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SUMMARY

To achieve net-zero emissions, a particular interest has been raised in the electro-
chemical evolution of H2 by using catalysts. Considering the complexity of
designing catalyst, we demonstrate a data-driven strategy to develop optimized
catalysts for H2 evolution. This work starts by collecting data of Pt/carbon cata-
lysts, and applying machine learning to reveal the importance of ranking various
features. The algorithms reveal that the Pt content and Pt size have the greatest
impact on the catalyst overpotentials. Following the data-driven analysis, a
space-confined method is used to fabricate the size-controllable Pt nanoclusters
that anchor on nitrogen-doped (N-doped) mesoporous carbon nanosheet
network. The obtained catalysts use less platinum and exhibit better catalytic ac-
tivity than current commercial catalysts in alkaline electrolytes. Moreover, the
data formed in this work can be used as feedback to further improve the data-
driven model, thereby accelerating the development of high-performance
catalysts.

INTRODUCTION

To meet the growing energy demand and achieve the net-zero emissions, hydrogen energy has received

widespread attention due to the high calorific value and pollution-free characteristics of H2 (Kibsgaard and

Chorkendorff, 2019; Staffell et al., 2019). Especially, using the electricity generated by solar and wind power

to electrolyze water paves the way for the large-scale application of H2 (Buttler and Spliethoff, 2018; You

and Sun, 2018). The H2 evolution reaction (HER) is a key step in the water splitting, whose efficiency and

energy consumption are restricted by the performance of the catalyst. Therefore, the development of high-

ly active, stable and low-cost catalysts is essential to promote the hydrogen energy applications (Seh et al.,

2017; Zhu et al., 2020).

Currently, themost used HER catalysts are Pt-basedmaterials, andmany factors have been involved in their

optimization (Xu et al., 2018). Owing to the scarcity and the high price of Pt, its usage should be reduced as

much as possible under the premise of ensuring the catalytic effect (Li et al., 2019). To balance the catalytic

activity and the cost, researchers used to reduce the metal size to nanometer to achieve the maximum ef-

ficiency of atoms (Zhang et al., 2021). However, the nanosized catalysts need to be supported on a support

such as the carbon material to maintain the reaction stability and improve the charge/mass transfer (Yang

et al., 2020; You and Sun, 2018). Overall, all these factors, for example, Pt content, Pt size, the physical, and

chemical properties of the carbon support, impact the actual performance of HER catalysts (Liang et al.,

2019). Not to mention the current density and the selected electrolyte in the actual tests (Liang et al.,

2020; Zheng et al., 2016). Faced with numerous influencing factors, different researchers have their own fo-

cuses, such as enhancing the intrinsic catalytic activity by controlling the crystalline or atomic state of Pt, or

improving the reaction efficiency by constructing elaborate carbon support nanostructures (Wan et al.,

2020; Lai et al., 2016; Suliman et al., 2019). These studies do drive the improvement of catalysts, yet only

a limited number of features can be observed in the separate experiments. In addition, there is a lack of

continuous improvement of the catalyst-design process. Therefore, it is challenging to construct a research

framework that can achieve a more comprehensive analysis of the catalyst system and enable a continuous

evolutionary upgrade.

For the complex system of catalyst, a promising problem-solving strategy is to change the research para-

digm from experience/theory-driven to data-driven (Butler et al., 2018; Li et al., 2020; Tran and Ulissi, 2018;

Zhu et al., 2021). Especially, the data-driven machine learning (ML) methods are rising in the field of catalyst
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design (Lin et al., 2020; Sun et al., 2020; Wu et al., 2020). The typical ML-based research is to analyze the

input data (the features of materials) and the output data (the research targets) by the algorithms, and their

intrinsic relationship can be obtained without the need to fully understand the physical and chemical mech-

anisms (Li et al., 2020; Lu et al., 2020). The difficulty of this strategy lies in how to obtain the appropriate data

and how to select the suitable evaluation descriptor (Batra, 2021; Toyao et al., 2020). For the input, the char-

acteristics of the support and the test conditions are missing in most cases. The supplement of this part of

information can enhance the ability of ML to analyze the HER catalyst systems. For the output, most of the

existing studies use descriptors such as hydrogen adsorption energy as the label/target. These types of

descriptors can indeed reflect the intrinsic properties of materials, yet they do not have the simple linear

relationship with the catalyst-measured performance. If the performance criteria, for example, overpoten-

tial (h), are directly used as the output target, the application potential of the catalysts can be evaluated

more efficiently and accurately.

