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Abstract

Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy, and tumoural heterogeneity (TH) has been blamed for treatment
failure. The genomic and epigenomic atlas of EOC varies significantly with tumour histotype, grade, stage, sensitivity to chemotherapy and
prognosis. Rapidly accumulating knowledge about the genetic and epigenetic events that control TH in EOC has facilitated the development of
molecular-targeted therapy. Poly (ADP-ribose) polymerase (PARP) inhibitors, designed to target homologous recombination, are poised to
change how breast cancer susceptibility gene (BRCA)-related ovarian cancer is treated. Epigenetic treatment regimens being tested in clinical or
preclinical studies could provide promising novel treatment approaches and hope for improving patient survival.
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Introduction

Human epithelial ovarian cancer (EOC) is the most common
cause of death from gynaecological malignancy [1]. The standard
treatment for EOC involves cytoreductive surgery followed by
chemotherapy consisting of platinum and taxol. For high-grade
serous ovarian cancer (HGSOC), the most prevalent and aggres-
sive form of EOC, relapse is nearly the norm due because of the
development of resistance, although approximately 80% of
patients initially respond to treatment [2]. Tumoural heterogeneity
(TH) has been blamed for this treatment failure [3]. Gerlinger
and Swanton [4] reported that genetic TH fosters the develop-
ment of cancer drug resistance through Darwinian evolution,
which points to a promising therapeutic target for preventing the
evolution of more aggressive or resistant clones.

With the advent of next-generation sequencing in recent years,
EOC has been found to consist of a complex set of diseases. Diverse

genetic or epigenetic alterations that are of fundamental importance
in tumorigenesis and progression have been identified in heteroge-
neous subsets of patients [5]. For example, breast cancer susceptibil-
ity gene (BRCA) mutations are most commonly associated with
HGSOC [6]. Determining the molecular events that control this
tumour trait might advance our understanding of tumorigenesis and
facilitate individualized treatment strategies for this lethal disease.

Molecular portraits underlying TH of
EOC

Underlying the hallmarks of cancers is genome instability, which can
generate genetic diversity [7]. Genetic alterations can potentially
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upset the balance between proto-oncogenes and tumour suppressor
genes, leading to tumorigenesis. The existence of extensive cytoge-
netic, genetic and epigenetic variations has been reported in EOC cell
populations.

Numerical or structural chromosomal abnormalities are frequently
observed in almost all human tumours [7]. Rearrangement of 19q
has been identified in 61.6% of patients with ovarian cancer; such
rearrangements have been significantly correlated with high-grade
tumours, predicting shorter disease-free survival and worse overall
survival (OS) [8] (Table 1). Underrepresentation of 11p and 13q and
overrepresentation of 8q and 7p have been significantly correlated
with undifferentiated ovarian carcinomas [9]. Underrepresentation of
12p and overrepresentation of 18p are frequently identified in well-
and moderately differentiated ovarian tumours. Patients showing loss
of D6S1581 are more likely to be resistant to platinum-based
chemotherapy [10]. Gains of 14q32.33 have been associated with
platinum resistance and reduced progression-free survival (PFS) and
OS for patients with EOC [11]. Tumours exhibiting gain of 2p22-p25,
19p12-q13.1, and 20q12-q13 and loss of 5q14-q22 present a high
risk of recurrence. The OS of patients is inversely correlated with the
number of chromosomal alterations found in their tumours [12].
Gains at 5p are adversely associated with tumour recurrence [13],
and gains at 1p and losses at 5q are associated with a significant
decrease in recurrence. Loss at 6q24.2-26 is independently associated
with a cluster of patients with HGSOC showing longer survival [14].

