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Ischaemic Heart Disease

The ISCHEMIA and REVIVED-BCIS2 trials have highlighted that 
percutaneous coronary intervention (PCI) in patients with stable coronary 
syndrome provides limited additional prognostic benefits when used on 
top of optimal medical therapy.1,2 This has led to much attention being 
paid to coronary vasomotion abnormalities regardless of the presence or 
absence of obstructive coronary artery disease. Coronary vasomotion is 
regulated by multiple mechanisms that include the endothelium, vascular 
smooth muscle cells (VSMCs), myocardial metabolic demand, autonomic 
nervous system and inflammation.3–5 Coronary vasomotion abnormalities, 
such as coronary artery spasm, play important roles in the pathogenesis 
of diverse cardiovascular diseases. 

Maseri et al. have pointed out that coronary vasomotion abnormalities 
modulate residual coronary flow in patients with chronic stable, unstable 
and variant angina, and syndrome X.6,7 Over the years, several animal 
models of the spasm have been developed to explore its central 
mechanism.8–10

It is deemed that atherosclerotic lesions are angiographically predisposed 
to coronary artery spasm. Based on this clinical observation, we first used 
an experimental porcine model with coronary atherosclerotic lesions 
induced by a combination of balloon endothelium removal and a high-
cholesterol diet.10–12 In this model, coronary artery spasm was repeatedly 
induced in response to intracoronary administration of serotonin or 
histamine in mild atherosclerotic lesions (Figure  1), providing the first 
experimental evidence for the close link between coronary artery spasm 
and coronary atherosclerosis.11,12 Ten years later, this experimental finding 

was confirmed in patients who had undergone coronary balloon 
angioplasty and later in those with vasospastic angina (VSA).13,14 
Importantly, Maseri and his group reported the enhanced local constrictor 
response to a variety of stimuli acting on different receptors of ergonovine 
and acetylcholine in patients with variant angina.15,16 These alterations of 
local hyperreactivity are in the same coronary segment over weeks and 
months, although remaining non-spastic coronary segments are equally 
exposed to the drug.17,18 Lines of evidence from our basic studies have 
confirmed that the local hyperreactivity of VSMC rather than an abnormal 
specific agonist–receptor interaction plays a key role in inducing coronary 
artery spasm regardless of stimuli in pigs in vivo.9

Seminal pathological studies have shown that spastic coronary segments 
have abundant adventitial inflammatory cells and perivascular nerve 
lesions.19,20 To determine the roles of endothelial dysfunction and VSMC 
hypercontraction separately, we developed a second porcine model with 
chronic adventitial inflammation but without endothelium removal.21–25 In 
this model, chronic inflammatory stimuli with adventitial application of 
interleukin-1β (IL-1β) caused mild arteriosclerotic coronary lesions, where 
coronary artery spasm was repeatedly induced in response to 
intracoronary serotonin or histamine but not at the control (non-
atherosclerotic) lesion (Figure  2).21 These results were consistent when 
animals were chronically treated with IL-1α and tumour necrosis factor-α 
for 4 weeks.24 Importantly, in this porcine model, endothelial vasodilator 
functions were fully preserved as expected.25 Thus, we concluded that 
VSMC hypercontraction associated with adventitial inflammatory changes 
plays a major role in the pathogenesis of the spasm.9,21
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Mechanistically, contractile responses of VSMC were augmented at the 
spastic coronary segment in the porcine models of coronary artery spasm, 
which was later confirmed in a patient with variant angina.26–28 However, 
in the first porcine model with balloon endothelium removal and a high-
cholesterol diet, the spastic segment showed no alteration of the VSMC 
vasocontractile response to incremental concentrations of calcium ions 
(Ca2+), suggesting that the key mechanism for coronary spasm other than 
Ca2+ sensitivity of contractile proteins per se is present somewhere 
between receptors and contractile proteins in the signal transduction 
pathway for VSMC contraction (Figure  3).26 Furthermore, in the second 
porcine model with chronic IL-1β treatment for 4 weeks, coronary 
hypercontraction is mediated by the 5-hydroxytryptamine (5-HT)2A 
serotonergic receptor, whereas the expression or functions of the 5-HT2A 
receptor are not significantly altered when compared with normal 
coronary artery segments.29 These results suggested that the key 
mechanism for coronary artery spasm is present somewhere below the 
receptors and above the contractile proteins in the signal transduction 
pathway for VSMC contraction. Furthermore, direct activation of protein 
kinase C (PKC) causes coronary artery spasm and inhibition of PKC 
suppressed the spasm in both porcine models.30,31 The inhibitory effects of 
PKC inhibitors were not evident in the coronary contractions in response 
to prostaglandin F2α.30,31 These results indicated that the PKC-mediated 
pathway is substantially involved in the pathogenesis of coronary spasm 
(Figure  3). VSMC contraction is triggered by Ca2+/calmodulin-activated 