Another challenge of data-driven catalyst development is how to obtain the target materials designed by

the algorithms. To this regard, we need a universal synthesis approach to achieve the control of Pt particle

size, loading amount, and other parameters. At the same time, the properties of the carbon support need

to be considered. At least, the carbon support should form a stable anchoring state with Pt nanoparticles,

ensuring the stability of the H2 evolution (Tavakkoli et al., 2017). In addition, the architecture of the carbon

matrix should be adept with the gas-solid-liquid interfaces when HER happens (Zhu et al., 2019). Moreover,

the parameters such as the microstructure and surface state of the support should be controllable in order

to follow the data-driven models.

Integrating intelligent analysis and controllable synthesis, we propose a data-driven research framework to

develop the high-performance HER catalysts. In this work, we collect data from the reported researches

and apply ML algorithms to design the catalysts that are suitable for catalyzing HER. According to the

algorithm analysis, an N-doped mesoporous carbon nanosheet network (NMC) is fabricated by the salt

template method and used as the support to realize the controllable preparation of Pt nanoclusters

(�1 nm). The electrochemical tests show that the catalytic performance of the obtained composite

(Pt@NMC) in alkaline electrolyte is superior to that of the commercial Pt/C. Moreover, the new data

from this work can be used as a supplement to the original database, thus forming a closed-loop framework

to accelerate the discovery of HER catalysts.

RESULTS AND DISCUSSION

Data mining and machine learning

Firstly, we established a research pipeline from initial data mining to final catalyst performance evaluation

(Figure 1A). The start of this pipeline is the data mining/collection. In this step, we extracted the test results

from real experiments covering as many influencing factors as possible. As the result, more than 200 sets of

Pt/C catalysts for HER were collected from hundreds of published papers. For each sample, the features

include the characters of Pt (e.g. content and particle size), the details of carbon support (e.g. specific

surface area, N-doped level, ID/IG, and pore volume), the information of test system (e.g. electrolyte,

test current density, and mass loading), and the corresponding catalytic performance (e.g. overpotential,

mass activity, turnover frequency). Also, it needs to be mentioned that the data collection cannot cover all

influence factors, which leaves room for future completion. All these data were available in the supple-

mental information (Data S1. Database of Pt/C catalysts, Related to STAR Methods).

With the database derived from the real experiments, the features were screened according to the existed

scientific understanding. For the part of Pt, two main features were remained, that is, Pt content (Pt_wt) and

Pt particle size (Pt_size). Because Pt is the active component that directly catalyzes HER, its content is one of

the most important factors (Kibsgaard and Chorkendorff, 2019; Buttler and Spliethoff, 2018). Meanwhile,

the particle size of Pt greatly impacts the number of active sites and the catalytic stability (Seh et al.,

2017; Xu et al., 2018). Considering the interaction between Pt and its carbon support, two features relating

to the carbon matrix were picked up in this research, that is, the specific surface area (surface_area) and

N-doped content (N_doped). During the catalytic reaction, these factors affect the active site distribution,

the catalytic center, and the charge/mass transfer processes (Yang et al., 2020; Zhu et al., 2019). Addition-

ally, the electrochemical testing conditions should be taken into consideration, especially the pH of elec-

trolyte (pH) and the externally applied current (current_density). The former influences the reaction mech-

anism on the catalyst surface in HER, while the latter affects the consumption of internal resistance and the
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catalytic efficiency (Xu et al., 2018). There is no further processing on these features, such as principal

component analysis, because of two reasons: (1) the number of selected features is small, a stricter

screening will reduce the universality; (2) it can improve the interpretability of the model in the consequent

analysis. For the output target, there are several candidates, such as overpotential, Tafel slope, and charge

transfer resistance (Rct) from EIS data (Figure S1). In general, Tafel slope represents the kinetic process of

catalysis; Rct indicates the charge transfer ability of the system. Comparing with these indicators, the over-

potential in the actual test directly reflects the catalyst performance, and is chosen as the output target in

this study (Kibsgaard and Chorkendorff, 2019; Staffell et al., 2019). These data of ML were summarized in

the supplemental information (Data S2. Dataset of Pt/C catalysts used in ML models, Related to Figure 1),

whose dimensions were reduced by the t-SNE algorithm for the visualization (Figure 1B).

