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Abstract: Understanding the magnitude of responses to vaccination during the ongoing SARS-
CoV-2 pandemic is essential for ultimate mitigation of the disease. Here, we describe a cohort
of 102 subjects (70 COVID-19-naïve, 32 COVID-19-experienced) who received two doses of one of
the mRNA vaccines (BNT162b2 (Pfizer–BioNTech) and mRNA-1273 (Moderna)). We document
that a single exposure to antigen via infection or vaccination induces a variable antibody response
which is affected by age, gender, race, and co-morbidities. In response to a second antigen dose,
both COVID-19-naïve and experienced subjects exhibited elevated levels of anti-spike and SARS-CoV-
2 neutralizing activity; however, COVID-19-experienced individuals achieved higher antibody levels
and neutralization activity as a group. The COVID-19-experienced subjects exhibited no significant
increase in antibody or neutralization titer in response to the second vaccine dose (i.e., third antigen
exposure). Finally, we found that COVID-19-naïve individuals who received the Moderna vaccine
exhibited a more robust boost response to the second vaccine dose (p = 0.004) as compared to the
response to Pfizer–BioNTech. Ongoing studies with this cohort will continue to contribute to our
understanding of the range and durability of responses to SARS-CoV-2 mRNA vaccines.

Keywords: SARS-CoV-2; COVID-19; vaccine response; antibodies; mRNA-1273; BNT162B2

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded
RNA betacoronavirus that emerged in 2019 and is the causative agent of the ongoing
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coronavirus disease 2019 (COVID-19) pandemic [1,2]. Outcomes after infection range from
asymptomatic to severe disease to death, resulting in millions of deaths worldwide [3].
The genome of SARS-CoV-2 encodes four structural proteins, a nucleocapsid (N) pro-
tein surrounded by an envelope containing three membrane proteins: membrane (M),
envelope (E), and spike (S), which is divided into two functional subunits, S1 and S2 [4].
Of these proteins, S and N elicit robust adaptive immune responses and have been widely
used to detect seroconversion after infection [5,6].

The receptor-binding domain (RBD) within the S1 subunit of the viral spike protein
directly interacts with the cellular angiotensin-converting enzyme 2 (ACE2) receptor to
mediate host cell entry [7–11]. By binding to the RBD, antibodies can block the attachment
of the virus to ACE2 and neutralize the virus [12]. Thus, analyses of antibodies against
spike often focus on the RBD. However, other regions within spike, such as the N-terminal
domain (NTD) and S2 domain, also contain neutralizing epitopes [13–17], suggesting that
evaluating the antibody response to the full spike protein and determining neutralizing
titers provides a more comprehensive picture of the antibody response to natural infection
and vaccination.

Virus-specific antibodies against the main viral immunogens, S and N, can be de-
tected in most patients after SARS-CoV-2 infection [18–20]. While challenge studies con-
ducted for seasonal coronaviruses demonstrate reasonably high levels of the baseline
neutralizing antibody, protection from endemic coronavirus infection is short-lived [21–23].
Likewise, emerging data suggest a relatively rapid decline in SARS-CoV-2 antibodies post-
infection [24–28]. Importantly, data from cell culture [13] and passive transfer of antibodies
in non-human primates [29] indicate that circulating spike-specific antibodies provide
protection against SARS-CoV-2 infection. Less than a year after COVID-19 was declared a
pandemic, two mRNA vaccines, BNT162b2 (Pfizer–BioNTech) and mRNA-1273 (Moderna),
received emergency use authorization in the U.S. based on data from initial trials indicating
95% protection from severe disease by both mRNA vaccines [30,31]. However, data are still
emerging detailing the relative levels of immunity elicited by these SARS-CoV-2 vaccines,
as they only became available for distribution in December 2020 [32,33].

If maintained at sufficiently high levels, antibodies induced by SARS-CoV-2 infec-
tion and/or vaccination should help block or attenuate infection and help end the pan-
demic. Because vaccination is the preferred/safer path to reach herd immunity [34,35],
additional data independent from the original vaccine manufacturers’ selected populations
is needed to further our understanding of the development and durability of virus-specific
antibodies after SARS-CoV-2 vaccination. This knowledge will enable management of
the pandemic, provide insight into the most effective vaccination practices (e.g., optimal
administration of booster immunizations), and provide information regarding the utility of
post-vaccination antibody testing.

To add to the critical mass of growing knowledge needed regarding the immune
response to SARS-CoV-2 infection and vaccination, we established a longitudinal co-
hort of over 1000 individuals to follow serologically during the pandemic. Here we
report on 70 SARS-CoV-2-naïve and 32 SARS-CoV-2-recovered individuals (“COVID-19-
experienced”) who received two doses of one of the SARS-CoV-2 mRNA vaccines and
provided serial blood samples. Using these longitudinal samples, we assessed serum
antibodies prior to and after the first and second immunization doses, correlated this
with SARS-CoV-2 neutralization, and assessed the impact of demographic variables on
vaccine responses.

