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ABSTRACT

Solubility is an important, albeit not well under-
stood, feature determining protein behavior. It is of
paramount importance in protein engineering, where
similar folded proteins may behave in very different
ways in solution. Here we present SODA, a novel
method to predict the changes of protein solubil-
ity based on several physico-chemical properties of
the protein. SODA uses the propensity of the protein
sequence to aggregate as well as intrinsic disorder,
plus hydrophobicity and secondary structure prefer-
ences to estimate changes in solubility. It has been
trained and benchmarked on two different datasets.
The comparison to other recently published methods
shows that SODA has state-of-the-art performance
and is particularly well suited to predict mutations
decreasing solubility. The method is fast, returning
results for single mutations in seconds. A usage ex-
ample estimating the full repertoire of mutations for a
human germline antibody highlights several solubil-
ity hotspots on the surface. The web server, complete
with RESTful interface and extensive help, can be ac-
cessed from URL: http://protein.bio.unipd.it/soda.

INTRODUCTION

Solubility is an essential feature of proteins that is related
to their concentration, conformation, quaternary structure
and location. It plays a critical role in protein homeosta-
sis (1,2). It still remains a major issue in the detailed struc-
tural and functional characterization of many proteins and
isolated domains (3–6). Insoluble regions in proteins tend
to aggregate (2), leading to a variety of diseases such as
Alzheimer’s (7) and amyloidoses (8). Aggregation as a flip
side of low protein solubility also represents a biotechnolog-
ical complication. Soluble expression remains a serious bot-
tleneck in protein production (9) and low solubility in drugs
may make them ineffective (10) or even toxic (11). Targeted
mutagenesis, usually without affecting protein structure or
function, has been demonstrated in a number of cases to

be a valuable tool to alter protein solubility (4). Especially
in the absence of structural knowledge, the identification of
residues to mutagenize benefits from dedicated prediction
methods. In addition, predictors can contribute to the iden-
tification of pathogenic mutations in solubility-related dis-
eases (12,13).

A particularly challenging class of proteins are antibod-
ies, which are widely used for pharmaceutical applications
(14). Some regions in these molecules can be poorly sol-
uble and the reason for that is encoded in their function,
as these regions are designed to capture proteins with high
affinity. The binding affinity of a protein and more gener-
ally the tendency to aggregation have been inversely corre-
lated to its solubility (15). The two concepts are defined by
similar properties of the amino acid sequence. To optimize
antibody solubility without affecting binding propensity, a
number of experimental approaches have been developed.
For example, in phage display and heat denaturation (16), a
great variety of variants can be produced and tested. Com-
putational methods to pre-emptively screen variants in anti-
bodies and allow protein design would considerably reduce
cost and time in this process. Some computational meth-
ods have already been developed to measure solubility of
proteins for this reason (17–22). The majority of methods
is targeted to quantify the solubility of a wild-type protein
for heterologous protein over-expression, while only few are
specifically designed to evaluate the effects of variants on
the solubility of the molecule (18,21,22).

The identification and tuning of sequence determinants
for protein aggregation has been used as a valuable tool to
regulate protein solubility (23). Among the determinants of
protein aggregation, intrinsic disorder has also been shown
to play a major part (24). The highly dynamical disordered
regions of a protein can increase its propensity to aggregate
under different conditions. Both aggregation and intrinsic
disorder propensity are influenced by the physico-chemical
properties of each amino acid in the sequence, such as hy-
drophobicity, secondary structure propensity and charge
(25).

Here, we describe SODA, a new method to predict the
effects of sequence variations on protein solubility. SODA
exploits the concepts described above (aggregation and dis-
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order propensity, hydrophobic profile, predicted secondary
structure components) to characterize a wild type sequence
with its intrinsic solubility profile. It was benchmarked on
two datasets and compared to other published predictors.
SODA is designed to allow prediction for all possible se-
quence variations, including insertions and deletions. In ad-
dition, the web server has two different operating modes, al-
lowing the user to either target mutations or evaluate the ef-
fect of all possible substitutions on the input sequence. The
case of an antibody, evaluating effects of mutations on its
surface is used to discuss a novel full protein mode.

