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Abstract

This is the first report on the phylogenetic analysis of the community diversity of a single spontaneous cocoa bean box
fermentation sample through a metagenomic approach involving 454 pyrosequencing. Several sequence-based and
composition-based taxonomic profiling tools were used and evaluated to avoid software-dependent results and their
outcome was validated by comparison with previously obtained culture-dependent and culture-independent data. Overall,
this approach revealed a wider bacterial (mainly c-Proteobacteria) and fungal diversity than previously found. Further, the
use of a combination of different classification methods, in a software-independent way, helped to understand the actual
composition of the microbial ecosystem under study. In addition, bacteriophage-related sequences were found. The
bacterial diversity depended partially on the methods used, as composition-based methods predicted a wider diversity than
sequence-based methods, and as classification methods based solely on phylogenetic marker genes predicted a more
restricted diversity compared with methods that took all reads into account. The metagenomic sequencing analysis
identified Hanseniaspora uvarum, Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and
Acetobacter pasteurianus as the prevailing species. Also, the presence of occasional members of the cocoa bean
fermentation process was revealed (such as Erwinia tasmaniensis, Lactobacillus brevis, Lactobacillus casei, Lactobacillus
rhamnosus, Lactococcus lactis, Leuconostoc mesenteroides, and Oenococcus oeni). Furthermore, the sequence reads
associated with viral communities were of a restricted diversity, dominated by Myoviridae and Siphoviridae, and reflecting
Lactobacillus as the dominant host. To conclude, an accurate overview of all members of a cocoa bean fermentation process
sample was revealed, indicating the superiority of metagenomic sequencing over previously used techniques.
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Introduction

Cocoa beans are seeds embedded in a mucilaginous pulp in fruit

pods of the cocoa tree, Theobroma cacao L., and are used as the basic

raw material for chocolate production [1,2]. The desired

characteristic cocoa flavor and taste is obtained by fermenting,

drying, and roasting of the raw cocoa beans [3,4]. The first step in

cocoa processing is a spontaneous three- to six-day fermentation of

the cocoa pulp-bean mass, in most cases carried out in heaps or

boxes, wherein a succession of microbial activities of yeasts,

involved in depectinization and ethanol formation, lactic acid

bacteria (LAB), involved in citric acid fermentation and lactic acid

production, and acetic acid bacteria (AAB), involved in the

oxidation of ethanol produced by the yeasts into acetic acid and

overoxidation of acetic acid and of lactic acid produced by LAB

into carbon dioxide and water, takes place [5–7]. During

fermentation, ethanol and acetic acid diffuse into the beans, and

this, in combination with the heat produced during fermentation

in general and during ethanol oxidation in particular, causes the

death of the seed embryo. This step in turn initiates physical and

biochemical changes in the beans, leading to the formation of

precursor molecules for the development of a characteristic flavor

and color of well-fermented cocoa beans [8–10].

During the last decade, the microbial diversity of spontaneous

cocoa bean fermentation processes has been investigated through

the application of culture-dependent and culture-independent

techniques [11–22]. This has resulted in a better knowledge of this

peculiar microbial ecosystem, which is dominated by species such

as Hanseniaspora sp., Saccharomyces cerevisiae, Lactobacillus fermentum,

Lactobacillus plantarum, and Acetobacter pasteurianus. However, it is

known that both approaches have some drawbacks, undermining

an accurate view on the microbial composition of this ecosystem,

and implying that more, yet unidentified species, might play a role

in the fermentation process. For instance, it has been shown that

culture-dependent techniques can enhance the recovery of certain

species that are not necessarily the most abundant or important
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ones in an ecosystem, thereby giving a non-accurate quantitative

view [23]. To circumvent this drawback, culture-independent

techniques such as denaturing gradient gel electrophoresis of small

PCR amplicons of the targeted gene fragments (PCR-DGGE) or

rRNA gene clone library sequencing have been used, also in the

case of cocoa bean fermentation processes [7,14]. These

techniques aim at the identification of both cultivable and yet

uncultivable but potentially important players in a microbial

ecosystem in a semi-quantitative way, thereby using whole

microbial community (metagenomic) DNA. However, these

methods might give a biased outcome for several reasons too, as

they rely on PCR, thereby suffering from typical artifacts such as

preferential DNA amplification. [24]. Moreover, PCR-DGGE is

based on the amplification of several, rather small, variable regions

of mostly the 16S (bacteria) or 26S rRNA genes (yeasts), of which

the resolution within some genera is limited [25–27]. Recently,

454 pyrosequencing has been used to investigate the bacterial

communities by sequencing of 16S rRNA gene amplicons solely

[28,29]. This has also been done for fermented foods, such as

nukadoko and kefir [30,31]. However, as the same short variable

regions of the 16S rRNA genes as for PCR-DGGE are targeted,

these gene fragments limit this approach.

