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Abstract
Background: The biochemical bases for hormone dependence in breast cancer have been
recognized as an important element in tumor resistance, proliferation and metastasis. On this
respect, dexamethasone (Dex) dependent protection against TNF-alpha-mediated cell death in the
MCF-7 cell line has been demonstrated to be a useful model for the study of this type of cancer.
Recently, cytoplasmic signaling induced by steroid receptors has been described, such as the
activation of the PI3K/Akt and NF-kappaB pathways. We evaluated their possible participation in
the Dex-dependent protection against TNF-alpha-mediated cell death.

Results: Cellular cultures of the MCF-7 cell line were exposed to either, TNF-alpha or TNF-alpha
and Dex, and cell viability was evaluated. Next, negative dominants of PI3K and IkappaB-alpha,
designed to block the PI3K/Akt and NF-kappaB pathways, respectively, were transfected and
selection and evaluation of several clones overexpressing the mutants were examined. Also,
correlation with inhibitor of apoptosis proteins (IAPs) expression was examined. Independent
inhibition of these two pathways allowed us to test their participation in Dex-dependent protection
against TNF-alpha-cytotoxicity in MCF-7 cells. Expression of the PI3K dominant negative mutant
did not alter the protection conferred by Dex against TNF-alpha mediated cell death. Contrariwise,
clones expressing the IkappaB-alpha dominant negative mutant lost the Dex-conferred protection
against TNF-alpha. In these clones degradation of c-IAP was accelerated, while that of XIAP was
remained unaffected.

Conclusion: NF-kappaB, but not PI3K/Akt activation, is required for the Dex protective effect
against TNF-alpha-mediated cell death, and correlates with lack of degradation of the anti-apoptotic
protein c-IAP1.
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Background
Breast cancer is one of the most important oncologic dis-
eases worldwide, and in Mexico is the second most fre-
quent neoplasia in women population [1]. It is widely
accepted that among the factors involved in the develop-
ment of this ailment are long-standing inflammation and
steroid hormone regulation. On this respect, the pro-
inflammatory cytokine tumor necrosis factor alpha (TNF-
α) has been postulated as a key player in the tumor micro-
environment, but has a paradoxical role in disease evolu-
tion: It can act both as a necrotic or as a promoting factor
[2] e.g., the endogenous TNF-α chronically produced in
the tumor microenvironment enhances both tumor devel-
opment and spreading, while local administration of
high-doses of TNF-α is antiangiogenic and has a powerful
anti-tumoral effect [3]. It is worth to note that TNF-α acts
as a mediator of the apoptotic process and has selective
cytotoxicity against malignant breast tumor cells, promot-
ing an apoptotic type of cell death in MCF-7 cells [4].

TNF-α, a 17,000 kDa polypeptide, elicits a wide range of
biological responses, including inflammation, cell prolif-
eration, differentiation and apoptosis [5]. The binding of
TNF-α to the TNF receptor type I (TNF-RI) promotes the
recruitment of several intracellular adaptors which in
turn, activate multiple signal transduction pathways [6].
While recruitment of death domain (DD) containing
adaptors such as Fas associated DD (FADD) and TNF-R
associated DD (TRADD) can lead to the activation of sig-
nal transduction pathways that induce apoptosis, recruit-
ment of TNF-RI associated factors (TRAFs) can lead to the
activation of multiple cell survival intracellular signals
such as NF-κB, JNK, p38 and Erk [7].

Glucocorticoids (GCs) are essential steroid hormones
required for the maintenance of several key physiological
and developmental processes. GCs act through binding to
the GC receptor (GR), which is followed by GR transloca-
tion into the nucleus and trans-activation or trans-repres-
sion of target genes [8]. In addition, rapid nongenomic
effects of GCs have been described [9]. There is a dual and
cell-type-specific role for GCs in cell death regulation: GCs
are able to induce apoptosis in lymphocytes, leukemic
cells, lymphomas and multiple myeloma cells (reviewed
in 10). However, in other cell types such as hepatocytes
[11], vascular endothelial cells [12], osteoclasts [13] and
particularly in mammary epithelial cells [14], GCs can
inhibit apoptosis induced by a variety of different stimuli.
Besides, in the human breast tumor derived cell line MCF-
7 the synthetic GC dexamethasone (Dex) is able to com-
pletely abrogate the TNF-α-mediated cell death [15,16]. In
fact, this system has been recognized as a valuable experi-
mental model to study hormone dependent breast cancer
cells. However, and despite many efforts, the mechanism

used by Dex to interfere with the TNF-α-dependent cell
death remains poorly understood.

