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Disruption of the carA gene in ® e
Pseudomonas syringae results in
reduced fitness and alters motility
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Abstract

Background: Pseudomonas syringae infects diverse plant species and is widely used in the study of effector
function and the molecular basis of disease. Although the relationship between bacterial metabolism, nutrient
acquisition and virulence has attracted increasing attention in bacterial pathology, there is limited knowledge
regarding these studies in Pseudomonas syringae. The aim of this study was to investigate the function of the carA
gene and the small RNA P32, and characterize the regulation of these transcripts.

Results: Disruption of the carA gene (AcarA) which encodes the predicted small chain of carbamoylphosphate
synthetase, resulted in arginine and pyrimidine auxotrophy in Pseudomonas syringae pv. tomato DC3000.
Complementation with the wild type carA gene was able to restore growth to wild-type levels in minimal medium.
Deletion of the small RNA P32, which resides immediately upstream of carA, did not result in arginine or pyrimidine
auxotrophy. The expression of carA was influenced by the concentrations of both arginine and uracil in the
medium. When tested for pathogenicity, AcarA showed reduced fitness in tomato as well as Arabidopsis when
compared to the wild-type strain. In contrast, mutation of the region encoding P32 had minimal effect in planta.
AcarA also exhibited reduced motility and increased biofilm formation, whereas disruption of P32 had no impact on
motility or biofilm formation.

Conclusions: Our data show that carA plays an important role in providing arginine and uracil for growth of the
bacteria and also influences other factors that are potentially important for growth and survival during infection.
Although we find that the small RNA P32 and carA are co-transcribed, P32 does not play a role in the phenotypes
that carA is required for, such as motility, cell attachment, and virulence. Additionally, our data suggests that
pyrimidines may be limited in the apoplastic space of the plant host tomato.
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Background

The model plant pathogen Pseudomonas syringae pv.
tomato DC3000 (DC3000) infects tomato (Solanum lyco-
persicum) and Arabidopsis thaliana (reviewed in [1]).
DC3000 enters the apoplastic space through wounds or
natural openings in the leaf, like stomata, and grows in
intercellular spaces. As the infection progresses, the
pathogen releases virulence factors such as the phyto-
toxin coronatine and injects effector proteins into host
cells through the type III secretions system (T3SS). In a
susceptible host, chlorosis (yellowing) of the leaves
occurs and necrotic lesions develop. Alternatively in a
non-host, such as Nicotiana benthamiana, a defense-
associated hypersensitive response (HR) is elicited.

Most investigations of pathogenicity in P. syringae
have focused on identifying and characterizing compo-
nents of the T3SS [2], non-ribosomal peptides [3] and
toxins [4, 5]. While these are clearly important, patho-
genic bacteria must also compete successfully for limited
nutrients within the host, with iron as a well-known
example [6]. Unfortunately, it is not well-understood
how metabolic processes in plant pathogens contribute
to virulence, although experiments using IVET (in vivo
expression technology) have identified a variety of
bacterial genes expressed during plant-pathogen interac-
tions as well as during host colonization [7-15]. These
studies revealed the importance of genes involved in
metabolism to the infection process.

Several lines of evidence suggest links between bac-
terial pathogenicity and metabolism. The disruption of
genes involved in acquisition of nutrients such as carbon
result in reduced virulence in human and animal patho-
gens [16-21]. As for plant pathogens, a number of meta-
bolically related genes were identified as required for
infection of shoots of apple trees by Erwinia amylovora
[22] and it was shown that P. savastanoi pv savastanoi
requires genes directly involved in metabolism in order
to survive in olive knots [23]. Arginine metabolism and
regulation are associated with the virulence of several
pathogenic bacteria such as Mycobacterium tuberculosis,
Listeria monocytogenes, Legionella pneumophila, and
Mycobacterium bovis [24—27]. Recently Ramos et al.
showed that an argD mutant in the plant pathogen
Erwinia amylovora was non-pathogenic [28].