Gene copy number variations generally result in the abnormal
expression of genes that are located within rearranged chromosomal
regions. Nonrandom gains and deletions of DNA copy numbers and
imbalances of alleles are frequently identified in ovarian tumours [15, 16].
Somatic copy number amplification is highly prevalent in high-grade
ovarian cancer, whereas somatic mutational activation of oncogenes is
a rare event, suggesting that the former is a common mechanism [17]
of oncogene activation in this tumour type [15]. In addition, variations
in gene copy number are specific to tumour histotypes, among which
serous is the most prevalent, followed by endometrioid, clear cell and
mucinous [17]. Mayr et al. [18] demonstrated that gains of FGF3/4
and CCNE1 occur in all serous carcinomas. Endometrioid carcinomas
most frequently show gains of JUNB, KRAS2, MYCN, ESR and CCND2.
Among serous borderline tumours, 80% exhibit amplification of FGFR1
and MDM2, and 75% show gains of PIK3CA (Table 1). By applying an
in silico hypothesis-driven approach to multiple datasets, Huang et al.
[17] found 76 cancer genes to be significantly altered in EOC, several
of which may be potential copy number drivers, such as ERBB2 in
mucinous tumours and TPM3 in endometrioid histotypes. In addition,
KRAS was observed to be significantly amplified in serous tumours,
although mutations are rare in such high-grade tumours. Copy number
variations can also predict a patient’s prognosis and response to treat-
ment. Patients showing PIK3CA amplification generally respond well to
treatment [19]. In contrast, amplification of 19q12 involving CCNE1 is
the dominant structural variant associated with primary treatment fail-
ure of patients with HGSOC [20, 21]. Amplification of AKT2 is fre-
quently identified in undifferentiated tumours and predicts a poor
prognosis[22]. Ovarian cancer cells that either constitutively overex-
press active Akt/AKT1 or exhibit AKT2 gene amplification are highly
resistant to paclitaxel compared with cells with low AKT levels [23].

Overexpression of KLK6 [24], EGFR [25], LMX1B [26], BMP8B and
ATP13A4 [27], because of gene amplification or high copy number
gains, is associated with worse PFS and OS in patients with ovarian
cancer. In contrast, an increased copy number of GAB2 is associated
with improved PFS and OS and correlates with enhanced sensitivity to
the dual PI3K/mTOR inhibitor PF-04691502 in vitro [27].

TP53 mutations are almost invariably present in HGSOC [15, 18,
20] (Table 1). The early loss of P53 function observed in sporadic
cancers could create a permissive environment for the loss of BRCA1
or BRCA2 function (or other phenotypes of DNA repair deficiency),
which would otherwise lead to apoptosis because of checkpoint acti-
vation [29]. Inactivation of BRCA1 and/or BRCA 2 is detected in 67%
of patients with HGSOC, which is markedly higher than in the other
histotypes of EOC [6]. However, only 7–9% of sporadic ovarian can-
cers exhibit BRCA1 [30] mutations leading to inactivation of BRCA1,
while 4% exhibit BRCA2 mutations [31]. HGSOC tumours only form
in animal models when all three of the BRCA, TP53 and PTEN genes
are altered, which suggests a synergistic role of these genes in
tumorigenesis [32]. Mutation in other genes, including FAT3, CSND3,
NF1, CDK12, RB1 and GABRA6, are also frequently identified in
HGSOC tumours [15]. Mutations in BRAF are restricted to serous bor-
derline tumours, indicating that the majority of serous borderline
tumours do not progress to serous carcinomas [33]. Activating KRAS
mutations are more common in mucinous tumours than in all other
histological types [17, 34], while no mucinous tumours have been
found to harbour a BRAF mutation [34]. Loss or dysfunction of mis-
match repair of gain-of-function PTEN [35] and PIK3CA [36] muta-
tions is common in endometrioid and clear cell carcinoma, but not in
serous or mucinous ovarian cancer [37]. Deletion of LRP1B in
HGSOC is associated with acquired resistance to liposomal doxoru-
bicin [38]. In addition to their histological implications, tumours with
BRCA mutations are more likely to be platinum-sensitive and associ-
ated with longer PFS and OS [39, 40]. Reversion of germline BRCA1
or BRCA2 mutations in individual patients or loss of BRCA1 promoter
methylation predicts resistance to platinum [20] and may also predict
resistance to PARP ((poly (ADP-ribose) polymerase) inhibitors
[41, 42].

Epigenetics is defined as heritable changes in gene expression
that do not alter the DNA sequence itself. The mechanisms responsi-
ble for such changes include DNA methylation, histone modification,
and microRNAs, which are related to post-transcriptional gene regula-
tion. Epigenetic alterations are increasingly being implicated in the
development and progression of ovarian cancer, and the gradual
accumulation of epigenetic alterations has been associated with an
advancing grade and stage of disease [43] (Table 2).