Whole-community sequence data, obtained by high-throughput

parallel sequencing of metagenomic DNA, overcome the limita-

tions of the aforementioned culture-dependent and culture-

independent techniques [32]. Concerning industrial fermentations

involving bacteria, 454 pyrosequencing has recently been applied

for assessing the prokaryotic community composition and func-

tionality of, among others, a biogas fermentation process [33] and

a kimchi fermentation process [34]. In the area of eukaryotic

metagenomics, only a few studies involving whole-community

pyrosequencing have been performed, with a focus on fungal

diversity associated with soil and plants [35,36]. To our

knowledge, the metagenomic approach has never been used to

identify the members of a microbial ecosystem consisting of both

prokaryotic and eukaryotic microorganisms, such as in the case of

cocoa bean fermentation processes. Yet, to perform such

taxonomic profiling, several computational methods are available,

tackling either a composition-based [37–39] or a similarity-based

[40–42] approach. It is unclear which of these methods result in

the best estimate of microbial diversity. Indeed, similarity-based

methods will only be accurate if a close evolutionary relative of a

generated sequence (read) is present in the database [43] and these

methods are known to be computationally expensive [40]. In the

case of (supervised) composition-based methods, it is (often

incorrectly) assumed that the genomes available in public

databases are representative for the microorganisms present in

the ecosystem [44]. Also, these methods can suffer from robustness

when short sequences (,1 kb) are used [40].

The aim of the present study was to investigate the microbial

communities of a single sample of a spontaneous cocoa bean box

fermentation process by performing 454 pyrosequencing on

metagenomic DNA, and to compare the outcome with previous

data of this sample to validate this metagenomic approach. [7,14].

Further, using these data, both similarity-based and composition-

based computational methods for taxonomic profiling were

evaluated and only operational taxonomic units (OTUs) that were

consistently predicted were taken into account to avoid a software-

dependent outcome. Hence, a complete and more reliable insight

into the microbial diversity of the sample studied could be

obtained. The results showed that 454 pyrosequencing can be used

to identify the bacterial and fungal community members and to

provide an insight into the viral communities of a cocoa bean

fermentation sample. Analysis of bacterial diversity with multiple

taxonomic profiling tools revealed differences in diversity estimates

and abundance, which were consistent on different taxonomic

ranks. Overall, a wider community diversity was retrieved

compared with previous methods, indicating the superiority of

metagenomic sequencing.

Materials and Methods

Total community DNA preparation, pyrosequencing, and
sequence data quality control

A spontaneous cocoa bean box fermentation was performed at

the ‘Leão De Ouro’ plantation in Ilhéus (Bahia, Brazil), as

described previously [14]. A sample of 500 g was taken 30 h after

the start of the fermentation, as at this time point, LAB and AAB

species start to control the fermentation, while yeast species,

involved during the first hours of the fermentation, are still present

[14]. Whole-community metagenomic DNA was isolated in

triplicate, each time from 20 g of the sample, as described

previously, with minor modifications [12]. Briefly, a NucleoSpin

column (Macherey Nagel GmbH, Düren, Germany) was used to

remove cocoa pulp compounds, such as polysaccharides, proteins,

enzymes, and polyphenols [45]. Furthermore, a second isopropa-

nol precipitation step was applied after RNase treatment, to obtain

pure high-quality DNA. The three DNA extracts were pooled and

used as template for shotgun pyrosequencing on a Genome

Sequencer (GS) FLX system (Roche Applied Science, Mannheim,

Germany) using Titanium chemistry, which was performed by the

VIB Nucleomics Core Facility (Leuven, Belgium). A DNA library

was constructed according to the GS FLX Rapid Library

Preparation Kit (Roche Applied Science). The optimal DNA

copy per bead ratio was determined by an emulsion PCR titration

using a GS FLX Titanium SV emPCR kit (Lib-L; Roche Applied

Science). Final emulsion PCR for sequencing production runs was

performed using the GS FLX Titanium LV emPCR kit (Lib-L;

Roche Applied Science). Two independent pyrosequencing runs

were carried out with this DNA library, the first one using two

regions of a four-region gasket (half a PicoTiterPlate, the reads

were represented by data set A) and the second one using a

complete PicoTiterPlate (data set B). To assess the overall

comparability of the sequence data sets, average G+C contents

of all reads were determined for each data set. Therefore, various

Perl scripts were developed to determine the overall and individual

G+C contents of the reads. Artificially created duplicate reads

were assessed using the Bioconductor software package ShortRead

1.6.2 [46] and cd-hit-454 [47].