Our laboratory is interested in the identification and
characterization of small RNAs in P. syringae. Livny
et al. reported a Pseudomonas-specific small RNA
(named P32) transcribed from an orthologous region
upstream from the carABgreA operon in Pseudomonas
aeruginosa [29]. The expression of P32 was confirmed
by Northern blot and a transcript of about 80 bases was
detected in rich medium during exponential growth and
stationary phase cultures. No other function has been
described for this regulatory RNA. This region is also
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present in the genome of DC3000. While conducting a
genome-wide mapping of mRNA 5’ends in DC3000, we
identified a potential transcriptional start site 118 bases
upstream of carA [30]. The carAB genes encode the
enzyme carbamoylphosphate synthetase (CPSase), which
catalyzes the synthesis of carbamoylphosphate, a pre-
cursor of arginine and pyrimidines. Further analysis
revealed a putative RpoD promoter a short distance
upstream from the start site, as well as a potential rho-
independent terminator located between the start site
and the first codon of carA. The promoter may be asso-
ciated with two overlapping transcripts, a shorter one
utilizing the Rho-independent terminator, and a longer
one that includes carA, carB, and greA (pseudomonas.-
com). Consistent with this model, we observed expres-
sion in the region encompassing the 5'UTR, carA, carB,
and greA in a transcriptome analysis of the DC3000 gen-
ome [31] and detected transcriptional activity in the
same region during a search for small RNAs using RNA-
Seq (unpublished). Regulation of the carABgreA operon
in P. aeruginosa is controlled both by arginine at the
transcriptional level and also by pyrimidines, possibly
through an attenuation mechanism [32, 33]. carAB
mutants of Pseudomonas spp. strain G are auxotrophic
for arginine as well as pyrimidines [34]. In addition,
these mutants are deficient in extracellular polysacchar-
ide production. The function of carbamoyl-phosphate
synthase and P32 has not been well characterized in
plant pathogenic bacteria. Just recently it was demon-
strated that disruption of carB in Xanthomonas citri,
resulted in loss of pathogenicity and inability to elicit a
hypersensitive reaction in non-hosts, whereas disruption
of carA did not affect these phenotypes [35]. However,
disruption of carB resulted in reduced swimming and
reduced ability to form biofilms [36].

The regulation of P32 as well as carAB and their
potential contribution to virulence has not been investi-
gated in P. syringae. In this study, we investigated P32
and its involvement in the regulation of carA in P. syrin-
gae. We found that carA is important for growth and
fitness in planta and demonstrated the likely importance
of uracil during infection. In contrast, P32 appears to be
involved in carA regulation and does not have an obvi-
ous role in planta, although P32 is part of the same
transcriptional unit as carA.

Results

Effect of P32 and carA deletions on growth of DC3000

In previous work, a MEME analysis of DC3000 genomic
regions immediately upstream from captured RNA 5’
ends revealed a candidate RpoD promoter adjacent to
the putative small RNA P32 [30]. P32 is located immedi-
ately upstream of PSPTO_4502 (carA) (Fig. 1). In other
organisms the products of carA and carB are involved in
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the biosynthesis of arginine and pyrimidines [37] and
carA mutants have been shown to require arginine for
optimal growth [38-41]. We hypothesized that P32 may
also be involved in these pathways since it closely neigh-
bors carA. To test the involvement of P32 and CarA in
arginine and pyrimidine biosynthesis we constructed
two deletion mutants, one in which P32 was deleted and
another in which carA was deleted. Deletions were
confirmed by PCR and sequencing (data not shown).
The transcript for carA could still be detected in the P32
deletion mutant indicating transcription of carA can
occur in the absence of the genomic region containing
P32 (Additional file 1: Figure S1). Growth of the P32
deletion mutant was comparable to that of the wild-
type strain DC3000 in rich medium KB, minimal
medium MG, and minimal medium VBMM (Fig. 2). In
contrast, the carA mutant displayed a growth defect
when grown in rich medium, and minimal media MG
and VBMM. The growth defect was abolished by the
simultaneous addition of arginine and uracil to VBMM.

Also, complementation of the carA mutant by express-
ing the coding region of carA on a plasmid, restored
growth to wild type levels (Additional file 1: Figure S2),
indicating that the carA gene was solely responsible for
the phenotype observed. Overall the data suggests that
P32 is not required for expression of carA and that
carA is involved in metabolism of arginine and uracil.