To investigate the interaction of TNF-α and Dex we used
the MCF-7 cell line and evaluated the contribution of two
main routes involved in cell survival: the nuclear factor κB
(NF-κB) and the phosphatidyl inositol 3 kinase (PI3K)
activated pathways. NF-κB is a heterodimer, typically con-
sisting of the p50 and p65 monomers, sequestered in the
cytoplasm of most un-stimulated cells by members of the
family of inhibitory proteins IκB [17]. NF-κB is activated
by TNF-α through ubiquitin-mediated degradation of
IκBs [18]. After IκB degradation, NF-κB translocates to the
nucleus and binds to κB sites up-regulating a panel of pro-
teins, including the anti-apoptotic proteins (IAP) c-IAP1,
c-IAP2 and XIAP [19]. Deficiencies in NF-κB activation or
interference with the synthesis of new proteins render a
cell extremely sensitive to TNF-α induced apoptosis [20].

In addition to their participation in survival and prolifer-
ation, PI3K and its target PKB/Akt, have emerged as criti-
cal signaling molecules that regulate multiple cellular
processes [21]. The ability of PI3K or Akt to suppress
apoptosis has been attributed to both, Bad and caspase-9
phosphorylation [22], as well as ceramide regulation [23].
In addition to these anti-apoptotic effects, Akt can also
contribute activating NIK, with the consequent nuclear
translocation of NF-κB [24]. Thus, depending on cell con-
text and cell type, TNF-α is able to induce cell survival or
apoptosis pathways.

It has been demonstrated that NF-κB is able to inhibit
apoptosis triggered by TNF-α, and that NF-κB activation
by both, constitutively active PI3K or Akt, suppresses TNF-
α-dependent apoptosis in MCF-7 and HEK 293 cells [25].
We found that Dex protection against a TNF-α-dependent
cell death was not affected by the expression of a domi-
nant-negative PI3K mutant protein (∆p85). However,
expression of a non-degradable IκBα mutant protein
(dnIKBα) completely abrogated Dex protection against
TNF-α-induced cell death. In addition, expression of
dnIκBα was accompanied by downregulation of the anti-
apoptotic protein c-IAP1.

Results
Dexamethasone blocks the cytotoxicity of TNF-α in the 
breast carcinoma-derived cell line MCF-7
In order to determine the sensitivity of MCF-7 cells to
TNF-α cell cultures were incubated with 2, 5 and 10 ng ml-