Methylation, which consists primarily of demethylation of oncoge-
nes and hypermethylation of tumour suppressing genes, is frequently
identified in ovarian cancer [44, 45]. Gene hypermethylation and satel-
lite and global DNA hypomethylation in ovarian tumours are both inde-
pendently associated with the degree of malignancy [46]. Satellite DNA
hypomethylation is significantly more prevalent in advanced-stage and
high-grade ovarian cancers and is an independent marker of poor
prognosis [47]. In addition to repetitive elements and DNA satellites,
hypomethylation of promoter CpG islands and gene overexpression
have been reported in ovarian cancer. CpG islands are DNA sequences
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containing CpG sites at an atypically high frequency [48] and are usu-
ally, but not exclusively, associated with gene promoters [49].
Demethylation of CpG islands in gene promoters generally allows
active gene transcription to occur [50]. As a result of hypomethylation,
re-expression of MCJ, SNCG, and BORIS and overexpression of
CLDN4, MAL, BORIS [45] and TUBB3 [44] have been associated with
chemoresistance in patients with EOC. As a result of promoter
hypomethylation [51], HOXA10 is overexpressed in ovarian clear cell
adenocarcinomas, but not in ovarian serous adenocarcinomas, normal
ovarian epithelia or endometrial cysts [53]. In addition, this overex-
pression in ovarian clear cell adenocarcinomas [52, 53] is associated
with poor survival [53] . DNA hypomethylation-mediated activation of
the LINE-1 [54] and CT45 [55] genes is correlated with high-grade and
advanced-stage EOC and associated with poorer PFS and OS.

Aberrant methylation of CpG islands in ovarian tumours is
associated with silencing of genes involved in the control of the
cell cycle, apoptosis and drug sensitivity as well as tumour sup-
pressor genes [56]. Hypermethylation of the MLH1 gene, accom-
panied by loss of gene expression, and methylation of hMSH2
are correlated with a higher histological grade and lymph node
metastasis of EOC [57]. In addition, methylation of the hMLH1
promoter has been identified in 56% of EOC patients with
acquired resistance to platinum-based chemotherapy [58-60], pre-
dicting a high risk of relapse and poor OS [59]. The methylation
rate of hMSH2 is significantly higher in endometrioid adenocarci-
noma tissues compared with other histological types of the dis-
ease [57]. Epigenetic silencing of ARMCX2, COL1A1, MDK and
MEST due to promoter hypermethylation at CpG sites has also
been linked to the development of platinum-based resistance in
ovarian cancer [60]. Methylation of DLEC1 is associated with
recurrence of HGSOC, independent of tumour stage and subopti-
mal surgical debulking [61]. Chou et al. [62] reported that hyper-
methylation of the FBXO32 promoter is more commonly observed
in advanced-stage ovarian tumours, and patients showing FBXO32
methylation exhibit significantly shorter PFS. Re-expression of
FBXO32 was demonstrated to markedly reduce proliferation,
increase apoptosis, and restore sensitivity to cisplatin in a plat-
inum-resistant ovarian cancer cell line both in vitro and in vivo.

BRCA1 and BRCA2 germline mutations are present in the majority
of patients with hereditary ovarian carcinoma [63], in contrast to the
frequency of these mutations detected in unselected patients, which is
only 15.3% [64]. The majority of ovarian cancers arise independently
of mutations in the BRCA1/2 genes [65]. BRCA1/2 alterations of all
kinds, including mutations, have been reported in up to 82% of ovarian
tumours [31]. The term ‘BRCAness’ has been used to describe the phe-
notypic traits that some sporadic ovarian tumours share with tumours
found in BRCA1/2 germline mutation carriers and reflects similar cau-
sative molecular abnormalities [66]. BRCAness appears to be the result
of different epigenetic processes. Recent data suggest that hyperme-
thylation of the BRCA1 promoter occurs in 10-15% of sporadic cases
and is associated with the serous histotype [67, 68]. BRCA2 can also
be down-regulated through silencing of its upstream regulator, FANCF,
by promoter methylation [69, 70]. Although patients with BRCA1/2
mutations and low protein/mRNA expression of BRCA1 tend to show a
favourable response to treatment[20] and a better outcome [40],

BRCA1 promoter methylation is significantly correlated with resistance
to treatment [20] and a poorer prognosis [68] in patients with EOC.
Thus, methylation is not functionally equivalent to a germline mutation
in mediating chemotherapy sensitivity. While methylation of BRCA1 is
common in sporadic ovarian cancer, it has not been reported in the
hereditary form of the disease or in samples from women with germ-
line BRCA1 mutations [71]. BRCA2 does not present a similar methyla-
tion profile in ovarian cancer [72].