Given the input features and the output target, we can find that the relationships between the factors and

the overpotential are non-linear (Figure S2). For this complex system, the Tree-based PipelineOptimization

Tool (TPOT) was applied for the following analysis. TPOT is a kind of automated ML (AutoML) tool that al-

lows researchers to automatically perform repetitive steps in ML cases (Olson et al., 2016). More impor-

tantly, TPOT can create a benchmark to act on the complex tasks in a standardized manner (Chen et al.,

2020). We divided the database to 80% training set and 20% test set, and run TPOT to explore thousands

of possible models and find the best one for our data (the details were described in the experimental sec-

tion). After the TPOT optimization, the selected algorithm was Gradient Boosting Regressor, and the spe-

cific parameters were listed in Table S1. Using the optimized ML model, the high prediction accuracy can

Figure 1. The research pipeline and the machine learning process

(A) Schematic diagram of data-driven H2 evolution catalyst development research pipeline.

(B) The collected data was conducted dimensionality reduction by t-SNE.

(C) Machine learning results processed by TPOT algorithm.

(D) The Shapley value (SHAP) of each feature in optimization algorithm.

(E) Heatmap showed the influence of Pt_wt and Pt_size on overpotential: the overpotential was in the form of reciprocal

(h�1), and the dotted box pointed by the finger was the zone of best performing samples.
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be achieved: the r2 score is 0.99 for the training set and 0.97 for the test set (Figure 1C). Meanwhile, the

results of mean squared error (MSE) and the mean absolute error (MAE) were listed in Table S2. Because

we have included the overpotential under various current densities in the database, the numerical value of

the overpotential fluctuates largely; thus, the MSE and MAE are relatively high. In addition, the score and

the relative errors for training and test dataset during the training progress were plotted in Figure S3. To

further verify the reliability of the algorithm, we carried out K-fold cross-validation, whose results prove that

the division of datasets does not affect the regression score of the selected ML model (Table S3).

Owing to their ‘‘black box’’ characteristics, the ML-based researches often face the problem of explanatory

(Butler et al., 2018; Li et al., 2020). Herein, we adopted a method derived from the game theory, namely

SHAP (Shapley additive explanations), to explain the obtained ML results (Lundberg and Lee, 2017).

When analyzing a multi-feature system, the Shapley value can be used to calculate the contribution of

each feature to the final output (Lundberg et al., 2020). The SHAP analysis of this study was plotted in a hon-

eycomb diagram (Figure 1D). In general, the SHAP values of the selected features present three types of

distribution. Regarding the catalyst itself (Pt_wt and Pt_size), their influence patterns on the output of h

are complicated. In the series of Pt_wt, for samples with high feature values, their Shapley values tend to

be in the low-value area, which means that high Pt content corresponds to low overpotential and high cat-

alytic activity (Figure S4A). This phenomenon fits our general intuition. However, in several cases (such as

the catalyst using single Pt atoms), the samples with low loading of Pt exhibit high activity. These seemingly

contradictory data once again prove the complexity of the catalyst system. For the test conditions,

the distinction of their SHAP values distribution is significant, meaning that these two factors (pH and

current_density) had the clear influence on the catalytic activity. Taking the pH as an example, in general

trend, the higher pH corresponds to the higher SHAP values, suggesting that the alkaline environment

tended to increase the overpotential (Figure S4B). Considering that the most used electrolytes in the cur-

rent industrial hydrogen production are alkaline, improving catalyst activity in high pH environments is a

meaningful challenge (Holladay et al., 2009). Compared with the aforementioned features, the SHAP values

relative to the carbon support (surface_area and N_doped) are more concentrated in the central area, sug-

gesting that their contribution to catalytic activity is relatively low. We calculated the absolute value of each

SHAP value and counted their average to obtain the impact of each feature (Figure S5). The larger the

average value, the higher the weight of the feature influence on the output. Obviously, Pt_wt and Pt_size

share the most prominent factors related to the active material. In addition, the weight of current density is

significant, whose impact is higher than that of the electrolyte properties.

To provide guidance for consequent synthesis, we extracted the most critical features and combined

them with the overpotential to form a heatmap (Figure 1E). To make the results more intuitive, the recip-

rocal of overpotential (h�1) was used as the basis for plotting: the higher the h�1, the better the catalyst

activity of Pt/C. When generating the heatmap, the algorithm will homogenize the values of adjacent re-

gions and cause some regions presenting the values less than 0. Because the h�1 less than 0 have no

physical meaning, we removed them of the display and plotted Figure 1E (the heatmap with automati-

cally default range was shown in Figure S6). As the results, the range of the ‘‘better performing’’ Pt con-

tent is between 10 wt % and 25 wt %; for the feature of Pt_size, the particle sizes of below 2 nm have the

greatest potential. Similarly, for the carbon support, the heatmap was constructed by surface_area,

N_doped, and h�1. Because the distributions of N_doped and surface_area in the database are concen-

trated, only some local optimization areas are founded, such as 500–1200 m2 g�1 for surface_area and

5–12 wt % for N_doped (Figure S7).