2. Materials and Methods
2.1. Study Design and Recruitment

Between June 2020–April 2021, 102 individuals 18 years of age or older (70 COVID-
19-naïve, 32 COVID-19-experienced) gave written informed consent to participate in this
prospective study, which was approved by the Loyola University Chicago Institutional
Review Board (IRB# 213447032320 and 214521021621). Subjects were defined as COVID-19-
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naïve or COVID-19-experienced based on three criteria: self-reported history of a SARS-
CoV-2-positive test, pre-existing antibodies against spike, and/or pre-existing antibodies
against nucleocapsid. All subjects received either Pfizer (BNT162b2) or Moderna (mRNA-
1273) mRNA vaccines. Peripheral venous blood and demographic/clinical questionnaire
data were collected at three study visits: baseline (PV), 3 weeks post-initial vaccine dose
(V1), and 3 weeks after the second vaccine (V2). Cohort demographics are provided
in Table 1.

Table 1. Participant characteristics by COVID-19 experience.

Overall COVID-19-
Experienced

COVID-19-
Naïve p-Value

N = 102 N = 32 N = 70

Age, mean (SD) (n = 100) * 46 (13) 46 (15) 46 (12) 0.81

Female, n (%) 77 (75.5) 23 (71.9) 54 (77.1) 0.57

Race/ethnicity, n (%)

Caucasian 79 (77.5) 22 (68.8) 57 (81.4)

0.52

Hispanic 8 (7.8) 3 (9.4) 5 (7.1)

Black 4 (3.9) 2 (6.3) 2 (2.9)

Asian 9 (8.8) 4 (12.5) 5 (7.1)

Other 2 (2.0) 1 (3.1) 1 (1.4)

Healthcare worker, n (%) 88 (86.3) 25 (78.1) 63 (90.0) 0.13

Self-Reported Comorbidities, n (%)

Diabetes 4 (3.9) 1 (3.1) 3 (4.3) 0.99

Cardiovascular disease 17 (16.7) 2 (6.3) 15 (21.4) 0.06

Immunocompromised 1 (1.0) 0 (0.0) 1 (1.4) 0.99

Lung disease 6 (5.9) 2 (6.3) 4 (5.7) 0.99

Other 2 (2.0) 1 (3.1) 1 (1.4) 0.53

None 77 (75.5) 27 (84.4) 50 (71.4) 0.16

Vaccine received **, n (%)

Pfizer 81 (79.4) 24 (75.0) 57 (81.4)
0.46

Moderna 21 (20.6) 8 (25.0) 13 (18.6)
Patient characteristics are presented overall and stratified based on previous COVID-19 infection (experienced
versus naïve). Group differences were assessed for statistical significance using a t-test for age and chi-square or
Fisher’s exact test for nominal variables. * Overall participant number was 102, except for age as two participants
did not provide their age. ** All participants received the same vaccine brand for both their first and second doses.

2.2. Quantitative Enzyme-Linked Immunosorbent Assay (ELISA)

ELISA was performed using the spike antigen (hexapro), which contains six point
mutations that stabilize the extracellular domain of spike in its prefusion conformation [36].
The six histidine residue (6XHis)-tagged hexapro antigen was produced by the tran-
sient transfection of HEK-293T cells with the plasmid SARS-CoV-2 S HexaPro encoding
the hexapro antigen (Addgene, Watertown, MA, USA, Cat#154754) using Mirus Trans
LT1 (Mirus, Marietta, GA, USA, Cat# MIR 2305). The hexapro protein was purified by
affinity chromatography utilizing Ni-NTA agarose (ThermoFisher Scientific, Waltham,
MA, USA), and purity was assessed by sodium dodecyl sulfate polyacrylamide gel elec-
trophoresis (SDS-PAGE). The ELISA was performed according to the method described by
Stadlebauer et al. [37]. Donor sera were initially screened at a 1:450 dilution and compared
with pre-pandemic controls to identify anti-SARS-CoV-2 spike responses. Antibody end-
point titers were then determined by serial dilution of the samples to negativity to identify
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the point where the background subtracted absorbance was no longer distinguishable from
the OD of the pre-pandemic negative control serums at the same dilution.