DNA-associated histone proteins are subject to extensive mod-
ifications that mediate the assembly of transcriptionally permis-
sive or repressive (i.e., open or closed) chromatin. Chromatin
modifiers regulate the expression of different sets of genes
involved in tumorigenesis [73]. DNA methylation and histone
deacetylation often coordinately inhibit gene transcription [74].
However, histone modification is an independent mechanism of
epigenetic gene regulation under some conditions [75, 76].
H3K27m3 is a transcription-suppressive histone mark found in
chromatin in association with EZH2, a component of the Poly-
comb (PcG) complex [77]. In ovarian cancer, decreased expres-
sion of H3K27me3 is significantly associated with high-grade and
advanced-stage tumours, but not with the histological type [78],
predicting resistance to chemotherapy [79] and a poor clinical
outcome in ovarian cancer and other malignancies [78]. Removal
of H3K27 methylation was shown to lead to re-expression of the
RASSF1 tumour suppressor and resensitize drug-resistant ovarian
cancer cells to cisplatin; this increased platinum access to DNA
was likely due to relaxation of condensed chromatin [80]. Sirtu-
in1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent
deacetylase and a class III histone deacetyltransferase. The pro-
portion of SIRT1 expression is significantly higher in serous car-
cinoma compared with mucinous tumours. SIRT1 overexpression
is more common in early-stage serous carcinomas and is corre-
lated with longer OS compared with late-stage disease [81].
SIRT1 also facilitates the acquisition of drug resistance through
its influence on the tumour microenvironment, function in DNA
repair and promotion of cancer stem cell survival [82]. Thus,
SIRT1 is being considered as a possible target for overcoming
drug resistance in many malignancies.

Having been implicated in the initiation and progression of
human cancers, microRNAs regulate processes such as cell
growth, differentiation and apoptosis [83]. A variety of miRNAs are
associated with tumour subtype, stage, grade, therapy resistance
and prognosis in ovarian cancer [84] (Table 2). Up-regulation of
miR-205 [85] and miR-200a [86] and down-regulation of miR-101
[87] are significantly associated with a high pathological grade and
advanced stage of EOC in patients. In addition, patients with lymph
node metastasis show significant elevation of miR-200c [86].
Reduced expression of miR-34b*/c [88], hsa-miR-200a, hsa-miR-
34a and hsa-miR-449b [89] is frequently identified in advanced-
stage tumours. Hsa-miR-378 [89] and let-7i [90] are up-regulated
in patients who are sensitive to platinum; in contrast, miR-101,
[87] miR-30c, miR-130a and miR-335 [91] are down-regulated in
several resistant ovarian cancer cell lines, suggesting direct
involvement in the development of chemoresistance. MiR-214
induces cell survival and cisplatin resistance through targeting the
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30-UTR of the PTEN gene, which leads to reduced expression of
PTEN and activation of the Akt pathway [92]. Down-regulation of
miRNA-149 decreases the sensitivity of ovarian cancer cells to
paclitaxel treatment by increasing MyD88 expression [93]. MiR-197
is significantly increased in Taxol-resistant ovarian cancer cells
[94]. In addition, decreased expression of let-7i [90] and overex-
pression of miR-200a and miR-200c [86] are associated with
shorter PFS, suggesting their potential for predicting relapse. Over-
expression of miR-200, miR-141, miR-18a, miR-93 and miR-429
[95] is associated with improved OS, whereas high levels of hsa-
miR-27a, [89] let-7b and miR-199a [95] are potentially correlated
with a poor prognosis in patients with EOC.

Molecular targeted treatment

The rapid development of genetics and epigenetics has facilitated the
study of the molecular mechanisms of TH in EOC. This knowledge
has led to the introduction of novel treatments that are rationally
designed to target specific molecular factors implicated in tumour
growth (Table 3).