Controllable synthesis

On the basis of ML results, we aimed to prepare samples that fit the intelligent guidelines. To this regard, a

carbon space-confined strategy was developed to fabricate content-controllable and size-controllable

nano-Pt (Figure 2A). Firstly, a nitrogen-doped mesoporous carbon nanosheet network (NMC) was pro-

duced by using water-soluble salts as the templates (Zhu et al., 2015). The obtained NMC has two types

of pores: (1) the macropores (1–2 mm) derived from NaCl contribute to its 3D network architectures; (2)

the mesopores (5–10 nm) caused by NaSi2O3 are evenly distributed on the wall of the macropores (Figures

2B and S8). Both TEM observation and the two-dimensional (2D) peaks in Raman spectrum (Figure S9)

prove the ultrathin characteristics of the carbon nanosheets. Next, the obtained NMC adsorbed Pt ion

precursors by an immersion step, and these ions were reduced by following high-temperature annealing.

During this process, Pt atoms went through a limited agglomeration process in the ultrathin carbon
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nanosheets, and converted to nanoclusters without damaging the original structure of NMC (Figure 2C).

Moreover, STEM indicates (Figure S10) that Pt elements are evenly distributed in the carbon matrix, and

HRTEM (Figures 2D and S11) reveals that the Pt nanoclusters with controllable size (�1 nm) are anchored

on NMC to obtain the target composite (noted as Pt@NMC).

We further characterized the structure and composition of the Pt@NMC samples. X-ray diffraction peaks

verify the removal of salt and the successful introduction of Pt (Figure S12). TGA results (Figures 2E and

S13) show that the increase of the Pt precursor concentration (0.01M, 0.02M, and 0.03M) during the immer-

sion results in the increased Pt content (4.6 wt %, 7.7 wt %, and 13.3 wt %) in the composites. When the

concentration reached 0.05M (5Pt@NMC), the loaded Pt content is 21 wt % that is close to the value of com-

mercial Pt/C catalyst (20 wt %). All these prove that the Pt content is controlled within the optimal range by

the NMC space-confined strategy. Besides, X-ray photoelectron spectrum (XPS) (Figure 2F) demonstrates

that the co-existence of Pt0 and Pt2+ in the metal nanoclusters leads to higher intrinsic catalytic activity than

common Pt nanoparticles (Wan et al., 2020). Meanwhile, the N-doped contents in the carbon matrix, intro-

duced by the decomposition of urea, are between 6.3 wt % and 10.4 wt %. This heteroatoms doping has two

benefits: (1) forming a stable complex structure with Pt ions during immersion step (He et al., 2013; Ying

et al., 2017); (2) increasing the wettability of Pt@NMC with aqueous electrolytes (Wang and Xiao, 2018).

Meanwhile, the ratio of D peak (�1350 cm�1) to G peak (�1580 cm�1) in Raman results, noted as ID/IG,

can be used to characterize the crystallinity of carbon matrix (Zhu et al., 2015). The ID/IG of NMC is calcu-

lated to 0.98, and these values of the Pt@NMC samples are stable in the range of 0.91–0.99 (Table S4), indi-

cating that the introduction of Pt does not significantly affect the crystallinity of the carbon matrix. Further-

more, the high specific surface area of NMC (864 m2 g�1) is kept in Pt@NMC (ranging from 516 to 641 m2

Figure 2. The synthesis of Pt@NMC catalysts

(A) Schematic diagram of controllable synthesizing Pt@NMC catalysts.

(B) SEM image of NMC (the scale bar is in the figure).

(C) TEM image of Pt@NMC (the scale bar is in the figure).

(D) TEM image of Pt nanoclusters and mesopores in Pt@NMC (the scale bar is in the figure).

(E) TGA results of Pt@NMC samples.

(F) XPS results of Pt@NMC samples.

(G) N2 adsorption-desorption isotherm of NMC and the series of Pt@NMC.

(H–L) (H) Schematic diagram of Pt nanoclusters evolution in Pt@NMC and (I-L) corresponding TEM images (the scale bar is in the figure).
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g�1) (Figure 2G and Table S5). The pore size distribution, consistent with the TEM characterization, shows

the existence of mesopores (�10 nm) in Pt@NMC (Figure S14), which are derived from the Na2SiO3 tem-

plate during fabricating NMC (Zhu et al., 2015). Thanks to these high surface areas and abundant meso-

pores, the open architecture of Pt@NMC is beneficial to not only the diffusion of electrolyte ions but

also the rapid escape of gas (Lai et al., 2016; Suliman et al., 2019).