Expression of P32 and carA in DC3000

In P. aeruginosa, the expression of carA is controlled by
both pyrimidines and arginine [32, 33]. To investigate if
P32 influences the expression of carA in P. syringae, we
performed a series of transcriptional analyses. First, to
confirm transcriptional activity and to verify the 3" end
of P32 we performed 3" RACE. A 3’ end was identified
at nucleotide position 5073275c, immediately down-
stream from the predicted Rho-independent terminator
(Fig. 1). The presence of a 3'end in this region could
occur as a result of several events. One possibility is that
distinct promoters produce two separate transcripts, one
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Fig. 2 CarA influences growth in minimal medium. Growth of wild type DC3000 (dark gray diamonds), AP32 (light gray squares) and AcarA

(light grey triangles) in KB, MG, VBMM, VBMM supplemented with 40 mM arginine or with 10 mM uracil, and VBMM supplemented with 40 mM
arginine and 10 mM uracil. Growth is represented as least squares means with standard error of O.D.¢oq Over time. The data shown represent
three biological replicates per strain, each with three technical replicates. Post hoc comparisons were performed using Tukey HSD (a = 0.05).

For each time point, the values which are significantly different from the wild type are shown with an asterisk. Statistical analyses were performed

using JMP Pro 11

containing P32 and another containing carA, carB,
and greA. Alternatively a transcript could arise from a
single transcriptional start site, but under certain con-
ditions termination or cleavage/processing could result
in the generation of a small transcript containing P32
alone. Our 5’end mapping data did not detect another
transcriptional start site for carA [30] although our
transciptome survey detected expression through the
entire P32-carA-carB-greA operon [31]. A second 5’
mapping experiment using fluorescently labeled oligo-
nucleotide extension (FLOE) detected a single tran-
scriptional start site using RNA isolated from cells
grown in VBMM and VBMM supplemented with ar-
ginine and uracil (data not shown). This suggests that
expression of the entire P32 —carA region may be
under the control of a single promoter, as is the case
in P. aeruginosa [32, 33].

To investigate if P32 is co-transcribed with carA, RNA
was isolated from cells grown under rich or growth-
limiting conditions. cDNA synthesis was performed and
used for bridging PCR with different primer pairs to
identify RNA that consists of both P32 and carA (see
Fig. 3a). Products were obtained with each primer set
using RNA from bacteria grown with or without argin-
ine and uracil (Fig. 3b). This suggests that P32 and carA
are co-transcribed under the conditions tested. These
data also indicate that carA is transcribed even in the
presence of arginine and uracil.

To further investigate the regulation of P32 and carA
we created promoter fusions and evaluated their expres-
sion in the wild-type strain (Fig. 4, top panel). The
promoter fusions consisted of either the entire intergenic
region between dapB (PSPTO_4503) and carA, includ-
ing P32 (referred to as P1), the region from the 3" end
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of RT- and PCR primers are indicated. b Agarose gel electrophoresis result of the RT-PCR experiments using the primers pairs indicated. The
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pair 3 and 4, ~209 bps. Control reactions in which reverse transcriptase was omitted were performed for each primer set and RNA sample
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of dapB to the first half of the Rho-independent termin-
ator, which therefore lacks % of the stem-loop (referred
to as P3), the region from the 3’end of dapB to the
beginning of the stem-loop (lacks the entire stem-loop
and all sequence downstream; referred to as P4), P32
and downstream sequences up to carA (lacks putative
promoter sequence; referred to as P5), or the region
between the 3’ end of P32 and carA (lacks putative
promoter region and P32; P6). Fusions lacking the pu-
tative promoter region (P5 and P6) were expressed at
background levels in VBMM or VBMM supplemented
with arginine or uracil (Fig. 4). This is consistent with
the single mapped transcriptional start site for carA
and P32 and the co-expression data that indicates P32
and carA are transcribed together from a single pro-
moter under these conditions. In addition, we observed
an increase in expression when the stem-loop structure
was disrupted (P3) or completely removed (P4) com-
pared to the full-length fusion P1. We conclude that
this feature is important in modulating the expression
of carA.

Interestingly, when arginine was added to the medium
we observed an increase in expression from promoter
fusions P1, P3 and P4 (Fig. 4). The addition of uracil

resulted in a decrease in expression of /ux from the pro-
moter fusions P1. The addition of both arginine and
uracil had little effect on the expression of the pro-
moter fusions.

To further investigate the expression of P32 and
carA, qRT-PCR was performed with RNA isolated
from wild-type cells grown in VBMM and VBMM
supplemented with 40 mM arginine and 10 mM ura-
cil. Although transcripts for P32 and carA were
detected in both growth conditions, no difference in
expression was observed between cells grown in
VBMM or VBMM supplemented with arginine and
uracil (data not shown). This is consistent with the
promoter fusion data.