Dysfunction of BRCA1 and BRCA2 is associated with ovarian
cancer tumorigenesis, due to an inability to repair DNA double-
strand breaks (DSBs) [96]. The PARPs are a family of enzymes
involved in base excision repair, a key pathway in the repair of DNA
single-strand breaks (SSBs). PARP inhibition leads to the persistence
of spontaneously occurring SSBs and subsequent formation of DSBs,
as the SSBs stall and collapse replication forks. These DSBs cannot
be repaired by the defective HR pathway in BRCA-mutated cells,
resulting in cell death.

PARP inhibitors induce synthetic lethality in BRCA-deficient tis-
sues. BRCA1/2-deficient cancers are now recognized as the target of
a class of drugs known as PARP inhibitors. Deficiency of either PARP
or BRCA alone has no impact, but deficiency in both leads to a lethal
effect [97, 98]. Clinical investigation of the use of PARP inhibitors for
the treatment of EOC evolved rapidly from the observations of single-
agent activity conducted in vitro in BRCA-deficient cancer cells in
2005 to the initiation of multiple phase 3 studies in 2013. Ledermann
et al. [99] retrospectively analysed the data from a randomized, dou-
ble-blind, phase 2 study [100] and showed that patients with recur-
rent, platinum-sensitive serous ovarian cancer with a BRCA mutation
exhibit the highest likelihood of benefiting from olaparib, the first
human PARP inhibitor. Two phase III studies have been carried out to
test olaparib versus placebo as maintenance therapy for both newly
diagnosed and platinum-sensitive recurrent BRCA-associated ovarian
cancer [101]. In December 2014, olaparib was approved for the treat-
ment of patients with germline BRCA1/2-associated advanced ovarian
cancer who have received three or more lines of chemotherapy. This
approval represents the first ‘personalized’ therapy for ovarian cancer
[102]. Other PARP inhibitors that have been tested or are currently
being tested in clinical trials for ovarian cancer include veliparib, nira-
parib, rucaparib and BMN673 [101]. In addition to ovarian cancer,
PARP inhibitors have shown encouraging in for other BRCA1/2 muta-
tion-related cancers, such as breast cancer [103], endometrial cancer
[104], prostate cancer [105] and pancreatic cancer [106]. Future and

ongoing trials will identify the most effective role of these agents for
use in human cancer treatment.

The signalling cascade involving PI3K, AKT and mTOR plays a key
role in mediating cell proliferation and survival and is one of the path-
ways that is frequently affected in human cancer [107]. Various genetic
alterations that activate PI3K/AKT/mTOR signalling have been identi-
fied in ovarian cancer [108]. In a previous study, we demonstrated that
PI3K/AKT/mTOR pathway activation is associated with significantly
higher migratory and invasive capacities in subpopulations of human
ovarian cancer cell lines [109]. Thus, this pathway is regarded as an
attractive candidate for therapeutic interventions against EOC, and inhi-
bitors targeting different components of the pathway are in various
stages of clinical development. Thus far, results have been published
only for a phase I trial of an AKT inhibitor, perifosine [110], and a phase
II trial of an mTORC1 inhibitor, temsirolimus [111]. Perifosine plus
docetaxel appears to be effective in patients with mutational activation
of the PI3K/AKT pathway [110]. A phase II clinical trial is currently
being conducted to investigate the efficacy of perifosine as well as the
association between PIK3CA status and the response to treatment in
patients with recurrent gynaecological malignancies, including ovarian
cancer. In a GOG phase II trial, [111] temsirolimus monotherapy
showed modest activity in persistent or recurrent EOC and primary
peritoneal cancer, and PFS was just below that required to warrant the
inclusion of unselected patients in phase III studies. Based on these
results, a phase II trial is currently being conducted specifically target-
ing ovarian clear cell carcinoma, which often exhibits PI3K/AKT/mTOR
activation [108]. This trial is aimed at examining the use of tem-
sirolimus in combination with carboplatin and paclitaxel, followed by
temsirolimus consolidation, as a first-line therapy for patients with
ovarian cancer, and its results appear promising.