1 of TNF-α for different periods of time. Cell survival was
determined by crystal violet assay (Figure 1A). Like it was
reported before [16], TNF-α showed a dose- and time-
dependent cytotoxic effect on cell survival. We observed
that the minimum cell survival of 17.4 % was at the high-
est dose of TNF-α used (10 ng ml-1) at the longest period
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Dexamethasone inhibits in a dose-dependent manner the TNF-α mediated cytotoxicity in MCF-7 cellsFigure 1
Dexamethasone inhibits in a dose-dependent manner the TNF-α mediated cytotoxicity in MCF-7 cells: (A) 
MCF-7 cells were treated with different concentrations of TNF-α and cell survival was determined at the indicated times (24, 
48, 72 and 96 h). Values are mean ± SD from three independent experiments performed in triplicate. a indicates p < 0.001 with 
respect to control value. b indicates p < 0.001 with respect to the other values of the same group: (B) Cell survival of cultures 
treated with TNF-α (10 ng ml-1) for 48 h in the presence of different concentrations of Dex. Values are mean ± SD from three 
independent experiments performed in triplicate. * indicates p < 0.05 vs TNF + vehicle, ** indicates p < 0.001 vs. TNF + vehi-
cle.: (C) Micrograph of sub-confluent MCF-7 cells treated for 48 h with 10 ng ml-1 of TNF-α in the presence (right panel) or 
absence of Dex 10 µM (left panel) (Scale bar: 25 µm).
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The PI3K/Akt pathway does not participate in the dexamethasone-mediated protection from TNF-α-dependent cell death in MCF-7 cellsFigure 2
The PI3K/Akt pathway does not participate in the dexamethasone-mediated protection from TNF-α-depend-
ent cell death in MCF-7 cells: (A) Cell cultures were treated with TNF-α (10 ng ml-1), dexamethasone (Dex) (10 µM) or 
both for 20 min: Western blotts of whole-cell extracts were performed with anti-phosphorylated Akt (pAkt) specific antibod-
ies (upper panel): After stripping, membranes were re-blotted against total Akt (tAkt) (lower panel): (B) Parental cells and cells 
from ∆P85-expressing MCF-7 clones (A6, A8 and A10) were treated with TNF-α (10 ng ml-1) for 20 min and total (tAkt) and 
phosphorylated (pAkt) Akt were determined as in A: IκB protein degradation (C) and NF-κB nuclear translocation (D) were 
determined by Western blot and EMSA respectively in parental and ∆P85 expressing cell clone A6 treated with TNF-α (10 ng 
ml-1) for 20 min. Each blot is representative of three independent experiments. Below the blots in A, B, C, and D the bar 
graphs indicate the relative density of each lane with respect to control, which has an arbitrary value of 1: (E) Dexamethasone 
protection against TNF-α-mediated cytotoxicity was evaluated in parental MCF-7 cells (MCF-7) and three independent clones 
expressing the ∆P85 protein (A6, A8 and A10): Cell viability of clones incubated either with TNF-α (10 ng ml-1) alone or with 
TNF-α and Dex (10 µM) for 48 hrs was determined. Values are mean ± SD from three independent experiments performed in 
triplicate. * indicates p < 0.01 vs TNF.
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Inhibition of NF-κB activity abrogates the dexamethasone protection from TNF-α mediated cell deathFigure 3
Inhibition of NF-κB activity abrogates the dexamethasone protection from TNF-α mediated cell death: (A) 
MCF-7 cells were treated as in figure 2A and DNA NF-κB binding was evaluated in nuclear extracts by EMSA: (B) Wild type 
MCF-7 cells and MCF-7 clones 1 and 8 expressing a dominant negative IκB protein (dnIκB) or the empty vector (GFP) were 
treated with TNF-α (10 ng ml-1) for 20 min: After cell lysis, endogenous (wtIκB) and recombinant (dnIκB) proteins were 
detected in whole cell extract by Western blot: Total Akt (tAkt) is shown as loading control: (C) Indicated cell cultures were 
treated as in 2A: Then, NF-κB nuclear translocation was evaluated by EMSA. Each blot is representative of three independent 
experiments. Below the blots in A, B, and C the bar graphs indicate the relative density of each lane with respect to control, 
which has an arbitrary value of 1. In C the first bar graph represents the relative densities for dnIκBα, while the second bar 
graph represents the relative densities for wtIκBα: (D) The indicated cell clones were incubated with TNF-α (10 ng ml-1) alone 
or TNF-α (10 ng ml-1) and Dex (10 µM) for 48 hrs and cell viability was determined. Values are mean ± SD from three inde-
pendent experiments performed in triplicate. * indicates p < 0.01 with respect to MCF-7 survival after TNF-α treatment.
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of incubation (96 h). The maximum change in cytotoxic-
ity occurred between 24 and 48 h with about 80% to 45%
survival respectively with a dose of 10 ng ml-1. At longer
periods of time cell mortality increased even further (Fig-
ure 1A). To evaluate the range of the protective doses of
Dex against TNF-α cytotoxicity, MCF-7 cells were co-incu-
bated with TNF-α (10 ng ml-1) at different concentrations
of Dex or its vehicle for 48 h (Figure 1B). Dex protected
cells against TNF-α-induced cell death in a dose-depend-
ent manner. 10 µM Dex offered a complete protection
against the cytotoxic effect of TNF-α and, at 100 µM, had
a toxic effect on its own. In subsecuent experiments we
used a concentration of Dex of 10 µM. As shown in figure
1C, Dex 10 µM was able to prevent the TNF-α-dependent
reduction in cell number in MCF-7 cultures without any
alteration of cellular morphology even after 48 h of incu-
bation. To elucidate the molecular mechanism involved
in the protective effects of Dex against TNF-α dependent
cell death, we evaluated the possible participation of the
PI3K and NF-κB survival pathways.