METHODS

SODA predicts solubility changes introduced by a muta-
tion by comparing the profiles of the wild type (WT) and
mutated sequences. The PASTA (26) aggregation propen-
sity and ESpritz (27) intrinsic disorder scores are combined
with a Kyte-Doolittle hydrophobicity profile (28) and sec-
ondary structure propensities for �-helix and �-strand es-
timated with FESS (29). SODA is able to evaluate difficult
types of variation including point mutations, deletions and
insertions. The predictor is based on sequence features and
allows the large-scale screening of protein mutations. When
available, a protein structure can be used to improve the pre-
diction by masking buried residues from the solubility pre-
diction.

Algorithm

SODA prediction is based on five individual component
scores (calculated with default parameters): PASTA aggre-
gation energy with 90% cut-off specificity (26), ESpritz dis-
order propensity in X-ray prediction mode (27), the nega-
tive Kyte–Doolittle hydrophobicity profile (28) and the two
secondary structure propensities for �-helix and �-strand
calculated with FESS (29). Each score difference �S is
summed and normalized for the full sequence using the fol-
lowing formula:

�S =
∑n

j=1 smut
j

n
−

∑m
j = 1 swt

j

m
where smut

j and swt
j are the scores of the mutated and wild-

type residue j in the sequences and n and m are the respec-
tive sequence lengths. Note that the two sequences may be
of different length as SODA also supports insertions and
deletions. When a structure is available, the �S value for
residues with less than 20% solvent accessible sidechain area
(calculated with DSSP) are set to 0. The final SODA score,
�SSolubility, is the weighted sum of the partial scores:

�SSolubili ty = �SAggregation + w1 ∗ �SDisorder + w2

∗�SHydrophobici ty + w3 ∗ �SHeli x + w4 ∗ �SStrand

where w1,. . . ,w4 are weighting parameters set to optimize
the SODA score on the PON-Sol dataset. Their optimized
values are 2, –50, 2 and 2, respectively. When the differ-
ence (�SAggregation) is positive, the mutated protein is more
soluble (lower aggregation energy) than the WT. Similarly
when �SDisorder is positive, the mutated protein gains solu-
bility because it is more disordered. Likewise, hydrophilic
(charged/polar) residue content increases solubility.

Training and evaluation

SODA is trained using 5-fold cross-validation on a filtered
version of the PON-Sol dataset (22). Weights for the pa-
rameters are chosen from a grid search on the interval [–
100,..,+100], selecting the first weight optimizing the PON-
Sol prediction for each term. All variants without any sol-
ubility effect as well as ambiguous examples from the orig-
inal dataset were discarded. These are cases where it is not
possible to obtain the original sequence or containing a mis-
match between mutation and original sequence. Moreover,
in order to make the benchmarking fair, a maximum pair-
wise sequence identity of <30% was imposed against the
CamSol dataset (see below). A total of 142 variants classi-
fied as ‘increasing’ (positive values) or ‘decreasing’ (negative
values) solubility from 49 proteins were used for training.
Table 1 shows the performance of SODA and its compo-
nents on the PON-Sol training set. Among the single com-
ponent scores, PASTA and hydrophobicity stand out for op-
posite reasons, with good performance for positive and neg-
ative cases respectively. SODA reaches an accuracy of 59%
overall (84 correct predictions). On the restricted dataset,
including only mutations classified in PON-Sol dataset as
having stronger effect on solubility, the accuracy is 67%
(35 / 52 correct predictions, data not shown). Mutations
in the PON-Sol dataset are manually classified based on
experimental evidence from the literature. Notably, SODA
is very good at predicting solubility decrease. The speci-
ficity, i.e. fraction of true positives over all positive predic-
tions, is 72% and 100% in the full (Table 1) and restricted
training sets respectively (not shown). This is somewhat ex-
pected, as SODA uses the PASTA energy, which is known
to be highly specific, for aggregation prediction. In Table
2, SODA performance using only sequence information is
compared with the published solubility predictors CamSol
(21), SOLpro (17) and Proso II (20). The dataset is the same
used in the recent CamSol paper (21) and includes 19 pro-
teins and 56 variants from four publications: Trevino (15),
Miklos (30), Tan (31) and Dudgeon (32). All proteins have
less than 30% pairwise sequence identity to the training set
and represent a real blind test. SODA correctly predicts all
variations and its accuracy is higher than the other tested
methods, even though the dataset is biased towards positive
examples increasing solubility.