To understand the space-confined effect of NMC in synthesis, we studied the morphological evolution of

Pt@NMC in various precursor concentrations (Figures 2H–2L and S15). The nanosized Pt formation can be

summarized as that the Pt ions in NMC are reduced and agglomerate into nanoclusters at high tempera-

tures. During this process, the limited space constructed by the unique structure of NMC should be taken

into account. Thus, the Pt agglomeration is confined by two aspects: (1) the 2D properties of the carbon

nanosheets hinder the motion of Pt on the vertical scale (Zhu et al., 2017); (2) the mesopores in NMC block

the long-range horizontal movement of Pt atoms. Combining these two space-confined effects, the final

size of Pt is effectively regulated at about 1 nm (from 0.88 to 1.07nm), even though the Pt content is elevated

by adding the precursor concentration (Figures 2I–2L and S16).

In addition to Pt content and Pt particle size, our method can also control other key parameters. For

example, the N-doped level can be adjusted by changing the relative content of urea. In the preparation

of the control sample, the mass ratio of glucose to urea is changed to 1:1, 1:0.5, and 1:0.1, the N-doped

content of the corresponding product is 10.4 wt%, 8.2 wt%, and 5.8 wt% (Figure S17). The last two sam-

ples were named as Control-1 and Control-2, respectively. Their microstructures, N-doped contents, and

Pt loading amount were summarized in Table S6. Indeed, there is not a simple linear relationship be-

tween the raw materials and the composition of products, and the specific fine-tune needs follow-up

research.

Catalyst performance evaluation

The electrocatalytic properties of Pt@NMC were evaluated in both alkaline and acidic solutions. For polar-

ization curves tested in 1.0 M KOH, the catalytic activities of Pt@NMC samples gradually elevate with the

increase of Pt content, yet such performance improvement shows the diminishing marginal benefit (Fig-

ure 3A). When the current density is 10 mA cm�2 (a common test standard), the overpotential of 3Pt@NMC

is 22 mV lower than that of commercial Pt/C (29 mV), and the Pt load of the former is only two-thirds of the

latter. At high current density (100 mA cm�2), the performances of Pt@NMC (e.g. 190 mV of 3Pt@NMC and

184mV of 5Pt@NMC) still exceed their commercial comparison (218mV of Pt/C). Tafel slope of 3Pt@NMC is

calculated to be 44 mV dec�1, lower to that of Pt/C (46 mV dec�1), demonstrating the faster HER reaction

kinetics of Pt@NMC (Figure 3B). Unsurprisingly, NMC exhibits the poor catalytic activity due to the absence

of Pt. In the acidic electrolyte, Pt@NMC samples still have the high activity, such as achieving the overpo-

tential of 125mV at 100mA cm�2 for 3Pt@NMC. Yet, in contrast with alkaline, the performances of Pt@NMC

in 0.5 M H2SO4 do not exceed that of the commercial Pt/C (Figure S18). The Tafel slopes indicate that the

catalytic kinetic process of Pt/C is faster than that of Pt@NMC in acidic system (Figure S19). On the whole,

the enhancement effect of Pt@NMC catalyst is more prominent in alkaline solution which had the potential

for industrial production (Holladay et al., 2009).

To explore the merits of Pt@NMC in alkaline electrolyte, the in-depth electrochemical analyses were adop-

ted. Cyclic voltammetry (CV) curves at various scan rates within the non-Faraday potential zone were

applied to calculate the electrochemical active area (ECSA) of Pt@NMC (Figure 3C) (Voiry et al., 2018).

The double-layer capacitance (Cdl) of 3Pt@NMC is 81 mF cm�2, which is the highest of various samples

and almost double of the commercial Pt/C value (45 mF cm�2). The ultrafine Pt nanoclusters and the carbon

support with large surface area contribute to such high Cdl, corresponding to more active sites. In Nyquist

plots recorded at the overpotential of 30 mV (vsRHE), both 3Pt@NMC and Pt/C present the typical semi-

circle for catalyzing HER (Figure 3D). As shown in the Bode plot of |Z| vs. log f (Figure 3E), 3Pt@NMC shows

the similar impedance value with Pt/C in the high-frequency region, indicating that they have approximate

impedance caused by the test system and the electrolyte (Re); in low-frequency region, the lower imped-

ance of 3Pt@NMC indicates the faster charge transfer process (Rc). Besides, the chronoamperometric (CA)

tests identity that 3Pt@NMC retain 68% of the initial current density, yet the Pt/C only remain 49% after 10 h

testing (Figure S20), proving the better stability of 3Pt@NMC. To sum, faster catalytic kinetics, larger

electrochemical active area, and smaller charge transfer resistance contribute to the excellent catalytic per-

formance of Pt@NMC in alkaline electrolyte (Figure 3F). Overall, we summarized the main indicators (e.g.
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activity, cost, stability) of 3Pt@NMC and the commercial Pt/C into a radar chart to demonstrate the compre-

hensive advantages of data-driven design catalysts (Figure 3G).