Table 1. Statistics on the environmental reads of two GS FLX
Titanium pyrosequencing runs of the metagenomic DNA of a
Brazilian spontaneous cocoa bean box fermentation sample.

Statistical parameter Data set A Data set B

Number of reads 456,225 1,248,151

Total number of bases 200,550,104 551,635,450

Mean read length 439.08 441.96

Median read length 495 492

% G+C 49.74 49.54

doi:10.1371/journal.pone.0038040.t001
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Bacterial and fungal community richness estimation
through rarefaction analysis

Binning of the reads for bacterial and fungal community

richness estimation through rarefaction analysis was performed on

rank ‘genus’ for data set A as well as for the combined data sets A

and B. For bacterial rarefaction analysis, several similarity-based

classification tools were used, including tools based on phyloge-

netic marker genes solely as well as tools that took all

environmental reads into account. For the phylogenetic marker

gene-based binning approach, SmashCommunity (version 1.5)

[48] was used to extract 16S rRNA gene sequence fragments from

the data sets. Therefore, two binning approaches (based on either

a 16S rRNA gene database or on recognition by the meta_rrna

tool) supported by this platform were used for detection of the 16S

rRNA gene sequences, both using default parameters. This was

followed by their classification with the Ribosomal Database

Project (RDP) classifier using default parameters. The binning

approach based on all environmental reads was performed with

SmashCommunity and MEGAN (version 4.40.5) [42]. Smash-

Community was used to align all metagenomic reads to reference

genomes through a BLASTN-based sequence similarity search of

a SmashCommunity-compatible reference genome database

(microbial reference genomes version 2.0; http://www.bork.

embl.de/software/smash/). MEGAN was used with the min

support set to 100, the min score set to 100, and the top percent set

to 7. Hereto, all reads were aligned to the NCBI-nr database

(National Center for Biotechnology Information, Bethesda,

Maryland, USA) using the BLASTX algorithm.

Fungal rarefaction analysis was carried out with reads

containing (part of) the internal transcribed spacer (ITS) regions

ITS1 and/or ITS2. These regions were extracted from the data

sets using the FungalITSextractor tool [49]. The reads containing

a (partial) predicted ITS1-5.8S-ITS2 region were subsequently

used in a BLASTN similarity search using the NCBI-nt database

followed by their processing with MEGAN with the min support

set to 2, the min score set to 100, and the top percent set to 1. At

this stage, only hits within a fungal ITS region were taken into

account to reduce false positives.

To assess whether all microbial species, both bacteria and fungi,

of the spontaneous cocoa bean box fermentation sample under

study were covered by the 454 pyrosequencing reads, rarefaction

curves were constructed using the Analytic Rarefaction tool

(version 1.3; www.uga.edu/strata/software/Software.html). The

estimated numbers of genera associated with different sampling

sizes of the environmental reads were expressed as OTUs. To

avoid overestimation through misclassification, only genera that

had an abundance of more than 0.01% of the data set were taken

into account for bacterial rarefaction analysis.

Comparison of different taxonomic profiling tools to
estimate the bacterial community composition

To assess the bacterial community composition of the sample

under study, several software tools for taxonomic profiling were

applied, using the combined data sets A and B. This was

performed using both similarity- and composition-based software

packages, designed for prokaryotic taxonomic profiling. All

analyses were carried out on the taxonomic ranks phylum, class,

Figure 1. Rarefaction analysis of the genera found with data sets A and B. The rarefaction curves represent an estimation of the number of
genera associated with different sampling sizes. As the results of the two 16S rRNA gene-based methods of the SmashCommunity platform were
similar, only one method (based on similarity with the 16S rRNA gene sequence database of the SmashCommunity platform) is shown. As the plateau
phase of the SmashCommunity reference genomes platform and MEGAN was reached at 25,000 reads, the X-axis is limited to this number of reads.
doi:10.1371/journal.pone.0038040.g001
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order, family, and genus. To avoid software-dependent results, an

OTU was only taken into account if it was predicted by at least

five taxonomic profiling tools.