Because genetic alterations are almost impossible to reverse, the
potential reversibility of epigenetic mechanisms makes them more
attractive candidates for the prevention and treatment of ovarian carci-
noma [112]. There are two types of DNA methylation inhibitors
(DNMTIs): nucleoside and non-nucleoside analogues [44]. Nucleoside
analogues, such as cytarabine and decitabine, can inhibit methylation
when they are integrated into DNA and block the release of DNA
methyltransferases by forming a covalent complex with these enzymes
[113]. Cytarabine has been reported to induce re-expression of hMLH1
and reverse drug resistance in human tumour xenografts through
demethylation of the hMLH1 promoter [114]. Zebularine can also
induce demethylation of hMLH1 and RASSF1A and resensitize drug-
resistant cell lines to cisplatin [115]. The ability of azacitidine and deci-
tabine to reverse platinum resistance in ovarian cancer patients has
been preliminarily confirmed in two clinical trials [116, 117].

Inhibitors of histone deacetylation (HDACIs) represent another
promising new class of anticancer agents. Among the currently avail-
able HDACIs, four have been tested in ovarian cancer, including
vorinostat, romidepsin, valproate and PXD101. Vorinostat and romi-
depsin have both been approved by the FDA for the treatment of cuta-
neous T-cell lymphoma. Both agents, in combination with cytotoxic
agents, have shown significant activity in inhibiting ovarian cancer cell
growth in preclinical studies [118–120]. However, in a phase II study,
vorinostat displayed minimal activity as a single agent for treating
persistent or recurrent epithelial ovarian or primary peritoneal carci-
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noma, despite its acceptable tolerability [121]. A phase II trial examin-
ing the use of romidepsin for the treatment of ovarian cancer is ongo-
ing [122]. Valproate exhibits direct HDACI activity, although the
associated mechanisms of action remain unclear. Valproate is effec-
tive in sensitizing ovarian cancer cells to cisplatin and resensitizing
cisplatin-resistant cells, both alone and in combination with other
drugs [123, 124]. PXD101 can increase the acetylation of A-tubulin
induced by docetaxel and the phosphorylation of H2AX induced by
carboplatin. In addition, this drug can effectively reverse drug toler-
ance in both in vitro and in vivo models of ovarian cancer [125].

DNA methylation and histone modifications are intimately linked
[74]. Hence, combining two classes of epigenetic drugs, DNMTIs and
HDACIs, with conventional therapies may be a more effective
approach in the clinic [126].

The dysregulation of miRNA expression in tumours makes miRNAs
another potential therapeutic target, necessitating the specific identifi-
cation of genes that are targets of miRNA regulation. The overexpres-
sion of miRNAs that act as oncogenes can be targeted for down-
regulation through the use of anti-miRNA oligonucleotides, miRNA
masking, miRNA sponges or small molecule inhibitors. In contrast,
restoring the activity of tumour suppressor miRNAs can inhibit prolif-
eration and induce apoptosis of tumour cells, and miRNA mimics are
applicable under these conditions [127]. Several clinical trials have
been initiated to test the efficacy of miRNA-based therapeutics for the
treatment of leukaemia, prostate cancer, and skin cancer [128] . As for
ovarian cancer, this therapeutic approach is still at a preclinical stage
to the best of our knowledge. Having identified miR-124 as a potential
tumour suppressor that can functionally target the p27/myc/phospho-
Rb protein signature, Seviour et al. [129] demonstrated that nanoparti-
cle-mediated delivery of miR-124 can reduce tumour growth and sen-
sitize cells to etoposide in a xenograft model. These findings present
an exciting opportunity for the potential therapeutic use of miR-124 in
combination with chemotherapy in patients with late-stage EOC.

Conclusions

Epithelial ovarian cancer is a heterogeneous disease. As discussed
above, the genomic and epigenomic atlas of EOC varies significantly
with tumour histotypes, grades and stages as well as with a patient’s
prognosis and sensitivity to chemotherapy. The rapidly increasing
knowledge about the genetic and epigenetic events that control TH in
EOC is facilitating the development of molecular targeted therapy.
PARP inhibitors, which are designed to target HR, are poised to
change how BRCA-related ovarian cancer is treated, representing the
first ‘personalized’ therapy for ovarian cancer. Epigenetic treatment
regimens being tested in preclinical or clinical studies are giving rise
to optimism regarding the improvement of patient survival and may
also provide promising novel treatment approaches.
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