To analyze the relation of each factor and the overpotential, we performed a separate fitting analysis of the

features and the overpotentials of Pt@NMC. As shown in Figure S21, the Pt content (Pt_wt) shows a certain

correlationwith the overpotential since their correlation coefficient reached 0.54, which is higher than that of

N_doped and surface_area.Meanwhile, by studying the control group samples, we illustrate the complexity

of the Pt/C system (Figures S22 and S23). Specifically, Control-1 has a higher Pt content (11.6 wt %) than that

of 2Pt@NMC (7.7 wt %). Yet, the surface area (488.9 m2 g�1) andN-doped content (8.2 wt %) of Control-1 are

lower than that of the corresponding features of 2Pt@NMC (601.2 m2 g�1 and 10.0 wt %). Tested in KOH,

2Pt@NMC and Control-1 show similar catalytic activities. As a comparison, 2Pt@NMC and Control-2 have

similar Pt content. However, the surface area and N-doped content of Control-2 are lower than that of

2Pt@NMC, leading to its weaker catalytic performance. These data prove the complex characteristic of

the catalysts with various features. Even so, the correlation coefficient between Pt content and overpotential

still exceeds the values of other factors, which is in line with the results of the ML analysis.

Figure 3. The catalytic properties of Pt@NMC in alkaline electrolyte

(A) Linear sweep voltammetry (LSV) curves of Pt@NMC and the commercial Pt/C.

(B) Tafel plots of Pt@NMC and the commercial Pt/C.

(C) Capacitive currents vs. scan rates of Pt@NMC and the commercial Pt/C.

(D) Nyquist plots of 3Pt@NMC and the commercial Pt/C.

(E) Bode plots of |Z| vs frequency for 3Pt@NMC and the commercial Pt/C.

(F) Schematic diagram of enhanced HER reaction of Pt@NMC.

(G) Radar chart for comparing the comprehensive performances of 3Pt@NMC and the commercial Pt/C.
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Prediction and data-feedback

Now that we have the data of the prepared materials, the ML methods could be conducted again. By

entering the characteristics of Pt@NMC, the algorithm optimized by TPOT could predict their corre-

sponding catalytic performance (Figure 4A). In general, the predicted hPred and the actual hExp were

roughly linear, but there is a certain degree of errors (Table S7). In this study, the experimental and pre-

dicted values of Pt@NMC are close in the acid electrolyte. For example, for 3Pt@NMC in acid electrolyte

(pH = 0.3), the error is 3.9% at 10 mA cm�2 and 8.9% at 50 mA cm�2. In contrast, in alkaline electrolytes,

the error is relatively large (Figure 4B). There are two reasons for this difference. On the one hand, there

are less alkaline data in the original database, and the lack of data makes the algorithms have a large

error in the prediction results. On the other hand, the Pt@NMC samples do show above-average perfor-

mance in alkaline solution, and they can use less Pt loading and achieve better catalytic performance

than the commercial Pt/C. If we observe the commercial Pt/C, the gap between the real and the predic-

tion is not large, for example, the predicted value (134 mV) is not far from the measured value (118 mV) at

50 mA cm�2 (Figure 4C), meaning that the commercial catalyst is close to the average properties of the

Pt-C catalyst system. In addition to these two reasons, the limitations of the ML model also introduce

errors. Because only six features were selected, our model cannot cover all the material characteristics

to analyze the Pt/C catalysts.

The whole picture of Pt/C HER catalysts was plotted in Figure 4D, which contained the data of over 200 Pt-

based catalysts and Pt@NMC. The vertical and horizontal axes in the plot are the reciprocal of the overpo-

tential and the Pt content, roughly reflecting the catalytic activity and the cost of the materials. Specifically,

the data-driven designed catalysts (Pt@NMC) are in the upper left corner of all data, i.e. it had the merits of

both higher catalytic activity and lower cost. Furthermore, we combined the data of this work with the

Figure 4. The closed-loop of the data-driven catalyst design

(A) Comparison of the catalytic overpotential predicted by ML and the actual value from experiment tests for Pt@NMC

and the commercial Pt/C.

(B) Comparison of predicted LSV curves and actual data for 3Pt@NMC.

(C) Comparison of predicted LSV curves and actual data for the commercial Pt/C.

(D) Performance comparison for the data from the original database and Pt@NMC.