2.3. Magpix Multiplex Immunoassay

Multiplex immunoassays were performed as previously described (Johnston et al.,
2021; Golden et al., 2021). The antigens for the assay were: recombinant SARS-CoV-2 full
trimeric spike (gift from Dr. Jason McLellan’s group; UT-Austin [9]), S1 (Sino Biological,
40591-V08H, Chesterbrook, PA, USA), RBD (Sino Biological, 40592-V08H), and nucleocap-
sid protein (NP) (Native Antigen Company, REC31812-100, Kidlington, UK). Recombinant
proteins were conjugated to magnetic microspheres using the Luminex xMAP1antibody
coupling kit (Luminex Inc., Austin, TX, USA) according to the manufacturer’s instructions
at a final concentration of 4 ug antigen: 1 × 106 microspheres, a concentration that has
been shown to be optimal for IgG and IgM detection [38]. SARS-CoV-2 full spike, S1, RBD,
and NP were coupled to Magplex microsphere regions #45, #55, #65, and #25, respectively,
in order to facilitate multiplexing experiments. Beads were stored at 4 ◦C until further use.
Donor serum samples were diluted 1:100 in 1× PBS containing 0.02% Tween-20 (Sigma, St.
Louis, MO, USA) (PBST) and 5% skim milk (PBST-SK). Each individual antigen-coupled
bead was mixed at a 1:1 ratio prior to diluting in PBST to 5 × 104 microspheres/mL, and the
mixture was added to the wells of a Costar polystyrene 96-well plate at 50 uL per well (2500
microspheres of each antigen bead set/well). The plate was placed on a magnetic plate
separator (Luminex Corp., Austin, TX, USA), covered with foil, and microspheres were
allowed to collect for 60 s. While still attached to the magnet, the buffer was removed from
the plate by inverting. Then, 50 uL of diluted serum samples were added to appropriate
wells. The plate was covered with a black, vinyl plate cover and incubated with shaking
for 1 h at ambient temperature. The plate was washed three times with 100 uL of PBST
for each wash, using the plate magnet to retain the Magplex microspheres in the wells.
Liquid was discarded by inverting. Next, 50 uL of a 1:100 dilution of goat anti-human IgG
phycoerythrin conjugate (Sigma, P9170) in PBST-SK was added to the wells. The plate
was covered again with a black, vinyl plate sealer and incubated with shaking for 1 h at
ambient temperature. After incubation, the plate was washed three times as detailed above,
and the Magplex microspheres were resuspended in 100 uL of PBST for analysis on the
Magpix instrument (Luminex Corp, Austin, TX, USA). Raw data were reported as median
fluorescence intensity for each bead set in the multiplex.

2.4. Abbott SARS-CoV-2 Anti-N IgG Assay

The Abbott anti-N chemiluminescent microparticle immunoassay was run in the
Loyola University Medical Center Clinical Laboratory to qualitatively detect anti-N IgG
antibodies to the nucleocapsid protein of SARS-CoV-2. This assay is currently approved for
use under the United States Food and Drug Administration’s emergency use authorization.
The assay was performed on an Abbott Laboratories ARCHITECT™ i2000SR analyzer.
The signal was measured in relative light units (RLU). A direct, proportional relationship
is established between the amount of IgG antibodies to SARS-CoV-2 in the sample and the
RLU detected by the system optics following an established assay calibration. This relation-
ship is reflected in the calculated index, the signal-to-cutoff ratio (S/CO). The positivity
threshold has been established as S/CO exceeding a ratio of 1.4. Based on this S/CO,
the results herein are presented as negative or positive.

2.5. SARS-CoV-2 Microneutralization Assay

Serum samples were diluted 1:10 in cell culture media (MEM; Corning, Corning, NY,
USA, 10-010) containing 2% fetal bovine serum (FBS) (GE Healthcare, Chicago, IL, USA)
and diluted 3-fold for a 9-point dilution curve. Naïve human sera (Sigma, St. Louis, MO,
USA, H4522) and SARS-CoV-2 convalescent sera were used as a negative and positive
control, respectively. Diluted serum samples were mixed 1:1 with the SARS-CoV-2 WA1
strain and incubated at 37 ◦C for 1 h. The serum–virus mixture was then added to Vero E6
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cells at a multiplicity of infection (MOI) of 0.2 and incubated at 37 ◦C for 1 h. Unbound
virus was removed, fresh cell culture media (MEM/10% FBS/1% PenStrep) was added to
each well, and the infection progressed for an additional 23 h. Cells were then fixed in 10%
formalin, washed three times with PBS, permeabilized with 0.2% Triton X-100, and blocked
with Cell Staining Buffer (BioLegend, San Diego, CA, USA, 420201). The number of infected
cells was determined using SARS-CoV-nucleocapsid–specific monoclonal antibody (Sino
Biological, 40143-R001) and goat anti-rabbit IgG (H + L) Alexa Fluor 488 fluorescently la-
beled secondary antibody (Life Technologies, Carlsbad, CA, USA, A11008). The percentage
of infected cells was determined with an Operetta high-content imaging instrument, and
data analysis was performed using the Harmony software (Perkin Elmer, Naperville, IL,
USA). Percentage neutralization for each sample was determined relative to untreated,
virus-only control wells.