Applying a similarity-based analysis, tools based on extracting

and classifying phylogenetic marker gene(s) (SmashCommunity,

MetaPhyler) as well as tools based on classifying all environmental

reads (SmashCommunity, MEGAN, CARMA) were used. For a

phylogenetic marker gene-based analysis, SmashCommunity was

used as described above. Analysis with MetaPhyler was performed

using default parameters [50]. For an analysis based on all

environmental reads, SmashCommunity and MEGAN were used

as described above. CARMA (version 3) [51] was applied, based

on a HMMER search using the Pfam database (version 24.0) [52].

Applying a composition-based analysis, RAIphy 1.0 [53] and

PhymmBL [39] were used. For RAIphy, the binning threshold was

set to 60 and a reference database was compiled based on the

NCBI reference genomes. For PhymmBL, default parameters

were used.

Taxonomic profiling to estimate the fungal community
composition

The fungal community composition was assessed using two

approaches. In a first approach, MEGAN analysis of the results of

a BLASTX search against the NCBI-nr database of data set A was

performed with the min support set to 15 and the min score set to

100. The second approach was based on reads extracted from the

combined data sets A and B and originating from the ITS region,

as described above.

Validation of the metagenomic approach
The results of the phylogenetic analysis of the metagenomic

sequence data of the cocoa bean fermentation sample under study

were compared with the results of former culture-dependent

[(GTG)5-PCR genomic fingerprinting of isolates] and culture-

independent community composition analysis methods (PCR-

DGGE and/or 16S rRNA gene clone library sequencing of

sample DNA) [7,14]. A species was considered to be present in the

ecosystem if it could be detected by all five prediction methods that

were able to classify reads on rank species, namely SmashCom-

Figure 2. Bacterial composition analysis on ranks class and order by using different taxonomic profiling tools. Classes within the
orders Bacilli and c-Proteobacteria are shown on the left y-axis; classes within the orders Actinobacteria, a-Proteobacteria, and others are shown on the
right y-axis. ‘SmashCommunity RG’ depicts SmashCommunity reference genomes, ‘SmashCommunity 16S (1)’ depicts the SmashCommunity 16S
rRNA gene-based method using the meta_rrna approach, ‘SmashCommunity 16S (2)’ depicts the SmashCommunity 16S rRNA gene-based method
using the 16S rRNA gene sequence database approach.
doi:10.1371/journal.pone.0038040.g002
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Figure 3. Bacterial composition analysis on rank genus of the low-abundance members by using different taxonomic profiling
tools. ‘SmashCommunity RG’ depicts SmashCommunity reference genomes, ‘SmashCommunity 16S (1)’ depicts the SmashCommunity 16S rRNA
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munity reference genomes, MEGAN, CARMA, RAIphy, and

PhymmBL.

Data availability
Sequence data from both GS FLX Titanium pyrosequencing

runs were deposited in the NCBI Short Read Archive (SRA) under

the accession number SRA049973.

Results and Discussion

Pyrosequencing and sequence data quality control
As the total bacterial diversity of a cocoa bean fermentation is

limited [5,6] and as only a few microbial species dominate the

fermentation process [7,17,22], only half a PicoTiterPlate was

initially used for pyrosequencing of the metagenomic DNA library

of a Brazilian cocoa bean box fermentation sample. This

pyrosequencing run resulted in 456,225 reads with an average

length of 439 bases, which accounted for approximately 201-Mb

sequence information (data set A; Table 1). To achieve a deeper

coverage of the metagenomic DNA and to elucidate its whole

complexity, the same DNA library was used for a second

pyrosequencing run using a whole PicoTiterPlate, which yielded

1,248,151 reads with an average length of 441 bases and resulted

in 552-Mb sequence information (data set B; Table 1). Data set B

represented a 2.7-fold increase in coverage of the DNA sample

compared to data set A. As the same DNA library was used for

both pyrosequencing runs, the G+C contents of the environmental

reads were approximately the same (<49.6%). No decrease in

G+C contents for longer read sizes were found for both

pyrosequencing runs (Fig. S1), indicating no bias towards

microorganisms with a lower G+C content [54]. The Bioconduc-

tor software package ShortRead indicated only a few exact

duplicates (Table S1), which was confirmed by cd-hit-454 (data

not shown). To avoid underestimation of certain microbial groups

by removing natural duplicates instead of artificial duplicates, no

reads were removed from the data sets.