myosin light chain kinase (MLCK) with subsequent phosphorylation of the 
20-kDa regulatory MLC (Figure 3).32 Intriguingly, the porcine model with 
chronic IL-1β treatment revealed that MLC monophosphorylation was 
enhanced at the spastic coronary segment and that there was a positive 
correlation between the serotonin-induced coronary vasoconstrictions 
and MLC monophosphorylation and also diphosphorylation.27 MLC 
diphosphorylation occurs only in the actively growing cells and the spastic 
coronary segment.24,31 The increase in intracellular Ca2+ levels causes MLC 

Figure 1: Coronary Artery Spasm in a Porcine Model with Coronary Atherosclerotic Lesions
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A: In an experimental porcine model with coronary atherosclerotic lesions induced by a combination of balloon endothelium removal and a high-cholesterol diet, coronary artery spasm was repeatedly 
induced in response to intracoronary administration of serotonin or histamine. B: There was a close topological correlation between spastic sites and early atherosclerotic lesions. Source: A: Shimokawa 
et al. 1983.11 Reproduced with permission from AAAS; B: Shimokawa et al. 2014.9 Reproduced with permission from Oxford University Press.
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Figure 2: Coronary Artery Spasm in a Porcine 
Model with Chronic Adventitial Inflammation 
but without Endothelium Removal

Chronic inflammatory stimuli with adventitial application of interleukin-1β but without endothelium 
removal caused mild arteriosclerotic lesion where coronary artery spasm was repeatedly induced 
in response to intracoronary serotonin but none at the healthy (non-atherosclerotic) control lesion. 
Source: Miyata et al. 1999.25 Reproduced with permission from Wolters Kluwer.
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Figure 3: Vascular Smooth Muscle 
Contraction and Rho-kinase Pathway

VSMC contraction is regulated by the balance between MLC phosphorylation by MLCK in a Ca2+/
CaM-dependent manner and MLC diphosphorylation by MLCPh. Rho-kinase causes potent and 
sustained MLC phosphorylation (di- and even triphosphorylations) through inhibition of MLCPh with 
resultant VSMC hypercontraction in a Ca2+-independent manner. ADP = adenosine diphosphate; 
ATP = adenosine triphosphate; Ca = calcium; CaM = calmodulin; DG = diacylglycerol; IP3 = inositol 
trisphosphate; MBS = myosin-binding subunit; MLCK = myosin light chain kinase; MLCPh = myosin 
light chain phosphatase; PKC = protein kinase C; PLC = phospholipase C; Source: Shimokawa 
et al. 1983.11 Reproduced with permission from AAAS.
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monophosphorylation alone, whereas inactivation of MLC phosphatase 
causes both mono- and diphosphorylation of MLC.33,34 Thus, MLC 
phosphatase activity appeared to be essential for the induction of MLC 
diphosphorylation in VSMCs, which is known to induce potent and 
sustained VSMC contraction compared with MLC monophosphorylation.32

Rho, a small guanosine triphosphate, is involved in the GTP-enhanced 
Ca2+ sensitivity of VSMC contraction.35 Rho regulates MLC phosphorylation 
through its target Rho-kinase and the myosin-binding sub-unit (MBS) of 
myosin phosphatase.36 Activated Rho causes Rho-kinase activation and 
then activated Rho-kinase phosphorylates the MBS with resultant 
inactivation of myosin phosphatase. An active form of Rho-kinase 
enhances MLC phosphorylation and induces VSMC contraction 