2.6. Statistical Methods

Patient characteristics are presented overall and stratified based on previous COVID-
19 infection status (experienced versus naïve), and group differences were assessed for
statistical significance using a t-test for age and chi-square or Fisher’s exact test for nominal
variables. To assess differences in immune response before vaccination, after the first vacci-
nation dose, and after the second vaccination dose, the natural log of endpoint antibody
titer was regressed on COVID-19 exposure, time-point, and the exposure by time interaction
term while controlling for age, gender, and race using linear mixed-effects models (LMM).
LMMs included random intercepts to account for correlation due to repeated participant
measurements. Among the COVID-19-naïve only, the magnitude of vaccine response
was compared by each participant characteristic using a separate LMM that included the
characteristic of interest, time, and an interaction term. Adjusted means were plotted by
participant characteristic and time-point. Correlations at primary exposure (CE PV and
CN-V1) and first boost (CE-V1 and CN-V2) were estimated with Spearman’s rho. Analyses
were performed using SAS 9.4 (SAS Institute, Cary, NC, USA).

3. Results

To assess antibody response to the two-dose SARS-CoV-2 mRNA vaccines (Pfizer
BNT162b2 and Moderna mRNA-1273), we prospectively enrolled participants and col-
lected longitudinal serum samples and data. Peripheral blood samples were collected for
quantitative enzyme-linked immunosorbent assay (ELISA) of anti-spike antibodies pre-
and post-vaccination, with a focus on three timepoints that allowed analysis of the immune
responses following both primary and secondary immunizations, that is, pre-vaccine base-
line (PV), 3 weeks following the first vaccine dose (V1) and 3 weeks following the second
vaccine dose (V2). The mean age was 46 ± 13, and the majority were women (n = 77, 75.5%),
Caucasian (n = 79, 77.5%), and healthcare workers (n = 88, 86.3%). Only 25% of partici-
pants self-reported any comorbidities, with the most prevalent comorbidity reported being
cardiovascular disease (CVD)(n = 17, 16.7%) (Table 1).

3.1. Defining SARS-CoV-2 Infection Status Prior to Vaccination

Because a large percentage of SARS-CoV-2 infections is asymptomatic and tests were
in short supply early in the pandemic [39], many of those enrolled in our study may have
been infected, but not tested. Therefore, participants’ prior infection status was deter-
mined using three indications of infection: a self-reported positive RT-qPCR test, detection
of antibodies against the viral nucleocapsid protein (anti-N), and/or detection of pre-
vaccination antibodies against the viral spike protein (anti-S) (Table S1). Over two-thirds
of those enrolled exhibited no evidence of previous COVID-19 infection at the time of
vaccination (n = 70, 68.6%) (i.e., COVID-19-naïve, CN). Others were deemed COVID-19-
experienced (CE) if any one of these was positive, except for one individual (Subject #41)
who self-reported a positive RT-qPCR test but had no symptoms nor any detectable anti-
body response in monthly samples tested before and after the RT-qPCR test, and thus was
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categorized as naïve with a presumed false-positive RT-qPCR test. Of the 32 individuals
defined as CE, 19 met all three of the criteria above, 8 met two of the criteria, and 5 met one
of these criteria (Table S1). Two subjects defined as CE (#17 and #22) were anti-S-negative
prior to vaccination but had other documentation of infection. Subject #17 had multiple
RT-qPCR-documented COVID-19 infections pre-vaccination with severe symptoms each
time, but did not generate a detectable antibody response after these infections. However,
this subject responded robustly to the first dose of vaccine, consistent with a memory
response. Subject #22 became anti-N positive after their first dose of vaccine, and thus
appears to have become infected during the vaccination process. The characteristics of the
CE and CN participants were similar except for higher rates of self-reported cardiovascular
disease (21.4% vs. 6.3%; p = 0.06) and slightly more healthcare workers (90.0% vs. 78.1%,
p = 0.13) in the CN cohort compared to CE (Table 1).

