LPS upregulates pro-inflammatory
IL-1β (IL1B), but the effect is independent of 1,25(OH)2D3 exposure [169]. In MAP acti-
vated PBMC-MDM co-cultures, 1,25(OH)2D3 significantly upregulates production of IL1B
transcripts and IL-1β, with an accompanying reduction in IL10 and IL-10 [170]. However,
when PBMCs were cultured alone and activated with MAP sonicate, 1,25(OH)2D3 increased
IL10 transcripts but reduced IL-10 secretion in cows with paratuberculosis [67]. Similarly
activated PBMCs from cows with clinical paratuberculosis observed reduced IL10 and IL-10
following 25(OH)D3 treatment [67]. These data could indicate that vitamin D3-induced
effects are more efficiently deployed when PBMCs, especially T cells, have the opportunity
for crosstalk with macrophages.

In addition to the previously discussed cathelicidin induction, human tuberculosis
patients also observe increased nitric oxide production in alveolar macrophages following
treatment with vitamin D3, but this mechanism is not thought to be regulated by TLR
signaling [203]. Human promyelocytic cell line HL-60 has also reported upregulation
of nitric oxide production, NOS2 expression, and a resulting inhibition of intracellular
M. tb growth following treatment with 1,25(OH)2D3. 1,25(OH)2D3 also reduces levels of
intracellular M. tb in human monocytes and macrophages [204,205]. To further highlight
the critical role of vitamin D3 in infectious disease, NOS2 knockout mice infected with M.
bovis experience increased capacity to kill the bacteria if they have sufficient circulating
25(OH)D3 [206]. Work in cattle has shown that dietary supplementation with 25(OH)D3
results in a greater proportion of peripheral blood neutrophils with antimicrobial activity,
as measured by oxidative burst [207].

1,25(OH)2D3 has recently been shown to induce nitric oxide production along with
upregulating NOS2 expression in macrophages from healthy cattle that have underwent
in vitro infection with M. bovis [193]. In contrast, MAP activated PBMCs and PBMC-MDM
co-cultures from dairy cattle with naturally acquired paratuberculosis experience reduced
NOS2 expression following 1,25(OH)2D3 treatment [67,170]. Curiously, 1,25(OH)2D3 signif-
icantly upregulated nitrite production, measured as an indicator of iNOS activity, in the
activated PBMC-MDM co-cultures from cows with subclinical and clinical paratubercu-
losis [170]. At this 24 h timepoint, live MAP may target 1,25(OH)2D3-induced signaling
events to disrupt availability of transcripts for protein translation.

In bovine PBMCs activated with MAP sonicate, CCL5 expression has been shown to
be reduced by both 1,25(OH)2D3 or 25(OH)D3 [67]. Other work in peripheral bovine mono-
cytes from healthy dairy cattle has shown upregulated gene expression at 24 h for inducible
nitric oxide synthase (iNOS/NOS2) and RANTES/CCL5 in bovine monocytes coordinated
by 1,25(OH)2D3, an effect that is greatly enhanced by concurrent LPS activation [169].
This study also showed CCL5, NOS2, and nitrite production increase in a dose-dependent
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manner for 1,25(OH)2D3 [169]. In a model utilizing PBMCs from calves vaccinated with M.
bovis-BCG, secondary exposure to M. bovis PPD and in vitro treatment with 1,25(OH)2D3
or 25(OH)D3 resulted in RANTES/CCL5 gene expression upregulation [174]. A recent
report has similarly shown induction of NOS2 by 1,25(OH)2D3 following LPS activation
and increased nitrite production [208].

Peripheral blood monocytes from healthy cows treated in vitro with 1,25(OH)2D3
increase expression of various β-defensins, including DEFB3, DEFB6, DEFB7, DEFB10,
along with NOS2, with the effect enhanced further in LPS stimulated cells [173]. Opposite
observations were seen in DEFB5, whose expression was reduced, and the effect enhanced
by LPS. This experiment used an 18 h timepoint, and a follow up experiment using a 4 h
timepoint shows peripheral blood monocytes upregulated all bovine β-defensin genes
investigated following treatment with 1,25(OH)2D3, indicating these cellular responses
are more robust early in antigen exposure. Recently, studies have shown PBMCs from
cattle at different stages of paratuberculosis infection do not have significantly different
levels of DEFB4 and DEFB7 expression, and there were no notable vitamin D3 induced
effects [67]. Infection status effects on expression of these β-defensin genes were also not
present in co-cultures of PBMCs and MDMs; however, in this model 1,25(OH)2D3 was
shown to significantly reduce DEFB7 in control and subclinical cows. In milk neutrophils,
LPS activation alone at 18 h increased transcripts of DEFB3, DEFB4, DEFB7, and DEFB10.
The authors further show that 1,25(OH)2D3 treatment of the mammary gland facilitates
upregulation of DEFB7 at 8 h in milk macrophages [173].