Bacterial and fungal community richness estimation
through rarefaction analysis

The bacterial and fungal community richness of the reads of

data set A was estimated using rarefaction curves based on

taxonomic classification (Fig. S2). The rarefaction curves for

bacteria indicated a gap between 16S rRNA gene-based methods

and methods using all reads. Further, no saturation of the curves

was reached with the 16S rRNA gene-based methods used. A

gene-based method using the meta_rrna approach, ‘SmashCommunity 16S (2)’ depicts the SmashCommunity 16S rRNA gene-based method using
the 16S rRNA gene sequence database approach.
doi:10.1371/journal.pone.0038040.g003

Figure 4. Reads classified as bacteriophages by MEGAN analysis on rank ‘species’. The y-axis depicts the relative abundance compared to
the total reads assigned by MEGAN.
doi:10.1371/journal.pone.0038040.g004
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rarefaction analysis of the combined data sets A and B revealed

that saturation was reached, namely 36 OTUs for SmashCom-

munity 16S rRNA genes, 37 OTUs for SmashCommunity

reference genomes, and 51 OTUs for MEGAN. This indicates

that all bacterial members of the cocoa bean fermentation process

sample were captured (Fig. 1).

The rarefaction curve for fungi based on data set A indicated

that saturation was barely reached (Fig. S2). When using the

combined data sets A and B, 755 reads containing the ITS1 and/

or ITS2 rRNA gene regions were extracted. A rarefaction analysis

of these sequence reads indicated saturation for the fungal

communities of the cocoa bean fermentation ecosystem, namely

12 OTUs (Fig. 1).

Comparison of different taxonomic profiling tools to
estimate the bacterial community composition

The estimation of the bacterial community diversity varied (for

all different taxonomic ranks) between the taxonomic profiling

tools when they were evaluated independently (Table S2, rows A).

However, when OTUs were only taken into account if they were

predicted by five or more different taxonomic profiling tools, a

more reliable overview of the members of the ecosystem was

obtained (Table S2, rows B). For example, the results of both the

similarity-based and composition-based methods were in accor-

dance, when they were applied for high taxonomic ranks. Indeed,

on rank phylum, all tools were consistent in predicting the amount

of OTUs, i.e., a high abundance of Firmicutes and Proteobacteria and

a low abundance of Actinobacteria (data not shown). Analysis on

rank class revealed that Bacilli were the most abundant, among

which Lactobacillales was the predominant order, although there

was a wide variety of orders between the tools used (from 49% in

the case of PhymmBL to 83% in the case of SmashCommunity

reference genomes; Fig. 2). Several orders within the class c-

Proteobacteria occurred, although this class was dominated by

members of the order Enterobacteriales. Members of the classes

Actinobacteria (orders Actinomycetales and Bifidobacteriales), a-Proteobac-

teria (dominated by order Rhodospirillales), and Clostridia were also

present in the ecosystem under study, but to a lower extent. On

rank order, the two composition-based classification tools (RAIphy

and PhymmBL) predicted a wider diversity (especially within the

class c-Proteobacteria) than tools involving similarity-based methods.

Indeed, both composition-based methods predicted the presence

of different orders within the c-Proteobacteria, whereas these orders

were not, or only to a very low extent, found using similarity-based

methods. This discrepancy could be explained by the fact that

composition-based methods are able to classify reads without the

availability of close relatives in sequence databases, whereas

similarity-based methods do not classify these reads on lower ranks

if sequence similarity is not above a set threshold [53]. However,

the extended bacterial diversity within the c-Proteobacteria predicted

by composition-based methods (besides the diverse order Enter-

obacteriales) was consistent for the different methods used. For all

taxonomic profiling tools, the family of Lactobacillaceae was the most

abundant. Moreover, all tools identified Lactobacillus as the

dominant genus, although large differences were found (from

46% for PhymmBL to 94% for MetaPhyler). Lactobacillus is indeed

a widespread genus associated with cocoa bean fermentation

processes [5,6]. Analysis on rank genus of low-abundant members

Figure 5. Diversity and richness of fungi on rank ‘species’.
doi:10.1371/journal.pone.0038040.g005
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only, omitting the genus Lactobacillus, revealed differences in

predicted OTUs between the classification tools (Fig. 3). Indeed,

the three classification tools based on phylogenetic marker genes

solely (both SmashCommunity 16S rRNA gene-based methods

and MetaPhyler) predicted a restricted diversity compared with

tools that took all reads into account. This difference could be

ascribed to misclassifications of the latter tools, since binning of

reads originating from non-phylogenetic marker genes is more

prone to error; alternatively, it could be due to a failure of

phylogenetic marker gene(s)-based methods [50]. The latter could

originate from misclassifications due to absence of the phyloge-

netic marker gene sequences in the underlying database, or

absence of phylogenetic marker genes in the data set because of

insufficient sequencing. Hence, a phylogenetic analysis using only

one taxonomic profiling tool should be interpreted carefully.