ArgR regulates expression of P32 and carA

ArgR binds to a region upstream of carA in P. aerugi-
nosa [33, 42]. Although ArgR can act as a repressor or
activator, in P. aeruginosa it has been shown to act as
a repressor of carA expression [42]. Because the pre-
dicted binding site for ArgR, TGTCGCNgAANs5 ap-
pears to be conserved in P. syringae (Fig. 1), we
hypothesized that ArgR would also regulate P32 and/
or carA in P. syringae. We analyzed the expression
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Fig. 4 Expression of P32 and carA. a Regions of varying lengths upstream to the carA coding region were cloned into /ux reporter constructs;
the regions they span are shown graphically. The inverted arrows represent the predicted stem-loop of the Rho-independent terminator. (b)
Expression from Jux promoter fusions were evaluated in VBMM medium (black squares), VBMM supplemented with 40 mM arginine (dark gray
triangles), VBMM supplemented with 10 mM uracil (light gray circles), and VBMM supplemented with 40 mM arginine and 10 mM uracil (dark
gray diamonds). Data shown are the least squares means (LS Means) with standard error of normalized luminescence (lux) values over time,
derived from at least 3 independent biological replicates for each promoter fusion-medium combination, each containing 2-3 technical
replicates. Note that the scales for each panel are different in order to clearly show statistically different data points. For each time point, the
values which are significantly different from VBMM are shown with an asterisk (using Tukey HSD, a = 0.05). Normalized luminescence (lux) is
the ratio of luminescence to ODgg. Statistical analysis was performed using the program JMP Pro11

levels of P32 and carA in the AargR mutant and wild-  stationary phases, while carA expression is increased
type DC3000 using qRT-PCR. Our results show that during mid-log phase (Fig. 5). These observations indi-
expression of P32 is increased in the AargR mutant cate that ArgR likely acts as a repressor of P32 and
compared to the wild-type strain at mid-log and carA in DC3000.
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Fig. 5 Expression of P32 and carA in wild-type DC3000 compared to
AargR mutant using gRT-PCR. The dark gray bars represent the ratios
of the transcripts comparing AargR mutant to the WT at mid-log
phase, and the light gray bars represent the ratios of the transcripts
comparing AargR mutant to the WT at stationary phase. RNA
samples were normalized using gap!. The AargR mutant shows
increased levels of P32 and carA transcript compared to the WT at
mid-log phase. The levels of P32 and carA transcripts were analyzed
by calculating the fold difference of transcript levels between WT
and AargR mutant using the A C; method. Data shown are the
average and standard deviation of three independent

biological replicates

Examining the contribution of P32 and carA to virulence
To test the involvement of P32 and CarA in virulence,
tomato plants were dipped in suspensions of wild-type,
AP32 mutant, and the AcarA mutant. The AcarA
mutant displayed less intense disease symptoms and
reduced bacterial growth on days 5 and 7 post-
inoculation compared to the wild type (Fig. 6). Although
AP32 growth was similar to wild- type, it displayed
reduced symptoms (Fig. 6). However, the symptoms
caused by the AP32 mutant were more intense than
AcarA mutant.

Since the AcarA mutant had reduced virulence in
tomato, we tested the ability of this mutant and AP32 to
cause disease in A. thaliana seedlings. AP32 grew to
similar levels as the wild type (Fig. 7a). In addition, the
chlorotic symptoms caused by AP32 were also similar to
wild type (Fig. 7b). Based on these data, it is unlikely that
AP32 plays a substantial role in virulence in DC3000.
However, the AcarA mutant displayed reduced growth
and was not able to cause the same necrotic symptoms
as the WT (Fig. 7a and b), suggesting that carA is neces-
sary for growth and fitness in planta.

Growth of AP32 and AcarA in apoplastic fluid

During infection, P. syringae obtains its nutrients from
the apoplast. Therefore to investigate whether the ob-
served reduction in growth in planta was due to nutri-
ent limitation, we compared the growth of wild-type
DC3000, AP32, and AcarA in apoplastic fluid extracts.
The wild-type strain and the AP32 mutant demonstrated
similar growth. However, growth of AcarA was lower
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than the wild-type at earlier time points in apoplastic
fluid with or without arginine. However, AcarA was able
to achieve growth levels similar to wild type at later time
points (Fig. 8). In apoplastic fluid supplemented with
uracil or both arginine and uracil, AcarA and AP32
growth characteristics were similar to wild type, with no
significant differences detected between the strains at all
time points (Fig. 8).