Implementation

The SODA web server is implemented using the REST
(Representational State Transfer) architecture, allowing ac-
cess from a web-based user interface as well as program-
matically through external APIs or third party web ser-
vices exploiting the Node.js functionality. The web inter-
face has been developed using the Angular.js framework
and Bootstrap CSS style sheets. The solubility contribu-
tion plot as well as other relevant graphics are generated
dynamically using the Plotly.js library. Dynamic and inter-
active elements of the input form and output page are devel-
oped using PV (https://biasmv.github.io/pv/) for structure
visualization and Bio.js (https://biojs.net/) as sequence fea-
ture viewer. Predictions are temporarily stored in a local
database, allowing the fast retrieval of submitted jobs at a
later time.

https://biasmv.github.io/pv/
https://biojs.net/
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Table 1. Evaluation on the PON-Sol training set

TP TN FP FN Sensitivity Specificity Accuracy

Strand 21 45 40 36 36.8 52.9 46.5
Helix 35 35 26 46 43.2 57.4 49.3
Hydrophobicity 35 46 26 35 50.0 63.9 57.0
ESpritz 39 41 22 40 49.4 65.1 56.3
PASTA 47 31 14 50 48.5 68.9 54.9
SODA 46 38 15 43 51.7 71.7 59.2

True positives (TP), true negatives (TN), false positives (FP), false negatives (FN), and sensitivity (TP/(TP+TN)), specificity (TN/(TN+FP)) and accuracy
((TP+TN)/(TP+TN+FP+FN)) values are reported as percentages. The best value is in bold and the second best underlined.

Table 2. Comparison with other predictors on the CamSol dataset

Trevino Miklos Tan Dudgeon Total Accuracy

SolPro 15 / 22 3 / 3 1 / 1 21 / 30 40 / 56 71.4
PROSO II 16 / 22 3 / 3 1 / 1 12 / 30 32 / 56 57.1
CamSol 22 / 22 3 / 3 1 / 1 28 / 30 54 / 56 96.4
SODA 22 / 22 3 / 3 1 / 1 30 / 30 56 / 56 100.0

SODA is compared to three published methods. (20). The dataset is the same used in the recent CamSol paper (21) and includes 19 proteins and 56 variants
from four publications: Trevino (15), Miklos (30), Tan (31) and Dudgeon (32). Accuracy is calculated as the percentage of correct predictions over the
dataset size.

SERVER DESCRIPTION

SODA provides two types of analysis, namely ‘mutation
mode’ and ‘full-protein mode’. The first provides the sol-
ubility change on sequence mutation. The second generates
a profile describing the contribution to solubility of each
sequence position deduced from the effect of all possible
mutations. The mutation mode requires the sequence and
a list of mutations as input. The full-protein mode requires
just the sequence since SODA automatically generates all
possible single point variations (19 amino acid alternatives
x sequence length) and then calculates the fraction of mu-
tations increasing (and decreasing) the solubility for each
position. In both cases, a PDB structure can be provided to
label buried/exposed residues.

The input page is the same for both modes but after in-
put the route splits. While the ‘mutation mode’ requires
only seconds, ‘full-protein’ analysis is more time consum-
ing, with linear complexity proportional to sequence length.
For example, evaluating a protein of 350 residues takes
about 3 h. The SODA interface is straightforward to use.
The home page features an input form, which accepts ei-
ther a sequence or PDB structure. When the structure is pro-
vided (file or ID) the server parses the PDB file, extracts the
sequence and masks buried residues. Even though SODA
is sequence based, this can help the user avoid introducing
mutations in the core of a globular protein, which can po-
tentially break the fold, altering its function and leading to
meaningless results.