Dexamethasone protection from TNF-α cytotoxicity is not 
mediated by the PI3K/Akt pathway
Activation of Akt is a phosphorylation dependent event
mediated by a PI3K dependent kinase (PDK) that occurs
in response to different extracellular stimuli. As is shown
in figure 2A, TNF-α stimulation of MCF-7 cells resulted in
an increase of the phosphorylated state of Akt (pAkt). Dex
treatment did not affect the levels of pAkt in unstimulated
or TNF-α treated cells (Figure 2A), suggesting that Akt
phosphorylation does not participate in Dex protection.
Expression of the PI3K dominant negative mutant (∆P85)
protein in three independent clones, A6, A8 and A10,
abrogated the TNF-α-associated phosphorylation of Akt
(Figure 2B, upper panel) without affecting total Akt pro-
tein levels (Figure 2B, lower panel). It is worth to note that
Akt activation has been reported to play an important role
in IκB degradation and NF-κB activation in diverse cell
types [26,27]. To assure that PI3K/Akt signal pathway
inhibition did not affect the NF-κB survival route, we
tested if overexpression of ∆P85 could alter the IκB degra-
dation and NF-κB nuclear translocation. Figure 2C shows
that the inhibition of Akt phosphorylation by ∆P85 in the
clone 6 did not affect the IκB degradation induced by
TNF-α stimulation. Moreover, the NF-κB activation
induced by TNF-α was not affected in these cells (Figure
2D). Taken together, these results showed that, despite the
fact that the ∆P85 mutant protein was able to interfere
with Akt activation this did not affect the TNF-α-depend-
ent NF-κB activation.

Finally, we evaluated the survival of cells from the three
different clones expressing the ∆P85 mutant protein after
TNF-α and Dex treatment. As shown in figure 2E, no sta-
tistical difference was observed in the protection con-

ferred by Dex in any one of the three clones when
compared to the parental cell line. Dex-dependent protec-
tion against TNF-α remained unchanged in cells trans-
fected with the empty vector (data not shown). These
results suggest that the PI3K/Akt pathway is not involved
in the Dex protection against TNF-α cytotoxicity.

NF-κB participates in the dexamethasone protection from 
a TNF-α mediated cell death
Our next goal was to determine the role of NF-κB in the
protection conferred by Dex analyzing by EMSA the NF-
κB nuclear translocation after Dex treatment in the
absence or presence of TNF-α. TNF-α treatment showed
two DNA/NF-κB complexes (Figure 3A); supershift analy-
sis with anti p65 and p50 antibodies revealed the presence
of p65 in both of them, whereas p50 was present only in
the complex with lower mobility (data not shown). On its
own, Dex treatment led to a slight decrease in the NF-kB
signal (Figure 3A, lane 3), but it had no effect on the two
NF-κB complexes induced by TNF-α. Taken together,
these results indicate that Dex protection does not affect
NF-κB activation.

To further analyze the participation of NF-κB in Dex pro-
tection, a non-degradable recombinant IκBα mutant pro-
tein (dnIκBα) was transfected into MCF-7 cells.
Endogenous (wtIκBα) and recombinant (dnIκBα) forms
of IκBα were clearly distinguished due to the presence of
a TAG sequence in the mutant form resulting in a higher
molecular weight protein. As expected, wtIκBα was
degraded in all clones when stimulated with TNF-α while
dnIκBα, lacking the two serine phosphorylation sites, was
not degraded after TNF-α stimulation (Figure 3B). When
the clone C1, with a high level of expression of dnIkBα,
was treated with TNF-α, NF-κB translocation was signifi-
cantly reduced both in the presence or absence of Dex
(Figure 3C). In contrast, when the clone C8, expressing
low levels of dnIκBα, was stimulated with TNF-α, NF-κB
activation was almost as intense as in the parental MCF-7
cells or in those transfected with the empty vector (Figure
3C, compare lines 9–12 with lanes 1–4 and 5–8). When
cell survival was determined in the different clones after
exposure to TNF-α in the presence or absence of Dex, we
found that Dex protection was completely abrogated in
the clone expressing high levels of the dnIκBα (Figure
3D). In addition, the clone C1 became more susceptible
to the cytotoxic effect of TNF-α since cell viability fell by
half when compared to the clone C8 or parental untrans-
fected cells. In both clones Dex protection was dramati-
cally reduced when compared to the parental cell line:
viability was indistinguishable from that of cells exposed
only to TNF-α (Figure 3D). These results suggest a dose-
dependent effect of active NF-κB in the protection medi-
ated by Dex.
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The dominant negative IκB mutant protein stimulates the dexamethasone induced downregulation of IAPsFigure 4
The dominant negative IκB mutant protein stimulates the dexamethasone induced downregulation of IAPs: 
MCF-7 parental cells and Clone 1 of the dnIκB expressing cells were treated for 20 min with TNF-α (10 ng ml-1) alone (A and 
C) or in combination with Dex (10 µM) (B and D): Protein expression of XIAP (A and B) or c-IAP (C and D) at different times 
was determined by Western blot: Actin was used as loading control. Each blot is representative of three independent experi-
ments. Below the blots the bar graphs indicate the relative density of each lane with respect to the respective control, which 
has an arbitrary value of 1.
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Loss of dexamethasone protection in dnIκBα expressing 
cells correlates with a lower c-IAP1 content
As has been previously reported [16], Dex protection
against TNF-α cytotoxicity correlates with inhibition of
XIAP and c-IAP1 protein degradation. TNF-α exposure
resulted in a time dependent decline of both XIAP and c-
IAP1 in the parental MCF-7 cells (left panels, figures 4A
and 4C). Dex treatment alone had no effect on the levels
of either of the two antiapoptotic proteins even after 24
hrs (data not shown). Simultaneous stimulation with
TNF-α and Dex led to higher levels of the two proteins
when compared to the effect of TNF-α alone (Figure 4B
and 4D, left panels), as previously shown [16]. When
MCF-7 cells expressing dnIκBα were treated with TNF-α
(Figure 4A and 4C, right panels) the downregulation of
XIAP and, especially that of c-IAP1, was accelerated and
resulted in lower levels than those reached in parental
cells. Treatment with TNF-α plus Dex led to a differential
effect in the two antiapoptotic proteins: In the case of
XIAP, the protein downregulation time course was similar
to that of the parental cells (Figure 4B, right panel), while
in the case of c-IAP1 the protein downregulation was
stimulated in response to Dex (Figure 4C and 4D, right
panels). These results indicate that only cIAP1 levels cor-
relate with the protection conferred by Dex and with NF-
κB activation.