AcarA is reduced in motility

The reduced virulence observed with the AcarA mutant
could be solely due to the inability to grow in vivo or
the inability to produce other factors related to viru-
lence. Because carA is induced in Salmonella cells that
are swarming compared to cells that are in a vegetative
state, and has been implicated in motility [43], we tested
the ability of the AcarA mutant to swarm. Since the
AcarA mutant does not grow as efficiently as the wild-
type strain in minimal media, the assay was conducted
in nutrient agar, a rich medium that is used to test
swarming of P. aeruginosa. All strains grew equally in
this medium (data not shown). As shown in Fig. 9a, the
wild-type strain, AargR mutant and AP32 mutant
swarmed equally (Fig. 9a) in this medium while the
AcarA mutant exhibited reduced swarming (ANOVA, P-
value <0.004 and Tukey HSD, P-values <0.01) (Fig. 9a).
Motility was also examined using a soft agar to test for
functional flagella. The AcarA mutant showed reduced
swimming compared to the wild-type, AargR mutant
and AP32 mutant (ANOVA P-value < 0.002; Tukey HSD
P-value <0.05) (Fig. 9b).

Deletion of carA affects cell attachment

Since motility plays an important role in the ability of
the bacteria to colonize different environments and
attach to surfaces, we examined the AcarA mutant using
the microtiter dish assay that has become a standard
tool for the study of the early stages in biofilm formation
[44]. The AcarA mutant showed a statistically significant
(P<0.003 by ANOVA; P<0.01 using Tukey HSD) in-
crease in biofilm formation in comparison to the wild
type (Fig. 10). No observable growth differences were
observed when the ODgg of planktonic cells was
measured as a function of time during the period of
growth in the microtiter wells.

Discussion

Although the carAB operon is conserved in many
bacteria, its regulation is surprisingly variable. [37]. The
well-characterized carAB operon in E. coli (reviewed by
[45]) is regulated by several mechanisms. This operon
makes use of two tandem promoters that are separately
regulated by pyrimidines and arginine. The more distal
or upstream promoter is regulated by numerous factors
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including integration host factor (IHF), the purine
repressor (PurR), the pyrimidine ultilization regulator
(RutR) as well as PepA, an aminopeptidase and a UMP-
kinase PyrH. Additional regulation occurs through re-
iterative transcription (or RNA polymerase stuttering)
when dUTP is available at high concentration, nascent
transcripts originating at this promoter are released pre-
maturely due to RNA polymerase stuttering at a T-rich
region immediately downstream from the transcriptional

start site. The second (proximal) promoter is negatively
regulated by the transcriptional regulator ArgR which
consists of two trimers that are stabilized by the binding
of arginine.

In contrast to E.coli, carAB in P. aeruginosa is tran-
scribed from a single promoter [32]. carAB expression
increases in response to limitation of either arginine or
pyrimidine. The carAB transcript includes an upstream
untranslated region (UTR) that contains a potential
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stem-loop structure [32]. The pyrimidine response is
reduced when a portion of the right arm of the stem-
loop structure is deleted, and it is abolished when the
stem-loop structure is completely removed. Since
carAB expression continues to be responsive to argin-
ine levels in these experiments, the stem-loop struc-
ture appears to be required specifically for pyrimidine
regulation of carAB.

Our data shows that regulation of carAB in DC3000
resembles the regulation reported in P. aeruginosa.
However there are some novel features. Although the
qRT-PCR data suggests that ArgR represses the expres-
sion of P32 and carA, unexpectedly our promoter fusion
data shows that addition of arginine to the medium
increases the expression of P32 and carA in contrast to
the repression observed in P. aeruginosa. However the
regulation of the pyrimidine pathway in Pseudomonas
is strongly influenced by pyrimidine and purine nu-
cleotide effectors [46]. For example, the activity of the