(Figure 3).35,37,38 We identified that fasudil, which is clinically used for the 
treatment of cerebral vasospasm after subarachnoid haemorrhage in 
Japan, is metabolised to hydroxyfasudil which specifically inhibits both 
isoforms of Rho-kinase – ROCK1 and ROCK2 – but not other kinases such 
as MLCK or PKC.39–42 Indeed, hydroxyfasudil shows dose-dependent 
inhibition of serotonin-induced coronary spasm in the porcine model with 
chronic IL-1β treatment through suppression of MLC mono- and 
diphosphorylations.43 These results indicate that the Rho/Rho-kinase 
pathway plays an important role in the enhanced MLC phosphorylations in 
the spastic coronary artery, suggesting that inhibition of the Rho-kinase 
pathway may be a novel therapeutic target of coronary artery spasm 
(Figure 3).

In our porcine model, real-time (RT)-polymerase chain reaction (PCR) 
analysis demonstrated that expressions of Rho-kinase and RhoA mRNA, 
as well as the extent of MBS phosphorylation, were significantly 
upregulated in the spastic segment compared with the control.44 Similar 
to hydroxyfasudil, another Rho-kinase inhibitor of Y-27632 inhibited not 
only serotonin-induced hypercontractions in vivo and in vitro but also the 
increase in MBS phosphorylations.45 Thus, we concluded that upregulated 
and activated Rho-kinase plays a key role in inducing VSMC 
hypercontraction by inhibiting MLC phosphatase through MBS 
phosphorylation in porcine models in vivo (Figure 3).8–10,43,44

Epicardial coronary spasm is the local phenomenon that is unique to a 
given site of the coronary artery, whereas endothelial dysfunction is 
rather systemic. Furthermore, vasodilating responses to endothelium-
dependent vasodilators, such as bradykinin or substance P, are fairly 
preserved at the spastic coronary segment in patients with variant 
angina.25 Indeed, endothelial dysfunction does not explain the high 
prevalence of coronary spasm from night to early morning, whereas the 
circadian variation of Rho-kinase activity (a molecular switch of VSMC 
contraction) has been well studied.46 Furthermore, nitrates exert acute 
inhibitory effects on coronary spasm by VSMC relaxation but have no 
acute effect on endothelial dysfunction.47 For these reasons, we consider 
that VSMC hypercontraction, rather than endothelial dysfunction, plays a 
primary role in the mechanism of coronary artery spasm.

We further reported that remnant lipoproteins from patients with sudden 
cardiac death enhance coronary vasospastic responses through 
upregulation of Rho-kinase in pigs in vivo and that sustained elevation of 
serum cortisol levels sensitises coronary vasoconstricting responses to 
restraint stress in pigs in vivo.48,49 Inflammatory stimuli, such as angiotensin 
II and IL-1β, upregulate Rho-kinase expression and activity in human 
coronary vascular smooth muscle cells in vitro, for which oestrogen 
mediated by an oestrogen receptor and nicotine exert divergent inhibitory 
and stimulatory effects on Rho-kinase expression, respectively.50,51 The 

significant interaction between ageing – possibly due to the mechanisms 
of the menopause – and smoking for women with VSA was followed in a 
study by the Japanese Coronary Spasm Association (JCSA) using large-
scale cohort data.47,50,52–54 Clinical studies revealed that intracoronary 
fasudil exerts an inhibitory effect not only on epicardial coronary spasm 
but also microvascular spasm in patients in vivo.55,56 Intracoronary fasudil 
is also effective in relieving intractable coronary spasm resistant to 
nitrates and Ca-channel blockers, and this effect is consistently observed 
for acetylcholine-induced coronary hyperconstricting responses 
immediately after PCI.57–58 More recently, intracoronary fasudil significantly 
improved PCI-related MI expressed by corrected thrombolysis in MI (TIMI) 
frame count and TIMI flow grade.59 The role of the Rho-kinase pathway is 
extensive in a wide variety of cardiovascular diseases, such as the 
development of coronary atherosclerosis and in-stent restenosis lesions 
after PCI, cardiac allograft vasculopathy, heart failure, essential 
hypertension, pulmonary arterial hypertension and aortic aneurysm.60–70