Discussion
To contribute to the understanding of cancer genesis, the
breast cancer derived cell line MCF-7 has been used as a
prominent model for the study of estrogen receptor-posi-
tive breast cancer cells. In MCF-7 cells Dex is able to pre-
vent the cytotoxic effect of TNF-α, and the anti-apoptotic
proteins IAP1, IAP2 and XIAP have been postulated as
effector molecules [16]. However, and despite extensive
studies, the molecular mechanisms of this protection are
just beginning to be described. On this respect, the role
played by anti-apoptotic routes others than the one regu-
lated by IAP proteins in the Dex protection from TNF-α
cytotoxicity has not been analyzed. Also, TNF-α stimula-
tion does not only activate cell death pathways, but sur-
vival ones too. In consequence, it can be assumed that the
balance between pro- and anti-apoptotic regulators
defines the apoptotic threshold of a cell. The anti-apop-
totic effect of TNF-α requires the activation of PI3K and
NF-κB and, as active participants of survival routes, these
proteins could participate in the Dex protection against
TNF-α cytotoxicity. Thus, we analyzed their participation
in Dex mediated-protection against TNF-α cytotoxicity.

It has been suggested that the scarcity of breast tumor
derived cell lines has led to the apparition of several sub-
lines, evidenced by different results obtained for the eval-
uation of related phenomena [28], including their suscep-
tibility to TNF-α induced apoptosis [29].

This led us to corroborate the ability of TNF-α to induce
cell death and to evaluate the protection mediated by Dex
in our cell system. As previously reported, TNF-α treat-
ment induced cell death in a dose and time dependent
fashion and co-incubation with Dex protected MCF-7
cells against TNF-α-induced cell death.

We have found that in MCF7 and ZR-70-35 human mam-
mary tumor cells the protective effect of Dex was compro-
mised in the presence of 2.5 µM of Bay-117082, a
pharmacological inhibitor of NF-κB activation (data not
shown). This result correlates with those observed in Fig-
ure 3D, where protection is lost in cells expressing the
dominant negative form of IkBα, thus providing further
support to the notion that Dex protection requires NF-κB
activation. Furthermore, the use of the inhibitor of NF-κB
lead to a marked decrease in c-IAP1 cellular content in ZR-
70-35 cells (data not shown). While c-IAP1 could not be
detected in TNF-α-treated cells, in the presence of TNF-α
+ Dex c-IAP1 content returned to control levels. This
behavior reproduced the results presented in figures 4C
and 4D, and documents the correlation between Dex pro-
tection and c-IAP1 cellular content.