Follow up studies by Merriman et al. show direct treatment of mammary gland with
1,25(OH)2D3 in healthy cows upregulated expression of NOS2 and DEFB7 in total milk
somatic cells at 4 h following treatment [175]. When cows with subclinical mastitis had
their mammary gland treated with 1,25(OH)2D3, upregulation was enhanced further and
increased expression was observed for DEFB4 and DEFB7 along with NOS2, with a signifi-
cant treatment effect being seen by 24 h [175]. 1,25(OH)2D3 induces localized expression
of NOS2 in milk CD14+ cells and increased CCL5 in CD14- cells during experimentally
induced mastitis caused by S. uberis [172]. In a similar study, treatment of mammary gland
with 25(OH)D3 in cattle with LPS induced mastitis showed total milk somatic cells having
upregulated expression of NOS2, RANTES/CCL5, DEFB3, DEFB4, DEFB7, DEFB10, IL1B,
and IL8, with most effects being observed between 4–8 h following treatment [209]. Further
isolating the source of these responses, the authors showed milk macrophages expressing
significantly greater amounts of NOS2 transcripts when compared to untreated controls,
but the significant upregulation of other responses were sourced from neutrophils [209].
Another S. uberis induced model of mastitis has shown a resulting decrease in bacterial
load in the mammary gland, along with clinical symptoms, after directly treating the gland
with 25(OH)D3 following each milking [210]. Collectively, these studies may indicate that
the type of pathogen and its preferred tissue may heavily influence antimicrobial responses
facilitated by vitamin D3.

7.8. Macrophage Endosomal Trafficking

The desire to understand mechanisms of intracellular MAP survival have driven recent
studies to investigate the relationship between vitamin D3 and endosomal trafficking mark-
ers at different stages of Johne’s disease. 1,25(OH)2D3 and 25(OH)D3 have no significant
effects on early endosomal marker Rab5 expression in bovine MDMs; however, control cow
MDMs infected with live MAP and treated with either form of vitamin D3 experienced sig-
nificantly reduced Rab5 expression [200]. A notable observation was made in MDMs from
cows with subclinical and clinical paratuberculosis, which had significantly reduced Rab5
expression upon in vitro MAP infection when compared to MDMs from control cows. Late
endosomal marker Rab7 expression was consistently reduced by 1,25(OH)2D3 treatment in
MDMs from control and subclinical cows, regardless of in vitro MAP infection [200]. The
lack of downregulatory effect in clinical cows posits the question if 1,25(OH)2D3 treatment
has therapeutic potential for these animals, especially considering previous reports of
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animals in this severe stage of disease having reduced circulating 25(OH)D3. Expression of
endosomal markers in ileal macrophages from cows in different stages of paratuberculosis
have also been recently investigated. Rab5 expression in clinical cow macrophages was
shown to be significantly reduced compared to other groups [176]. Total macrophage
Rab7 expression was not different among groups, but when colocalized with intracellular
MAP subclinical cows showed no detectable association [176]. This may indicate MAP
employs virulence mechanisms during early infection to inhibit recruitment of Rab7 to the
intracellular compartment it is contained in, which would provide opportunity for MAP’s
replication and facilitation of the chronic subclinical phase. Further studies are needed to
fully elucidate MAP’s ability to interrupt the phagosomal maturation pathway and the role
vitamin D3 plays.

8. Conclusions

MAP is a stealthy intracellular pathogen that has proven difficult to study, as it
possesses several virulence factors that it seems to strategically deploy in response to its
immediate environment. Species differences in immune function make model selection
important when studying paratuberculosis pathogenesis. This is especially pertinent to the
bovine, whose antimycobacterial immune responses do not align with those observed in
humans. Specific mechanisms by which MAP hijacks protective immune responses in cattle
have yet to be fully elucidated and extensive work is required to understand MAP’s impact
on intracellular signaling dynamics of the endosomal trafficking pathway, particularly at
different stages of paratuberculosis.

Furthermore, there is a clear ability of vitamin D3 to modulate several immune re-
sponses in bovine macrophages and PBMCs, especially during MAP infection. This includes
regulation of pro-inflammatory mediators IL-1β, IL-12A, IFN-γ, and nitric oxide, along
with endosomal trafficking markers Rab5 and Rab7. Increased rates of MAP phagocytosis
are also evident in bovine macrophages treated with vitamin D3, accompanied by changes
in phenotypic markers CD80 and CD163. Additional work is needed to fully understand
vitamin D3 induced changes in T cell—macrophage crosstalk during infection and how
it contributes to resolution of infection both in vitro and in vivo, as supplementation dose,
vitamin D3 analogue, and stage of MAP infection may play a significant role.

Our conventional understanding of vitamin D3 signaling may expand the bounds
of classical VDR binding and interaction with VDRE-induced gene elements. Expression
of non-traditional, alternative VDRs at the cell surface may have downstream signaling
events that intersect with pathways that impact the host’s ability to deploy antimicrobial
tactics such as pro-inflammatory cytokine expression. Further analysis of vitamin D3
binding targets, such as membrane PDIA3, and its interactions with downstream signaling
pathways is essential to understand the complex dynamic of host responses to pathogenic
mycobacterial infection, particularly in cattle, and any implications it may have on clinical
stage paratuberculosis where cattle experience largely maladaptive immune responses.

Considerations of the host’s nutritional status on immune function adds another layer
of complexity to the host–MAP relationship but is necessary due to the nature of this disease
inducing intestinal inflammation. Further work investigating dietary supplementation
with 25(OH)D3 is needed to evaluate functional outcomes on health metrics such as serum
mineral levels and resolution or prevention of naturally acquired infections. Additionally,
studies that aim to determine at what in vivo 25(OH)D3 concentrations immune function
suffers from insufficiency or deficiency and benefits from supplementation would help
identify therapeutic potential of vitamin D3. Applying these data to investigate the impact
of vitamin D3 status on incidence, along with severity of paratuberculosis is necessary.
This knowledge could translate to real-world application for producers to implement
intervention strategies to positively impact the health of dairy cattle, ultimately resulting in
a more efficiently produced commodity.
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