In their review, Maseri et al. mentioned that there is ethnic heterogeneity 
in the coronary artery vasomotor reactivity.71 In this paper, Japanese 
patients with variant angina appeared to have diffuse and multivessel 
spasm as compared with white patients. Furthermore, Japanese patients 
with a recent MI had a higher incidence of spasm induced by provocative 
testing with acetylcholine, ergonovine, methylergonovine or serotonin, 
than white patients. This observation was later confirmed by the same 
group by conducting the same spasm provocative tests with acetylcholine 
in Japanese and Italian patients with recent MI.72 However, contrary to 
these findings, several European groups have recently reported a 
relatively higher incidence of inducible coronary artery spasm in larger 
cohorts of white patients who underwent coronary angiography and were 
found to have unobstructed coronary arteries.73,74 Likewise, the most 
recent study from an international and prospective cohort for microvascular 
angina by the COVADIS group has underlined that there was no difference 
in prognosis for different ethnic groups.75 Therefore, ethnic differences in 
coronary vasomotion abnormalities may be less relevant than we 
considered previously.

Rho-kinase Activity in Circulating Leukocytes 
as a Marker of Vasospastic Angina 
In addition to the relevant clinical implication of selective Rho-kinase 
inhibitors,39–42 Rho-kinase activity in circulating neutrophils holds promise 
as its potential to predict disease activity and long-term prognosis of VSA. 
Rho-kinase activity is determined by the extent of phosphorylation of 
MBS, a substrate of Rho-kinase and then Rho-kinase activity in circulating 
neutrophils is expressed as the ratio of phosphorylated MBS (p-MBS) to 
total MBS (t-MBS) (Figure 4A).76 A p-MBS ratio of 1.18 was identified as the 
best cut-off level to predict the diagnosis of VSA (Figure 4B).76 Findings 
were followed by lines of evidence that Rho-kinase activity in circulating 
neutrophils in VSA patients was temporally enhanced associated with 
disaster-related mental stress during the 2011 earthquake and tsunami in 
Asia, and that the Rho-kinase activity corresponds to distinct circadian 
variation of VSA, peaking in the early morning and is associated with 
altered coronary vasomotor responses and autonomic activity.46,77 Maseri 
and his group suggested that parasympathetic withdrawal may be a part 
of the mechanism of spontaneous coronary artery spasm.5 Rho-kinase 
activity of VSA patients in the early morning was significantly correlated 
with parasympathetic nervous activity from midnight to early morning.46 
Furthermore, patients with VSA with higher Rho-kinase activity (≥1.20) had 
a poor long-term prognosis (Figure 4C). In the study, a p-MBS ratio of 1.24 
was identified as the best cut-off level to predict future cardiac events in 
VSA patients.78 Of note, a combination of Rho-kinase activity with the 
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JCSA risk score saw a pronounced improvement of the prognostic value 
with either alone.47,78

Coronary microvascular dysfunction (CMD) has been emerging as an 
exacerbating factor of long-term prognosis of cardiovascular patients.79,80 
The first international study from the COVADIS group has demonstrated 
that major cardiovascular adverse events (MACE), including cardiovascular 
death, non-fatal MI, non-fatal stroke and hospitalisation due to heart 
failure or unstable angina, occurred irrespective of sex or ethnicity.75,81 In 
the context of a novel biomarker for VSA and comorbid CMD, we have 
demonstrated that CMD determined by the increased index of 
microcirculatory resistance (IMR) >18 heightened the MACE rate of VSA 
patients.82 In such patients, intracoronary administration of fasudil 
significantly ameliorated IMR, which suggests a possible role of the Rho-
kinase pathway in CMD.82 Another landmark study has reported that the 
measured plasma concentration of serotonin from the coronary artery 
and coronary sinus was highest in VSA patients with CMD, while there was 
no difference in the VSA without CMD versus non-VSA groups.83 Fractional 
flow reserve (FFR), as known as a marker for evaluating the degree of 
flow-limiting coronary stenotic region, successfully extracted the high-risk 
population among VSA patients, particularly with significant organic 
stenosis.84 Current guidelines and expert consensus recommends spasm 
provocation tests with additional interventional approaches even when 
no organic stenosis is found angiographically.85,86 The approaches that we 
will summarise are a promising avenue to fully elucidate the pathogenesis 
of coronary artery spasm in patients with VSA.