3.2. Antibody Responses to SARS-CoV-2 mRNA Vaccination

A standard measure of vaccine response is the level of target antigen-specific antibod-
ies detectable in the serum. Therefore, we measured anti-S antibody levels in longitudinal
serum samples in persons with and without prior SARS-CoV-2 infection. Levels were
quantified by end-point dilution ELISA. Prior to vaccination, COVID-19-naïve participants
had levels of antibody binding to the full-length extracellular domain of the SARS-CoV-2
spike protein (i.e., hexapro) similar to pre-pandemic negative controls, and were therefore
designated as seronegative (Figure 1, CN-PV, blue). After the first vaccine dose, all previous
seronegative participants exhibited an anti-S response above the pre-pandemic controls;
however, the levels were variable (Figure 1, CN-V1, blue). Upon second antigen exposure
with the second vaccine dose, the COVID-19-naïve group exhibited an average 6.4-fold
increase in anti-S levels and there was less variability in the antibody levels (Figure 1,
CN-V2, blue). Consistent with this, there was an inverse relationship between CN-V1
antibody levels and the level of boost observed in response to the second dose of vaccine
(R2 = 0.403; p < 0.001) (Figure S1A). In the CE group, all but two individuals had detectable
levels of anti-S pre-vaccination with the range and variability of antibody levels being
similar to that observed in the CN group after their first antigen exposure via vaccination
(p = 0.06) (Figure 1, CE-PV, red). As a group, these pre-existing, infection-induced antibody
levels were increased almost 50-fold after the first dose of vaccine, with this subsequent
exposure resulting in a more uniform antibody level within the group (Figure 1, CE-V1,
red). This pattern is similar to that observed in the CN group upon the second antigen
exposure. Again, consistent with the more uniform antibody level after this second antigen
exposure, there was an inverse relationship between the PV antibody levels and the level of
antibody boost observed in response to the first dose of vaccine in the CE group (R2 = 0.409;
p < 0.001) (Figure S1B). However, in contrast to the pattern observed in the CN group,
the CE group exhibited no additional increase in antibody levels following the second
vaccine dose (p = 0.77) (Figure 1, CE-V2, red). Regardless, there was a significant difference
in the final antibody levels achieved in the CN and CE groups, with the CE group reaching
higher antibody titers (p < 0.0001).
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Figure 1. Antibody responses to SARS-CoV-2 mRNA vaccination quantified by anti-spike ELISA.
Serially diluted serum samples were subject to hexapro antigen-based ELISA to determine the dilution
at which positive antigen-binding was lost, that is, the endpoint titer (EPT). (A) The natural log of
the mean EPT ± standard error of COVID-19-experienced (CE; red) and COVID-19-naïve (CN; blue)
groups were calculated for samples obtained pre-vaccination (PV), 3 weeks after the first vaccine
dose (V1), and 3 weeks after the second vaccine dose (V2). (B) The natural log of the mean and
quartiles are graphed (y-axis). † The lowest antibody dilution tested was 1:450; hence, negative
samples were defined as <1:450 and are graphed at a titer of 1:450 (i.e., ln 6.1). ns = not significant.
*** represents p < 0.001. Two-sample t-tests were performed for comparisons of CN to CE. Paired
t-tests were used for within-group comparisons (e.g., CE from V1 to V2).

Because antibody detection is dependent on the antigen bait used in individual assays,
we performed a second, independent assay to assess reactivity against other spike antigens.
We used the MagPix multiplexed immunoassay to measure serum reactivity against an
analogous full-length spike antigen, the spike S1 domain, and the spike RBD. Relative
binding to all three of these antigens correlated well with the initial ELISA results except that
these assays demonstrated saturation at higher antibody levels as endpoint dilution was
not performed (Figure 2A–C). In all cases, reactivity against the S1 and RBD of Spike was
observed after the full two-dose vaccination was completed; however, five CN individuals
did not exhibit anti-RBD binding after a single dose of vaccine (Figure 2C).
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Figure 2. Correlation of anti-spike ELISA with MagPix immunoassays to different spike regions.
Multiplex immunoassays were performed using recombinant antigens containing different re-
gions of the viral spike proteins: (A) SARS-CoV-2 full trimeric spike, (B) the spike S1 domain,
and (C) the spike RBD. Graphed is the Magpix median fluorescence intensity for each bead set
(y-axis) and corresponding ELISA endpoint titer (x-axis). The red line represents the MagPix 98%
cutoff values for each antigen: full spike = 6364, S1 = 337, RBD = 6360. Spearman’s rank correlation
coefficient with 95% confidence intervals and p-value are shown.