(E) Schematic diagram of research closed-loop from data mining to catalyst evaluation.
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original database and analyzed the importance of each feature. The recalculated SHAP values have some

changes (Figure S24), such as that the importance of surface_area has increased slightly. This phenomenon

suggests that the new data are constantly improving the model, thus enhancing the algorithm’s under-

standing on the catalytic process. All these are brought together and connected by ML to form a

closed-loop research (Figures 1A and 4E). This closed-loop framework can continuously improve its oper-

ating efficiency by feedback and updates, thereby accelerating the development of high-performance

catalysts.

Conclusion

In this work, we developed a data-driven strategy to design high-performance electrocatalysts for H2 evo-

lution. Specifically, a Pt/C HER catalyst database was built by collecting data from the previous reports, and

the ML model optimized by TPOT was applied to investigate the catalyst system. By using SHAP to open

the ‘‘black box’’ of the algorithm, the impacts of factors were quantitatively analyzed to form guidance for

catalyst synthesis. Among various features, we found that the Pt content and Pt size have the greatest in-

fluence on the performance of catalysts. Based on the ML outcome, a nitrogen-doped mesoporous carbon

network prepared by salt template was used as the confined support to fabricate the content-controllable

and size-controllable Pt nanoclusters. The features of the obtained Pt@NMCwere in line with the intelligent

insights and showed superior catalytic properties in alkaline electrolyte. As a result, we built a closed-loop

framework of catalyst development, consisting of data mining, ML analysis, controllable synthesis, and per-

formance evaluation. Furthermore, the framework is available for anyone to add their research data and

improve their own catalysts by using our open-source database. By continuously introducing more

dimensions and more quantities of data, the researchers can reveal a more comprehensive and accurate

importance ranking among the features in the catalyst systems. Overall, this work provided an example

of a data-driven research paradigm to design optimized catalysts, which is hopefully extended to the

R&D of other state-of-art materials.

Limitations of the study

In this work, the analysis given by ML is not detailed, because the current amount of data and the features

are not enough to support a precise model. Thus, we applied the TPOT and SHAP algorithms to rank the

importance of several features. Although the experimental tests prove that the importance of ranking is

helpful, it is better to introduce more data and more complete features to give full play to the potential

of ML. Furthermore, the prepared samples perform better in alkaline electrolytes than in the acid, which

requires follow-up experiments and in-depth mechanism research.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and request for resources should be directed to the lead contact, Shan Zhu (shanzhu@

tju.edu.cn)

Materials availability

This study did not generate new unique reagents.

Data and code availability

d The data of Pt/C catalysts databases have been deposited at https://github.com/Shan-Zhu/ML-HER-PtC

and are publicly available as of the date of publication. Other data reported in this paper will be shared

by the lead contact upon request.

d All original code has been deposited at https://github.com/Shan-Zhu/ML-HER-PtC and is publicly avail-

able as of the date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Data collection and machine learning

To build the database, we collected hundreds of published papers about Pt/C catalysts for HER. Among

them, over 200 sets of data were manually extracted, including the features of Pt, the physical and chemical

features of carbon support and the test system. All of these data were available in the file of Data S1. Data-

base of Pt/C catalysts, Related to STAR Methods. Then, we chose the reported samples with

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Commercial Pt/C Hesen CAS#7440-06-4

Sodium chloride Kermel Reagent CAS#7647-14-5

Anhydrous glucose Kermel Reagent CAS#50-99-7

Sodium silicate Kermel Reagent CAS#1344-09-8

Chloroplatinic acid Kermel Reagent CAS#16941-12-1(81507)

Urea Guangfu CAS#57-13-6

Potassium hydroxide Meryer CAS#1310-58-3(82002)

N-N Dimethylformamide Aladdin Reagent CAS#68-12-2(33627)

Sulfuric acid Yuanli CAS#7664-93-9(81007)

Nafion Sigma-Aldrich CAS#31175-20-9

Software and algorithms

Python version 3.10.0 Python Software Foundation https://www.python.org/

WebPlotDigitizer Ankit Rohatgi https://apps.automeris.io/wpd/

Code for ML models This paper https://github.com/Shan-Zhu/ML-HER-PtC

Deposited data

Data S1. Database of Pt/C catalysts, Related to

STAR Methods.

This paper https://github.com/Shan-Zhu/ML-HER-PtC/

blob/main/SI-All_PtC_Database.csv

Data S2. Dataset of Pt/C catalysts used in ML

models, Related to Figure 1.