However, predictions on rank genus by tools that took all reads

into account were consistent, although some clear differences in

abundance of these genera was seen. For instance, the PhymmBL

tool classified 8.4% of the reads as Escherichia, which was a higher

abundance compared with any other classification tool that

classified only 0.0 to 1.4% of the reads as Escherichia. Database

bias towards model bacteria such as Escherichia coli might explain

this [55,56].

Taxonomic profiling with the MEGAN package revealed the

presence of 4,296 reads (0.25% of the total amount of reads) that

originated from bacteriophages and that, therefore, were classified

Table 2. Comparison of different community composition analysis methods on rank species.

Species
Metagenomic
DNA (%) PCR-DGGE [14] GTG5-PCR [14]

16S rRNA gene clone
library** [7]

Bacilli

L. brevis 0.5–11.4

L. casei 0.0–0.9

L. fermentum 9.3–96.8 X* X* X

L. plantarum 0.3–10.2 X X

L. reuteri 0.0–2.6 X

L. rhamnosus 0.0–0.2

L. vaginalis X

Lc. lactis 0.0–0.9

Leuc. mesenteroides 0.1–1.6

Leuc. pseudoficulneus*** X*

Leuc. pseudomesenteroides*** X

O. oeni 0.0–1.8

P. acidilactici X

St. salivarius X*

a-Proteobacteria

A. fabarum*** X

A. pasteurianus 0.1–0.8 X X* X

A. senegalensis*** X*

G. oxydans 0.0–3.9 X

Ga. saccharivorans*** X

c-Proteobacteria

E. coli 0.0–8.1

En. cloacae 0.0–0.6

Er. amylovora 0.0–0.8

Er. tasmaniensis 0.0–5.6

K. pneumoniae 0.1–1.9

Pe. carotovorum 0.0–0.2

S. enterica 0.0–2.2

T. citrea X*

T. ptyseos*** X*

*Detected at 30 h.
**No analysis performed at 30 h.
***Only phylogenetic marker gene(s) sequences available in databases.
Species are only considered as present in the ecosystem if they could be detected by all five taxonomic profiling tools. The relative species abundances, predicted by
the different classification tools, are expressed as a range that represent the lowest and highest values obtained. For the other methods, the presence of a species is
denoted by ‘‘X’’. A.: Acetobacter; E.: Escherichia; En.: Enterobacter; Er.: Erwinia; G.: Gluconobacter; Ga.: Gluconacetobacter; K.: Klebsiella; L.: Lactobacillus; Leuc.: Leuconostoc;
Lc.: Lactococcus; O.: Oenococcus; P.: Pediococcus; Pe.: Pectobacterium; S.: Salmonella; St.: Streptococcus; T.: Tatumella.
doi:10.1371/journal.pone.0038040.t002
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as viruses. These viral communities were dominated by Lactoba-

cillus phages, although a few other bacterial hosts such as

Enterobacter and Klebsiella were found as well (Fig. 4). As the DNA

isolation method targeted bacteria and yeasts, it could be assumed

that these reads were indeed from viral origin (such as prophages

or remnants of bacteriophages), which were incorporated into the

bacterial genomes, as lactobacilli often harbor phage DNA [57–

59]. Indeed, a striking similarity between the dominant bacterial

genera (Lactobacillus) and the dominant predicted bacteriophage

hosts (Lactobacillus) was found, supporting the assumption that an

interaction exists between bacterial hosts and the viral communi-

ties [60]. A restricted diversity within these phage DNA-associated

sequences was found, as only members of the families Siphoviridae

and Myoviridae, which belong to the order Caudovirales, were

retrieved. Similarly, the viral communities of fermented shrimp,

kimchi, and sauerkraut are dominated by bacteriophages belong-

ing to the viral order Caudovirales [61]. This is the first report on the

occurrence of bacteriophages of lactobacilli in a cocoa bean

fermentation sample. However, it is well known that bacterio-

phages are associated with LAB involved in food fermentation

processes [62,63].