In our system the Akt phosphorylation level was not
affected by Dex treatment in the presence or absence of
TNF-α. Besides, transfection of a dominant negative
mutant of PI3K (∆P85) in MCF-7 cells did not affect Dex
protection, suggesting that the PI3K/Akt pathway is not
involved in Dex protection against TNF-α. NF-κB activa-
tion through PI3K/Akt has been a controversial issue due
to cell type variations [30,31]. Although in some cells Akt
acts upstream of NF-κB [24,32,27], we found that NF-κB
activation is completely independent of Akt function.

In our cell system Dex did not modify the NF-κB activa-
tion in the presence or absence of TNF-α. However, a non-
degradable IκBα mutant protein (dnIκBα), which pre-
vents NF-κB nuclear translocation; completely blocked
Dex protection against TNF-α induced cell death. In the
absence of Dex, dnIκBα expression increased the suscepti-
bility to TNF-α-induced death. These results suggest that
the TNF-α-dependent NF-κB activation participates in the
protection conferred by Dex. Furthermore, in dnIkBα
transfectant MCF-7 cells, the susceptibility to TNF-α cyto-
toxicity correlated with the level of expression of the IκBα
mutant form, suggesting a threshold for the protective
action of NF-κB activation.

NF-κB regulates the expression of a great number of genes,
including several antiapoptotic gene products such as
members of the Bcl-2 family [33] and the inhibitor of
apoptosis proteins XIAP, c-IAP1 and c-IAP2 [19]. Interest-
ingly, NF-κB regulates XIAP [34] and cIAP1 promoters
[35]. Thus, we analyzed the effects of interfering with NF-
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κB signaling pathway during Dex protection on XIAP and
c-IAP1 protein content. We detected that, as previously
reported [16], TNF-α-induced apoptosis in MCF-7 cells
correlated with downregulation of XIAP and c-IAP1 pro-
teins, postulated as effectors of the protective effect
against TNF-α-mediated cytotoxicity. However, only the
expression level of c-IAP1 correlated with the protective
effect of Dex: In cells expressing dnIκBα stimulated with
TNF-α (i) the protein level of this antiapoptotic factor was
lower than in parental cells and correlated with an
increased cell death and, (ii) in parental MCF-7 cells Dex
treatment correlated with a slower rate of decrease of the
anti-apoptotic factors content.

While estrogen dependence in mammary tumor cells is
being extensively studied due to its clinical importance,
the dependency on GC has received less attention. The
protection conferred by Dex against TNF-mediated cyto-
toxicity has been extensively analyzed in MCF-7 cells and,
interestingly, this synthetic GC has also been reported to
confer protection against pharmacological mediators of
cell death [36]. In contrast, GCs have been reported to
interfere with proliferation in MCF7, ZR-75-1, Con-8 and
MDA-MB-231 mammary tumor cells [37,38]. At present,
GC therapy is not included in patients with mammary
tumors, although no comparative study has been per-
formed to discard its efficacy. Whether or not the antipro-
liferative effect of natural or synthetic GCs is related to the
protection against TNF-mediated cytotoxicity remains to
be determined.

Also, IAPs belong to a diverse group of proteins which
modulate the apoptotic pathways by binding to caspases
and inhibiting their proteolitic activity [39]. In addition to
this well characterized anti-apoptotic effect, some IAP iso-
forms have been reported to interfere with apoptosis
through caspase-inhibition independent mechanisms.
Expression of IAPs in MCF-7 cells in response to Dex has
been previously described and is suggestive of the anti-
apoptotic protection against TNF-mediated cytotoxicity.
Nevertheless, the contribution of IAP expression to this
protective effect remains to be shown by specific interfer-
ence with IAPs expression, possibly through iRNA tech-
nology. Without this kind of experiments, it is difficult to
establish the relative contribution of IAP expression to the
protective effect of Dex.

Conclusion
We conclude that the protective effect of Dex is dependent
on TNF-α-mediated activation of NF-κB, and it seems
likely that the NF-κB-dependent gene expression of antia-
poptotic proteins is strenghtened by Dex treatment, prob-
ably through the GC receptor. This protection appears to
be independent of the PI3K pathway. Moreover, GC-
receptor activation through Dex has been reported to

induce the expression of different anti-apoptotic gene
products, including c-IAP1 and XIAP [19,40], serum and
GC-inducible protein kinase one (SGK-1), and mitogen
activated protein kinase phosphatase one (MKP-1) [41].
On this respect, we found the existence of a suggestive cor-
relation between susceptibility against TNF-α-induced cell
death and the diminished c-IAP expression in the absence
of NF-κB translocation. Although the interaction among
glucocorticoids and cytokines is often cell type specific
and depends on the physiologic context of the cell, our
data point towards the NF-κB system as a potential thera-
peutic target in the combat against some hormone-
dependent forms of mammary cancer.