Mutation mode

When the user chooses the mutation mode, the web server
redirects to a new submission page (see Figure 1). The user
introduces mutations by clicking on the stretch of residues
to be modified directly from the input wild type sequence.
A new edit box pops up when residues are selected, allow-
ing to introduce/modify/delete residues until the save com-
mand is issued. Multiple mutation instances can be created

and submitted as a single job. The solubility profile of the
WT is plotted on the top of the page to help the user in
the editing process. When a PDB input is provided, buried
residues are shaded but still editable. The results page pro-
vides a table summarizing the comparison between WT and
mutation (Figure 1). It provides WT/mutation differences
for SODA and its components (aggregation, disorder, sec-
ondary structure helix and strand). Detailed SODA out-
put is reported on the bottom, including the wild type and
mutated stretches. When a PDB file is provided, the results
page also shows the corresponding structure, highlighting
the mutated region (Figure 1B).

Full-protein mode

The full-protein mode only requires the sequence or PDB
file as input. Like the mutation mode, the results page (Fig-
ure 1C) provides the solubility profile for the input sequence.
When the structure is available, buried residues are missing
from the plot and excluded from the calculation. For each
position all possible amino acid substitutions are evaluated.
The number of mutations increasing (and decreasing) sol-
ubility is plotted. Below the plot, a table reports for each
position the list of substitutions sorted according to their
impact on solubility.

USAGE EXAMPLE

The crystal structure of human germline antibody IGHV1-
69/IGKV1-39 (PDB code 5i15) was recently determined
(33). The light and heavy chains are composed of 214 and
228 amino acids respectively. SODA was used to calculate
the potential effect of mutations on each residue of the
molecule (full-protein mode). It predicts the effect of each
possible point substitution on each position of the light and
heavy chains, for a total of 8398 mutations (19 amino acid
substitutions on 214 + 228 positions). Figure 1D shows the
SODA output for the antibody light and heavy chains in
the 3D structure of the protein complex. The light (L) and
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Figure 1. Sample SODA mutation and result pages. (A) The mutation input page is returned when the user chooses ‘mutation mode’. It allows to create
multiple instances of mutations/deletions/insertions. (B) The ‘mutation mode’ result reports changes of the protein solubility upon mutation. When a
PDB is provided as input the mutated region is highlighted in the structure. (C) The ‘full protein mode’ provides the solubility profile (first plot) and the
propensity of increasing or decreasing solubility for all sequence positions (second plot and table). (D) The human germline antibody IGHV1-69/IGKV1-
39 (PDB code 5i15) is shown alternatively as wireframe and space fill between light (L) and heavy (H) chain. For each position, the probability of increasing
(red) or decreasing (blue) solubility upon mutation is mapped on the structure. On the left, the light (L) and heavy (H) chains are shown as wireframe and
space fill respectively, on the right the same protein with opposite chain visualization mode is provided.

heavy (H) chains are shown with different representation in
order to show the connecting surfaces. Red residues have
high probability of increasing protein solubility when mu-
tated. On the contrary, blue positions indicate an aggrega-
tion propensity upon mutation. The wild type residues in
this position show a selective pressure to be the most sol-
uble among all possibilities, thus the simulated mutations
are likely to impair this property. Notably, blue positions
are mostly localized in the surface indicating them as hot
spots for solvent interactions.

CONCLUSIONS

SODA is a novel method to predict the effects of variations
on protein solubility. It is based on the disorder and ag-
gregation propensities of a protein plus secondary structure
and hydrophobicity in comparison to the same values of its
mutated form. The difference between the two determines
the effect on solubility of the variation. SODA is entirely
based on sequence features and allows to quickly scan a

large number of mutations. The web server was designed
to allow large-scale annotation through its RESTful web
service, while the user interface provides an intuitive form
to guide detailed selection of mutations based on sequence
solubility plot and, if the protein structure is given, residues
accessibility to solvent.

SODA can be useful for several applications. Its main en-
visaged application is in protein engineering, where predict-
ing the variation in protein solubility upon mutation can
help design proteins with more favorable surface properties.
This can be of interest to pharmaceutical companies design-
ing novel antibodies, as demonstrated by the usage example
(see above), as lack of solubility is a bottleneck in the devel-
opment of biologicals. In addition, SODA may be of use in
the context of studying the impact of natural protein vari-
ants and their potential effect on disease insurgence.
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