3.3. Factors Associated with the Magnitude of Vaccine-Induced Antibody Response

Because prior SARS-CoV-2 infection has a profound effect on vaccine response and
notable variability in vaccine response was observed in the CN group upon initial exposure
to the first dose of vaccine (Figure 1), our efforts to identify host factors associated with
vaccine response focused on the CN group, whose first exposure was a controlled antigen
dose administered at a known time. We utilized linear regression modeling to determine if
specific host factors correlate with the magnitude of the vaccine-induced antibody response
in COVID-19-naïve individuals (Table 2). In contrast to previous reports that older age is
associated with higher antibody responses to SARS-CoV-2 infection [40,41], subjects aged
50 years and older exhibited lower antibody levels throughout the vaccination process
(p = 0.01). However, further analysis revealed that this was driven primarily by the
significant difference observed after the first vaccine dose (8.4 ± 0.1 among < 50 vs. 7.7 ± 0.1
among ≥50 years old; p < 0.001). Non-Caucasians exhibited higher antibody endpoint
titer (EPT) after both the first vaccine dose (8.7 ± 0.2 vs. 8.0 ± 0.1; p = 0.005) and the
second vaccine dose (10.7 ± 0.2 vs. 10.2 ± 0.1; p = 0.03). Consistent with a prior report [42],
antibody EPT was higher in those who received the Moderna vaccine compared to Pfizer
(p = 0.05); however, we observed that it was the response to the second dose that exhibited
the most significant difference between the two mRNA vaccines (10.8 ± 0.2 vs. 10.2 ± 0.1;
p = 0.004). The five CN individuals who did not demonstrate reactivity to the spike RBD
after the first vaccination dose all received the Pfizer vaccine, but the differences in percent
non-reactivity were not significant (0% Moderna vs. 8.8% Pfizer (p = 0.58)). However,
analogous to the hexapro ELISA response levels (Table 2), those who received the Moderna
vaccine had higher RBD-binding after their first dose of vaccine (Moderna (21,577 ± 1966)
compared to Pfizer (16,698 ± 7407) (p = 0.03)). In agreement with recent reports [32,33],
we saw no overall differences in vaccine antibody response between males and females
(p = 0.33). However, analysis of the levels achieved after the first vaccine dose revealed a
higher response in females (p = 0.01) that was not maintained after the second vaccine dose
(p = 0.45). Co-morbidities, which are often found to be colinear with age, exhibited a similar
pattern with a difference in levels observed after the first vaccine dose (p = 0.03), but in the
end had no effect on the final V2 outcomes (p = 0.34).
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Table 2. Characteristics associated with the antibody response in the CN population.

N
Adjusted Mean Antibody Ln (EPT) ±

Standard Error p-Value:
Interaction

Time-Point Differences

PV V1 V2 V1 V2

Age

<50 41 0.1 ± 0.1 8.4 ± 0.1 10.4 ± 0.1
0.01 <0.001 0.19

≥50 28 0.1 ± 0.1 7.7 ± 0.1 10.1 ± 0.1

Gender

Female 54 0.1 ± 0.1 8.3 ± 0.1 10.3 ± 0.1
0.33 0.01 0.45

Male 16 0.0 ± 0.2 7.8 ± 0.2 10.2 ± 0.2

Race/ethnicity

Caucasian 57 0.1 ± 0.1 8.0 ± 0.1 10.2 ± 0.1
0.045 0.005 0.03

Non-
Caucasian 13 0.0 ± 0.2 8.7 ± 0.2 10.7 ± 0.2

Comorbidities

Any 20 0.1 ± 0.1 7.9±0.2 10.1±0.2
0.50 0.03 0.34

None 50 0.0 ± 0.2 8.3 ± 0.1 10.3 ± 0.1

Vaccine
received

Pfizer 57 0.1 ± 0.1 8.1 ± 0.1 10.2 ± 0.1
0.048 0.05 0.004

Moderna 13 0.0 ± 0.2 8.5 ± 0.2 10.8 ± 0.2

Separate linear mixed models regressed antibody ln (EPT) on each participant characteristic, time, and an
interaction term to estimate adjusted means.

We next examined the differences in antibody titers observed between the CN and
CE groups while controlling for covariates including age, gender, and race. This analysis
confirmed that the adjusted antibody EPT varies significantly by COVID-19 experience
over time (Figure 3). At each time point, the COVID-19-experienced group had a higher
adjusted antibody EPT (p < 0.001 for all comparisons). Analysis controlling for vaccine
type (i.e., Moderna vs. Pfizer) was also performed, but the three-way interaction was not
significant (p = 0.92) (Figure S2) and so the simpler model without vaccine type is presented.
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Figure 3. Differences in vaccine response between CE and CN individuals controlling for age, gender,
and race. (A) The natural log of the adjusted mean antibody EPT ± standard error of COVID-19-
experienced (CE; red) and COVID-19-naïve (CN; blue) groups was calculated for samples obtained
pre-vaccination (PV), 3 weeks after the first vaccine dose (V1), and 3 weeks after the second vaccine
dose (V2). (B) The natural log of the mean ±95% confidence interval is graphed (y-axis).