Methods
Materials
Dexamethasone and human recombinant TNF-α were
obtained from Sigma-Aldrich (St Louis, MO, USA) and
R&D Systems, Inc (Minneapolis, MN, USA), respectively.
Cell culture media and sera were obtained from InVitro-
gen Life Technologies (San Diego, CA, USA). The polyclo-
nal rabbit antibodies against Akt and against
phosphorylated Akt were from Cell Signalling Technol-
ogy, Inc (Beverly, MA, USA). IκB goat polyclonal antibody
was from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA,
USA). XIAP and c-IAP1 polyclonal antibodies were from
R&D Systems Inc. Protease inhibitor cocktail tablets were
from Boehringer Manheim (East Sussex, UK). Secondary
antibodies were from Pierce Biotechnology Inc. (Rock-
ford, IL, USA) (anti-rabbit IgG) and Zymed Laboratories
(Carlsbad, CA, USA) (anti-mouse and anti-goat IgG). The
Super Signal Chemiluminescent substrate was from Pierce
Biotechnology Inc. Escherichia coli DH5α strain was from
Gibco BRL (Paisley, UK). Plasmids containing the cDNAs
for negative mutant phosphoinositide-3-kinase (∆p85)
[42] and constitutively active mutant IκB alpha, Ser 32/36
-Ala (dnIκBα) [43] were a gift from Dr. Masato Kasuga
(The Second Department of Internal Medicine, Kobe Uni-
versity School of Medicine) and Dr. David V. Goeddel and
Dr. Dean W. Ballard (Howard Hughes Medical Institute
and Department of Microbiology and Immunology, Van-
derbilt University School of Medicine, Nashville, TN),
respectively. The cDNAs from ∆p85 and dnIκBα were sub-
cloned into the expression vector pCNLX-GFP under the
control of the cytomegalovirus (CMV) promoter.

Cell culture
MCF-7 cells were purchased from the American Type Cul-
ture Collection (ATCC, Manassas, VA, USA) and were
maintained in RPMI-1640 medium supplemented with
10% (v v-1) foetal calf serum (FCS), 100 U ml-1 penicillin,
100 µg ml-1 streptomycin and 2 mM L-glutamine, and
incubated at 37°C in a humidified atmosphere with 5%
CO2.
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Transfection assays
Escherichia coli DH5α cells were transformed with either of
the plasmids, dnIκBα or ∆p85, using plasmidic DNA
obtained with a Wizard extraction kit (Quiagen GmbH,
Germany). MCF-7 parental cells were stably transfected
with 200 µg µl-1 of each of the plasmids using the calcium
phosphate transfection system from Gibco BRL according
to manufacturer's instructions. After 24 h, transfected cells
were selected in G418-containing medium (0.8 mg ml-1)
(Sigma-Aldrich). Transfection efficiency was evaluated by
GFP fluorescence. Single clones of stably transfected cells,
isolated by limiting dilution in 96-well plates (Nalgene
Nunc International, Rochester, NY, USA), were trans-
ferred to individual plates and cultured in medium con-
taining 0.5 mg ml-1 G418. Expression of the ∆p85 and
dnIκBα proteins were assessed by Western blot analysis
using anti-PI3K and anti-IκB specific antibodies. For MCF-
7 cells expressing the ∆p85 protein, three independent
clones were used throughout this study: A6, A8 and A10.
For the dnIκBα expressing cells two independent clones
were used: C1 and C8. A clone of an MCF-7 cell trans-
fected with the empty expression vector pCNLX-GFP was
used as control and it always provided the same results as
did the parental cell line.

Cytotoxic Assays
For all the cytotoxic assays 1 × 104 cells were plated per
well in 48-well plates and cultured for 24 h. In a first set
of experiments, cell cultures were treated with increasing
concentrations (2–10 ng ml-1) of TNF-α for different peri-
ods of time. In subsequent experiments, cell cultures were
either co-incubated with 10 ng ml-1 TNF-α and 10 µM
Dex, or 10 ng ml-1 TNF-α and Dex vehicle (ethanol) for 24
h. Cell number was assessed indirectly by cell staining
with crystal violet.