Taxonomic profiling of the fungal community
composition

Fungal community composition analysis of data set A classified

only 2,032 reads (0.16%) within the kingdom Fungi. Almost all

reads were classified on high taxonomic ranks. Only 268 out of the

2,032 reads could be classified on genus or species level, the latter

being classified as Hanseniaspora uvarum, Kluyveromyces lactis, Lachancea

thermotolerans, Pichia angusta, Saccharomyces cerevisiae, and Zygosacchar-

omyces rouxii. This indicates that a BLASTX-based MEGAN

analysis of a whole-community metagenomic data set was not

suitable to classify the reads on a low taxonomic rank. However, a

combination of extracting reads containing a (partial) ITS region

and a subsequent BLASTN similarity search was able to classify a

total of 755 reads on rank species (Fig. 5). The present

metagenomic analysis indicates that the most prevailing yeast

was H. uvarum, followed by Hanseniaspora opuntiae, and S. cerevisiae,

which accounted for 45.2%, 10.6%, and 9.5% of all yeast DNA,

respectively. These species are commonly associated with cocoa

bean fermentation processes [20,64]. Further, other species

commonly occurring during cocoa bean fermentations were found

in the current sample as well, such as Candida glabrata, K. lactis,

Pichia fermentans, Debaryomyces hansenii, Candida stellimalicola, Schizo-

saccharomyces pombe, and species of the families Saccharomycodaceae

and Saccharomycetaceae. In addition, fungal species that were not yet

associated with cocoa bean fermentations were identified. For

instance, Vanderwaltozyma polyspora is a yeast species previously

isolated from a soil ecosystem [65] and Z. rouxii has been reported

in miso and soy sauce fermentations [66]. Moniliophthora perniciosa

and Eremothecium gossypii, both plant pathogenic filamentous fungi,

and the human pathogenic Candida albicans were found as well, but

their identification could be the result of database bias towards

pathogenic fungal species [55,56]. However, as M. perniciosa causes

witches’ broom disease of cocoa trees [67], it is not surprising that

this species was present in fermenting cocoa pulp-bean mass.

Validation of the metagenomic approach
A comparison of the results of the phylogenetic analysis using

different computational methods with former results of culture-

dependent and culture-independent community composition

analyses revealed that the metagenomic approach was able to

retrieve most of the previously identified members (Table 2). This

was even the case on rank species, which is generally regarded as

inaccurate [68]. Lactobacillus fermentum and A. pasteurianus were

identified as the prevailing LAB and AAB species, respectively,

which was in accordance with 16S rRNA gene-PCR-DGGE and

(GTG)5-PCR fingerprinting analyses of this 30-h fermentation

sample [7,14]. This underlines the functional role of both species

during cocoa bean fermentation [6,69]. Also, L. plantarum,

Lactobacillus reuteri, and G. oxydans were identified by metagenomic

sequencing of the 30-h fermentation sample, whereas these species

were not found by 16S rRNA gene-PCR-DGGE and/or (GTG)5-

PCR analysis. Further, the metagenomic analysis revealed the

presence of several bacterial species, which were not detected in

this fermentation sample by culture-dependent and/or culture-

independent analysis. This included opportunistic members of the

cocoa bean fermentation process, such as E. tasmaniensis, Lactoba-

cillus brevis, Lactobacillus casei, Lactococcus lactis, Leuconostoc mesenteroides,

and Oenococcus oeni [3,7,12,18,70–72]. Additionally, some bacterial

species were found that were not yet detected during cocoa bean

fermentation processes, such as Lactobacillus rhamnosus, an intestinal

inhabitant [73]. Further, Pectobacterium carotovorum and Erwinia

amylovora are phytopathogens, causing potato rot diseases and wilt

diseases on Rosaceae, respectively [74]. The occurrence of

Escherichia coli, Salmonella enterica, Klebsiella pneumoniae, and Entero-

bacter cloacae, might be unexpected, although contamination with

gastro-intestinal (pathogenic) bacteria may occur. However, as

only relatively few reads were classified within these species

(,1%), their presence could be the result of an overestimation due

to a bias towards (pathogenic) model bacteria in the databases used

[55,56]. In contrast, other species such as Fructobacillus pseudofi-

culneus, Acetobacter senegalensis, and Tatumella ptyseos were not

retrieved using the metagenomic approach. This was probably

due to the lack of sequence information of these species, for which

only one or a few phylogenetic marker gene(s) are available, in

public databases that were used to perform the taxonomic

profiling. Further, it could be due to differences in homogeneity

in sample material in the case these species display a low

abundance at the particular time point investigated.