The magnitude of vaccine response was compared for each participant characteristic
using a separate linear mixed model that included the characteristic of interest, time, and an
interaction term. Adjusted mean EPT ± standard error was calculated for each subgroup
at each time, and the significance of differences was assessed at V1 and V2.

3.4. Relationship between Serum Antibody Levels and Virus Neutralization

Several previously published anti-SARS-CoV-2 antibody titers quantified by ELISAs
have been shown to correlate with neutralizing titers [13,43,44]. To determine whether our
anti-S measurements corresponded with virus neutralization, we assessed antibody neu-
tralization of a subset of samples using a microneutralization assay that tests the ability of
the sera samples to neutralize infectious SARS-CoV-2 [13]. We assayed samples from 25 of
the 32 COVID-19-experienced participants for which we had the necessary V1 samples and
16 random samples from the 70 COVID-19-naïve participants. Overall, the neutralization
titers show a similar pattern to that observed for the antibody EPT (Figure 4). As expected,
prior to vaccination, COVID-19-naïve participants had no neutralization activity (Figure 4,
CN-PV, blue). After the first vaccine dose, only 10 of the 16 CN participants exhibited
neutralizing activity, even though all 16 had detectable anti-S antibodies. As a group,
the CN exhibited a relatively low mean neutralization titer (54 ± 17) (Figure 4, CN-V1,
blue). While anti-S levels were similar after initial antigen exposure regardless of source
(i.e., infection or vaccination) (Figure 1), neutralization titer tended to be lower after a
single dose of vaccine in the CN group compared to the pre-vaccination titers observed
in the CE group; however, the levels were not found to be statistically different (p = 0.08)
(Figure 4, CE-PV vs. CN-V1). Upon second antigen exposure with the vaccine, all those in
the CN group mounted a neutralizing response (Figure 4, CN-V2, blue). In the CE group,
20 of 25 individuals had detectable but variable neutralization activity prior to vaccination
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(197 ± 72) (Figure 4, CE-PV, red). As a group, this pre-existing, infection-induced neutraliza-
tion activity was increased 27-fold after the first dose of vaccine. As observed for antibody
levels, the CE group exhibited no additional increase in neutralization titer following the
second vaccine dose (p = 0.20) (Figure 4, CE-V2, red). Analogous with the antibody data,
there was also a significant difference in the final neutralization titer achieved in the CN
and CE groups, with the CE group reaching a 9.7-fold higher mean neutralization titer
(558 ± 129 vs. 5391 ± 900) (p < 0.0001). Direct comparison of the antibody EPT and neu-
tralization titer revealed a significant but not perfect correlation (Figure 5). In particular,
there were nine individuals (six CN; three CE) who developed antibodies after their first
antigen exposure but failed to exhibit detectable virus neutralization (Figure 5A). There was
insufficient power to determine whether any particular participant characteristic was asso-
ciated with lack of neutralization activity, but all were female (p = 0.11), all were healthcare
workers (p = 0.35), and all received the Pfizer vaccine (p = 0.20). The correlation between
antibody level and neutralization titer was stronger after the second exposure (Rho = 0.93,
95% CI 0.86–0.96) (Figure 5B). These results highlight that additional vaccine doses may be
required to elicit a robust neutralizing antibody response in some individuals.
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Figure 4. SARS-CoV-2 neutralization titer after mRNA vaccination. Serially diluted serum samples
were subject to an infectious SARS-CoV-2 microneutralization assay to determine the dilution at
which virus neutralization was lost. (A) The mean neutralization titer (NT) ± standard error of
COVID-19-experienced (CE; red) and COVID-19-naïve (CN; blue) groups were calculated for samples
obtained pre-vaccination (PV), 3 weeks after the first vaccine dose (V1), and 3 weeks after the second
vaccine dose (V2). (B) The natural log of the mean NT and quartiles are graphed (y-axis). † Samples
BQL were assigned a value of 1 in calculation of means and for ln transformation in the graph.
ns = not significant. *** represents p < 0.001. *p < 0.01.
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response. Natural log of antibody EPT (x-axis) graphed against natural log of NT (y-axis). Spearman’s
rank correlation coefficient with 95% confidence interval for antibody EPT and NT was calculated in
the overall sample at each response time-point.