Roles of Adventitial Inflammatory Changes in 
Enhanced Coronary Vasoconstricting Responses
Ample evidence has been accumulated to elucidate the detailed 
mechanisms of coronary artery spasm in vivo. Using the porcine models 

Figure 4: Rho-kinase Activity in Circulating Leukocytes as a Marker of Vasospastic Angina
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A: A schema illustrates locations of PVAT. B: Representative 18F-FDG PET image of a coronary 
segment in a VSA patient indicates that PVAT inflammation is markedly increased at the spastic 
segments of the LAD coronary artery of the VSA patient. C: A schema illustrates the cross-sectional 
image of the spastic coronary segment surrounded by PVAT and adventitial vasa vasorum. Red 
arrows denote ‘outside-in’ inflammatory changes. D: OCT-delineated adventitial vasa vasorum 
formation (yellow arrows) is significantly enhanced at the spastic segment of the VSA patient. 
18FDG-PET = 18F-fluorodeoxyglucose positron emission tomography; LAD = left anterior descending 
coronary artery; OCT = optical coherence tomography; PVAT = perivascular adipose tissue; VSA = 
vasospastic angina. Source: Ohyama et al. 2018.100 Adapted with permission from Elsevier.
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with inducible coronary artery spasm, we found the role of coronary 
adventitial inflammatory changes – known as the ‘outside-in’ pathway – 
in the pathogenesis of coronary artery spasm and extensively in coronary 
atherosclerosis.21,44,60 In brief, coronary adventitia harbours a wide range 
of cellular and subcellular components, such as nutrient blood vessels 
(termed vasa vasorum), perivascular adipose tissue (PVAT), autonomic 
nervous system, and lymphatic vessels that drain adventitial inflammatory 
cells.87–94 We have demonstrated that these adventitial residents have 
interactions with each other, all of which are involved in coronary 
hyperconstricting responses after drug-eluting stent (DES) implantation in 
pigs in vivo (Figure 5).87–93

The first observation was that inflammatory changes were potent in the 
histology of coronary adventitia isolated from the porcine coronary 
segment with first-generation DES implantation compared with bare-
metal stent implantation.95,96 Adventitial inflammation was significantly 
reduced when implanting newer-generation biocompatible DES in 
pigs.87,97 Experimental micro-CT revealed that adventitial vasa vasorum 
formation was augmented around the coronary segment implanted with 
first-generation DES (Figure  5) as compared with the segment with 
biocompatible DES.87 The extent of vasa vasorum formation was 
proportional to that of M1-type macrophage and mast cell infiltrations, 
indicating the important role of vasa vasorum as an inflammatory 
conduit.87 Furthermore, these adventitial inflammatory changes were 
associated with DES-induced coronary hyperconstricting responses in 
vivo.87,97 PVAT surrounds the coronary arterial wall and is thought to be an 
origin of various inflammatory cytokines, such as adipokines.91 We then 

demonstrated that 18F-fluorodeoxyglucose positron emission tomography 
(18FDG-PET) is useful for evaluating the magnitude of coronary PVAT 
inflammation in pigs after DES implantation ex vivo and in vivo (Figure 5).90 
In the novel approach with 18FDG-PET, the extent of PVAT inflammation is 
expressed as a target-to-background ratio, the standardised uptake value 
(SUV) corrected for blood activity by dividing the average blood SUV 
estimated from the ascending aorta.90 Importantly, 18FDG-PET-derived 
PVAT inflammation was strongly associated with DES-induced coronary 
hyperconstricting responses in vivo.90 We further confirmed that the 
autonomic nervous system existing in the coronary adventitia was 
associated with exacerbated inflammation and enhanced vasoconstriction 
via the kidney-brain-heart axis in the same porcine model.92 More recent 
studies underline that impairment of cardiac lymphatic drainage function 
after DES implantation contributes to sustained adventitial inflammation, 
medial VSMC hypercontraction and resultant coronary hyperconstriction 
through activation of Rho-kinase in pigs in vivo.93,94