Former results indicated that the prevailing yeast in this cocoa

bean fermentation sample is a Hanseniaspora species, most likely H.

opuntiae [64]. However, this species could not be distinguished from

H. uvarum and Hanseniaspora guilliermondii through 26S rRNA gene-

PCR-DGGE [64]. In contrast, the metagenomic sequencing

approach of the present study revealed that H. uvarum is the

prevailing yeast at this time point. Indeed, using reads originating

from the ITS region, it was possible to differentiate between H.

uvarum and H. opuntiae. Hence, it is likely to assume that H. uvarum,

H. opuntiae, and S. cerevisiae are the prevailing yeasts during cocoa

bean fermentation. Additionally, whereas only a few yeast species

were detected before, a wide fungal diversity was found in this

sample using a metagenomic approach.

Conclusions
This study is the first report on the taxonomic analysis of a

cocoa bean fermentation sample using a metagenomic approach,

i.e., 454 pyrosequencing of whole-community DNA. It was shown

that this approach, when applying two pyrosequencing runs to

obtain a high depth of coverage, was suitable to reveal both

dominant and rare bacterial and fungal members of the cocoa

bean fermentation ecosystem at a certain time point and to

identify associated bacteriophages. However, this approach does

not provide information about the community dynamics through-

out the whole fermentation process. A combination of different

similarity-based and composition-based methods, including both

phylogenetic marker gene(s)-based analysis as well as methods

using all available sequence information, appears to be necessary
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to obtain a credible view on the microbial community diversity of

a complex microbial ecosystem, such as the cocoa bean

fermentation process. Dominant species were H. uvarum, H.

opuntiae, S. cerevisiae, L. fermentum, and A. pasteurianus, which was in

accordance with former culture-dependent and culture-indepen-

dent community analysis methods and underlines their importance

in cocoa bean fermentations. In addition, sequence reads

associated with viral communities were found, representing only

members of the families Myoviridae and Siphoviridae, with Lactoba-

cillus as the dominant microbial host, which is in accordance with

the microbial phylogenetic analysis. These results indicate the

superiority of metagenomic sequencing over previously used

techniques for a phylogenetic characterization of complex matrices

such as that involved in the cocoa bean fermentation process. The

wider diversity retrieved in the present study is of importance to

generate further insights into the functional roles of bacteria, fungi,

and bacteriophages during cocoa bean fermentation, which is of

great importance to select an appropriate starter culture for

homogeneous, fast, and successfully controlled processes [75–77].

Supporting Information

Figure S1 Distribution of the average G+C content as a
function of read length. Two pyrosequencing data sets were

used, which were the result of a pyrosequencing run using half a

PicoTiterPlate and a complete PicoTiterPlate.

(TIF)

Figure S2 Rarefaction analysis of the genera found with
data set A. The rarefaction curves represent an estimation of the

number of genera associated with different sampling sizes. As the

results of the two 16S rRNA gene-based methods of the

SmashCommunity platform were similar, only one method (based

on the similarity with a 16S rRNA gene sequence database of the

SmashCommunity platform) is shown. As the plateau phase of the

SmashCommunity reference genomes platform and MEGAN was

reached at 25,000 reads, the X-axis is limited to this number of

reads.

(TIF)

Table S1 Duplicate reads. Data set A refers to the

sequencing run using two regions of a four-region gasket (half a

PicoTiterPlate); data set B refers to the sequencing run of a

complete PicoTiterPlate.

(DOC)

Table S2 Bacterial community diversity estimations for
the eight taxonomic profiling tools used. For each of the

taxonomic profiling tools used, the numbers in row A refer to the

originally estimated OTUs per rank; the numbers in row B refer to

a subsection of the OTUs in row A that were also estimated by at

least four other taxonomic profiling tools. The numbers between

brackets depict the percentage of reads used to estimate the

number of OTUs in row A that are included by the OTUs in row

B. ‘SmashCommunity RG’ depicts SmashCommunity reference

genomes, ‘SmashCommunity 16S (1)’ depicts the SmashCommu-

nity 16S rRNA gene-based method using the meta_rrna approach,

‘SmashCommunity 16S (2)’ depicts the SmashCommunity 16S

rRNA gene-based method using the 16S rRNA gene sequence

database approach.

(DOC)
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