Western blot analysis
Cells (1 × 105) were plated in 60 cm2 Petri dishes, cultured
for 24 h and incubated with 10 ng ml-1 TNF-α, 10 µM Dex
or both, for different periods of time. Cell cultures were
washed in ice cold Tris-buffered saline (TBS, 50 mM Tris-
HCl, 150 mM NaCl, pH 7.5) and lysed for 20 min on ice
chilled lysis buffer (50 mM Tris, 0.5% Nonidet P-40, 120
mM NaCl, 200 µM Na3VO4, 100 mM NaF, 1 mM PMSF,
pH 8.0, added with 1 protease inhibitor cocktail tablet).
Protein extracts were clarified by centrifugation (14,000 ×
g, 15 min 4°C) and protein content measured by Bradford
(BioRad, Hercules, CA, USA). Equal amounts of total pro-
tein (40 µg) were subjected to 10% SDS/PAGE followed
by transfer onto nitrocellulose membranes followed by
Western blot analysis and visualized with the Super Signal
system (Pierce). Membranes were incubated with anti-
bodies against Akt protein, phosphorylated Akt protein,
IκB, XIAP or c-IAP1 and detected with the respective spe-
cies-specific secondary HRP-conjugated antibodies.

Preparation of nuclear protein extracts
Nuclear protein extracts were obtained from cell cultures
after the indicated treatments. Briefly, cells were washed
and scraped into ice-cold phosphate-buffered saline
(PBS). Cells were pelleted at 4°C and then frozen in etha-
nol-dry ice for 1 min. Cells were immediately resus-
pended in 100 µl of buffer A (10 mM HEPES, 10 mM KCl,
1.5mM MgCl2, 1mM DTT, pH 7.9) and incubated 10 min
at 4°C. Nuclei were microcentrifuged, resuspended in 30
µl of buffer B (20 mM HEPES, 400 mM NaCl, 1.5 mM
MgCl2, 0.2 mM EDTA, 25% glycerol, 1 mM DTT, 0.5 mM
PMSF pH 7.9) and incubated on ice for 30 min. Nuclei
suspension was microcentrifugated for 20 min, and then
the supernatant (nuclear protein extract) was diluted with
30 µl of HDKE buffer (20 mM HEPES, 50 mM KCL, 25%
glycerol, 0.2 mM EDTA, 1 mM DTT, 0.5 mM PMSF, pH
7.9), and aliquots stored at -70°C. Protein concentrations
of the nuclear extracts were determined using the Brad-
ford-based BioRad protein assay.

Electrophoretic mobility shift assay (EMSA)
Binding assays were performed in a final volume of 20 µl
containing nuclear protein extract (10 µg), buffer HDKE,
1mM DTT, 10 µg BSA, 1µg poly(dI-dC) (Amersham Bio-
sciences, Germany) and 1 µl of end-labelled (γ-32 P) NF-
κB oligonucleotide at 5000 cpm µl-1 (AGTTGAG-
GGGACTTTCCCAGG, Santa Cruz Biotechnology, Inc).
Reactions were incubated for 20 min at room tempera-
ture. Protein-DNA complexes were separated from free
oligonucleotide on a 5% nondenaturing polyacrylamide/
Tris borate EDTA gel. The gels were dried and analyzed in
a Molecular Dynamics "Storm" Phosphoimager using the
Image Quant software (Molecular Dynamics, San Jose,
CA, USA).

Data analysis
All experiments were performed in triplicates and
repeated at least three independent times. All statistical
analyses were performed using a nonparametric Kruskal-
Wallis test and corroborated with a two-way ANOVA test
with Bonferroni posttests for individual values. A p < 0.05
was considered statistically significant.

List of abbreviations
DD, death domain; dnIKBα, non-degradable IkBα mutant
protein; Dex, dexamethasone; ∆p85, negative mutant
phosphoinositide-3-kinase; EMSA, electrophoretic mobil-
ity shif assay; FADD, Fas associated DD; GC, glucocorti-
coids; GFP, green fluorescent protein; GR, glucocorticoid
receptor; HRP, horseradish peroxidase; IAP, inhibitory
anti-apoptotic protein; MKP-1, mitogen activated protein
kinase phosphatase one; NF-κB, nuclear factor-kappa B;
NIK, NF-kB inducing kinase; pAkt, phosphorilated Akt;
PI3K, phosphatidyl inositol 3 kinase; SGK-1, serum and
GC-inducible protein kinase one; TBS, tris-buffered
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saline; TNF-α, tumor necrosis factor-alpha; TNF-R1, TNF-
α receptor type 1; TRADD, TNF-R associated DD.
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