We further examined the role of coronary adventitial inflammation in the 
clinical settings by using a multimodality imaging approach with optical 
coherence tomography (OCT) and 18FDG-PET.98–101 OCT is capable of 
visualising coronary adventitial vasa vasorum in pigs and humans and 
OCT-delineated adventitial vasa vasorum (VV) formation was significantly 
enhanced at the spastic segments of VSA patients as compared with 
those of the control subjects (Figure 5).98–101 Maseri et al. suggested that 
focal coronary artery spasm is a distinct condition characterised by focal 
coronary constriction sufficient to cause transient total or sub-total 
coronary occlusion.6 Indeed, when grouping 335 patients with ischaemia 
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The present study examined the heterogeneity in coronary morphological changes and prognosis for INOCA. OCT-derived adventitial VV formation was profoundly augmented in MVS, DS and FS, but 
none in the controls. Patients with high IMR, a marker for CMD, were distributed to MVS, DS and FS with a gradual increase, while none in the controls. In particular, adventitial VV augmentation was 
associated with the degree of IMR in MVS and DS. The majority of coronary plaques delineated by OCT were categorised as mild lesions with intimal thickening in the controls, MVS and DS, whereas 
lipid-rich fibroatheroma with vulnerable features of internal VV, cholesterol crystals or macrophage infiltration was prominent in FS. DS showed an intermediate prognosis which was independently 
contributed by adventitial VV. Meanwhile, FS showed the worst prognosis in INOCA, which was strongly correlated with OCT-delineated intra-plaque neovessels. CMD = coronary microvascular 
dysfunction; DS = diffuse spasm; FS = focal spasm; IMR = index of microcirculatory resistance; INOCA = ischaemia with no obstructive coronary artery disease; MVS = microvascular spasm; OCT = optical 
coherence tomography; VV = vasa vasorum. Source: Nishimiya et al. 2021.101 Adapted with permission from Elsevier.
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and no obstructive coronary artery (INOCA) into the group of non-cardiac 
controls, microvascular spasm, diffuse epicardial spasm and focal 
epicardial spasm, the group of focal epicardial spasm had the worst 
prognosis followed by the group with diffuse epicardial spasm (Figure 6).101 
The extent of adventitial vasa vasorum formation visualised by OCT was 
increased in patients with microvascular spasm as compared with 
controls, and peaked in those with diffuse spasm. The augmentation of 
adventitial vasa vasorum was positively correlated with the level of IMR, 
indicating the possible link between coronary adventitial inflammation 
and microcirculatory resistance.101 In particular, the vasa vasorum that links 
to intramural layers, termed as intra-plaque neovessels, showed a 
relevant prognostic value among patients with focal coronary artery 
spasm.101 Also, 18FDG-PET-derived coronary PVAT inflammatory changes 
were more extensive at the spastic coronary segments of VSA patients 
compared with those of control subjects (Figure 5).100 The lines of basic 
and clinical studies strongly support the notion that coronary adventitial 
inflammation could be a novel therapeutic target for coronary artery 
spasm.

When treating coronary adventitial inflammation, it is ideal to directly 
administer anti-angiogenic and/or anti-inflammatory agents to patients. 
However, systemic use of these drugs may often cause serious side 
effects.102,103 The anti-angiogenic strategy for vasa vasorum may cause 
intramural haemorrhage as a consequence of increased vascular 
permeability.104 We then introduced that catheter-based renal sympathetic 
denervation can effectively suppress DES-induced coronary 
hyperconstricting responses via the kidney-brain-heart axis in pigs in 

vivo.92 However, this approach requires multiple invasive steps. Thus, we 
focused on the low-intensity pulsed ultrasound (LIPUS) therapy as a novel 
non-invasive therapeutic option for coronary adventitial inflammation and 
coronary artery spasm.105–112 Since the intensity of ultrasound used in the 
LIPUS therapy is below the upper limit of acoustic output standards for 
diagnostic devices, it causes no compression, heat, or discomfort.105–112 
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Conclusion
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vasomotion abnormalities, regardless of obstructive or non-obstructive 
arterial segments, will increase in clinical significance year by year. 
Unveiling the mechanism of coronary artery spasm, particularly in the 
clinical setting, will be a next step to mitigate this important disorder. 
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