4. Discussion

Serological assays are essential tools in the management of infectious diseases and
assessment of vaccine response. In agreement with accumulating reports, we demonstrated
that the two SARS-CoV-2 mRNA vaccines, BNT162b2 (Pfizer–BioNTech) and mRNA-
1273 (Moderna), induce robust antibody responses to full-length spike, S1, and the RBD.
We report that in our cohort, a single exposure to antigens, either via infection (CE PV)
or via vaccination (CN V1), induces a variable antibody response which is affected by
age, gender, race, and co-morbidities. Consistent with previous reports [45–50], the pa-
tients who had experienced COVID-19 exhibited a boost response to the first vaccine dose,
but had no significant increase in antibody or neutralization titer in response to the sec-
ond vaccine dose. Utilizing a hexapro-based ELISA, we showed that COVID-19-naïve
individuals who received the Moderna vaccine exhibited a more robust boost response
to the second vaccine dose (p = 0.004). Importantly, as observed with other published
ELISAs [13,43,44], our hexapro-based assay antibody results correlate well with infectious
SARS-CoV-2 neutralization titers.

Clinical studies have raised the question of the utility of vaccinating CE individ-
uals within the first 6 months after infection, as infection rates and hospitalizations in
CE individuals have been observed to be lower than in vaccinated, CN persons [51,52].
Our data emphasize that at least one vaccine dose in CE individuals increases antibody
and neutralization titers by 50- and 27-fold, respectively (Figures 1 and 4), that a second
antigen exposure is required to elicit a detectable neutralization titer in some individuals
(Figure 4), and that it greatly improves the correlation between antibody levels and neu-
tralization (Figure 5). While our study was not designed to correlate immune responses
with protection from infection or hospitalization, this at least suggests that vaccination
of CE individuals may enhance protection and allow for more reliable monitoring via
antibody testing. Because anti-S antibody levels did not increase significantly in the CE
group after the second vaccine dose, the other question that has been raised is whether a
second vaccine dose in this population offers any additional benefit [46,53–56]. Our data
are consistent with a lack of increase in antibody level and neutralization titer following a
second vaccine dose in CE people. However, the second dose in recovered individuals may
have other immunological effects (i.e., increasing the durability of response, enhancing T
cell response, broadening of the antibody response). Indeed, recent studies suggest that
vaccine boosting after natural infection and after initial vaccination in CN individuals leads
to better neutralization capacity to SARS-CoV-2 variants of concern [28,49,57]. Importantly,
we hope to address issues of durability through continued monitoring of the current cohort.

The difference in vaccine response between COVID-19-naïve and COVID-19-experienced
individuals has been reported previously; however, it is important to note that regardless
of whether the initial exposure is from natural infection or vaccination, the antibody levels
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detected following the initial exposure in the two groups are similar (Figure 1, CE-PV
compared to CN-V1). This is consistent with a recent report that compared serial samples
from 10 CE and 207 CN individuals [53]. Although many variables dictate the response
measured in the CE-PV group, the dose and timing of the first antigen exposure is well-
controlled in the COVID-19-naïve group, suggesting that host factors are likely driving
the observed variability. While others have shown that disease severity and the time
post-infection correlate with differences in antibody levels post-SARS-CoV-2 infection, the
similar antibody level and degree of variability we observed in the CE-PV and CN-V1
groups suggests that even in the context of infection, a large portion of the variability in the
primary antibody response to infection is driven by host factors.

The tendency of host factors (e.g., age, gender, race, and co-morbidities) to corre-
late specifically with the initial vaccine antibody response in the CN group is interesting.
This may be related to the molecular differences between an initial immune response versus
a memory response, that is, perhaps these variables only impact the immune pathways
involved in initial immune responses and not in memory responses. Alternatively, it is pos-
sible that this association disappears after the first dose because the majority of individuals
are achieving their maximal response potential and are thus hitting some sort of biologi-
cal immune response limitation. This could also explain the lack of increased antibodies
observed in the CE group after the second vaccine dose. Monitoring the response of this
cohort to additional booster vaccine doses may provide further insight into this question.

While our collective understanding of the immune responses to SARS-CoV-2 in-
fection and vaccination is advancing rapidly, defining what is needed for protection,
including target antibody levels, remains a challenge [58]. Importantly, our data provide
further evidence that serum antibodies can be utilized as a reasonable surrogate for neu-
tralization, particularly after a second antigen exposure. However, it would be informative
to figure out why this correlation appears to fail in a small percentage of cases after the
initial antigen exposure. Of the 198 samples for which antibody and neutralization titer
were compared, nine (5%) exhibited no detectable neutralization despite robust antibody
levels. This has important implications for assessing functional vaccine response based on
antibody levels.

Limitations of this study include the relatively small sample size and the predom-
inance of women and healthcare workers. However, it contributes to the growing data
needed to answer critical questions about how infection- and vaccine-induced immunity
contributes to the control of SARS-CoV-2 and provides insight into the differences and simi-
larities in responses induced by infection versus vaccination, and between COVID-19-naïve
versus COVID-19-experienced individuals. Ongoing collection of samples from this cohort
will further our understanding of the immune response to booster vaccinations and the
durability of the antibody response.
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