This paper https://github.com/Shan-Zhu/ML-HER-PtC/

blob/main/SI-ML_PtC_Database.csv
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comprehensive characteristics of the selected features, and further extracted their actual test performance

under various current densities with the help of WebPlotDigitizer, thus forming a new database of Data S2.

Dataset of Pt/C catalysts used in ML models, Related to Figure 1. Using such database, we applied the al-

gorithms of TPOT (tree-based pipeline optimization tool) to analyze the Pt/C-HER catalyst system. The

optimized model figured out by TPOT was the Gradient Boosting Regressor. After determining the opti-

mization model, to understand the contribution of each feature in the model, the TreeExplainer in the

SHAP library was called to calculate the Shapley value of each feature. The brief overviews for these algo-

rithms were in the supplemental information. All ML methods were conducted in Python, and the corre-

sponding codes were available at https://github.com/Shan-Zhu/ML-HER-PtC.

Materials synthesis

Preparation of N-doped mesoporous carbon nanosheet network (NMC): Firstly, anhydrous glucose (1.25

g), NaCl (20 g), Na2SiO3 (1.25 g), urea (1.25g) and deionized water (100 ml) were stirred together for 2 h.

Next, the mixed solution was frozen in -40�C for 24 h and freeze-dried at -65�C in vacuum for 24 h to obtain

composite powders. Then, the composite powders were annealed at 650�C (heating rate of 8�C min-1) for

2 hours in Ar (250 mL min-1) in a tube furnace. The heated powders were washed out the NaCl and Na2SiO3

templates with deionized water, and then dried at 60�C under vacuum overnight to obtain NMC.

Preparation of xPt@NMC (x=1, 2, 3, 5): 10 mg of NMCwere dispersed in 5 mL of 0.01xMH2PtCl6 solution by

sonication for 30 min, and then stood for 24 h. The obtained mixture was separated by suction fitration and

dried overnight at 60�C. Then, the dried mixture was rapidly heated to 400�C (heating rate of 100�C min-1),

hold for 10 min in Ar (200 mL min-1) and cooled to room temperature. The obtained product were noted as

xPt@NMC.

Preparation of Control-1 and Control-2: When preparing the carbon matrix of Control-1, the input amount

of urea was changed to 0.625 g. For Control-2, the added urea was 0.125 g. Other processes were the same

as 3Pt@NMC.

Characterizations

The morphology of as-prepared samples were studied by using transmission electron microscopy

(TEM), high-resolution TEM (HRTEM), scanning TEM (STEM) transmission electron microscopy on

aFEITecnaiG2F20 TEM and Scanning electron microscopy (SEM) on a Hitachi S4800. The crystalline struc-

tures of samples were examined by X-ray diffraction (XRD) on a Rigaku D/max diffractometer with Cu Ka

radiation. X-ray photoelectron spectroscopy (XPS) measurements were carried out on a PHI 5000

VersaProbe using an Al Ka X-ray source. Brunauer-Emmett-Teller (BET) specific surface and porosities of

the samples were acquired by a Micromeritics ASAP 2020 analyzer using nitrogen adsorption and desorp-

tion. Raman spectrum were performed on a LabRAMHR Raman spectrometer by applying an Ar ion

laser source at the laser excitation of 514.5 nm. Thermogravimetric analysis (TGA) was recorded on

NETZSCHSTA449F3 at a heating rate of 10�C min-1 in air from room temperature to 800�C.

Electrochemical test

All electrocatalytic activity was tested on an Ivium-n-Stat workstation using a typical three-electrode system

at the room temperature. The graphite rod electrode acted as the counter electrode. The saturated

calomel electrode (SCE) and Ag/AgCl electrode (SSCE) served as the reference electrode in 1.0 M KOH

and 0.5 M H2SO4, respectively. The glassy carbon electrode (3 mm diameter) loading 5 mL ink was used

as the working electrode. The inks were prepared by dispersing 2.5 mg of catalyst samples in 480 mL of

DMF and 20 mL of 5% Nafion for 20 min by sonication. The HER tests were carried out using LSV with a

scan rate of 5 mV s-1. Double-layer capacitances (Cdl) were conducted by CV scanning within the potential

window of 0.068�0.268 V vsRHE in 1.0 M KOH, and 0.097�0.197 V vsRHE in 0.5 M H2SO4. The ideal specific

capacitance was generally considered to be 60 mF cm-2. The Tafel slopes were calculated by the LSV curves.

Electrochemical impedance spectroscopy (EIS) date were measured with the AC voltage amplitude of

7 mV. The stability of the catalysts were evaluated by an amperometrici-t curve tests at the current density

of 10 mA cm-2 for 10 h.
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https://github.com/Shan-Zhu/ML-HER-PtC
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