carbamoyl-phosphate synthase is inhibited by UMP
and activated by ornithine and N-acetylornithine [47]
and carAB expression is subject to pyrimidine control
via an attenuation mechanism. Therefore it is possible,
that under the conditions we examined expression, the
DC3000 cells are experiencing a high requirement for
pyrimidines and expression of P32 and carA is not re-
pressed upon supplementation of arginine. Additionally,
the CPase of previously studied pseudomonads shows in
most cases only limited repression by arginine and the
ability of arginine to repress genes involved in arginine
biosynthesis is sometimes influenced by carbon source
[37]. Taken together our data indicates that the regulation
of P32 and carA is complex in P. syringae and differs
from the regulation observed in P. aeruginosa. More
extensive analyses are needed to determine direct regu-
lation by ArgR and further characterize possible post-
transcriptional regulation that may be occurring in
these pathways in P. syringae.
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Another difference we observed when compared to
the P. aeruginosa is in the 5'UTR of carA. Our unpub-
lished data of sRNAs found in P. syringae along with the
mapping of the 3" end in this study supports the notion
that a small transcript is produced from the 5'UTR of
carA. Interestingly, in P. aeruginosa a leader peptide is
produced from the carA promoter region [32]. Inspec-
tion of the P. syringae DC3000 carA promoter region
did not reveal a possible start codon that could give rise
to a small peptide in this region (data not shown).
Recently it was predicted that in P. syringae pv. phaseoli-
cola 1448A carA is regulated by attenuation [48]. We
hypothesize that in DC3000 P32 is generated by tran-
scription attenuation. A sSRNA derived from the 5'UTR
of carA might act in trans to regulate expression of
other genes. This concept was first described in E. coli
[49]. Recent studies have shown that 5'UTRs of patho-
genic bacteria can accumulate as stable RNA molecules
[50] and are capable of acting in trans. Work in L.
monocytogenes showed that several cis-acting ribos-
witches located in the 5° UTRs of mRNAs produce
small transcripts as the result of premature transcription

and these target and regulate the expression of other
mRNAs in trans [51]. The possibility that P32 may
act in trans is intriguing. Since this sRNA is con-
served among the Pseudomonads, this could add a
new complexity to the regulation of arginine biosyn-
thesis in the Pseudomonads and could identify regu-
latory links between arginine and other regulatory
pathways in these bacteria.

We found that in P. syringae a carA mutant displays
reduced growth in apoloplastic fluid and reduced fitness
in planta. During a screen for DC3000 mutants that
displayed reduced virulence, Brooks, D.M. et al. discov-
ered that a mutant with a Tn5 insertion in the carA gene
showed reduced virulence in A. thaliana [52]. Although
the authors suggested that the inability of the mutant to
multiply to high levels in A. thaliana leaves was likely
because of limited nutrients in the apoplast of A. thali-
ana leaves, no further studies were performed. Interest-
ingly our studies have shown that the growth defect of
AcarA could not be restored at 6 or 12 h with addition
of arginine to apoplastic fluid. Surprisingly, growth of
AcarA at the earlier time points could be restored to
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wild-type levels with the sole addition of uracil suggest-
ing the supply of pyrimidines may be a limiting growth
factor in apoplastic fluid. These data imply that there
maybe sufficient arginine concentrations in planta but
pyrimidines may be limiting thus resulting in reduced
fitness in planta. Studies have shown that of the 20 pro-
tein amino acids, arginine was the only amino acid that
could not be detected in apoplastic fluid [53]. To our
knowledge the concentrations of pyrimidines in the
tomato hosts have not been reported. It has been re-
ported that Erwinia amylovora can obtain sufficient py-
rimidines from host tissue to support growth and cause
disease [54]. The situation we observe with P. syringae is
more similar to the findings reported for some human
bacterial pathogens, where de novo pyrimidine synthesis
is required for growth in host-derived material [55].

The P32 mutant was able to grow to wild type levels in
planta and in apoplastic fluid extracts. However, it caused
reduced disease symptoms in tomato. Previous studies
using DC3000 mutants have shown that reduced symptom
formation is not always associated with reduced growth in

planta [56]. The precise role of P32 in as yet undefined
regulatory pathways that may lead to symptom production
needs to be examined further.

The carA mutant formed better biofilms but was also
compromised in its ability to swarm. Several mutants
with insertions within genes involved in the pyrimidine
nucleotide biosynthetic pathway and arginine metabol-
ism displayed reduced biofilm formation [57, 58]. In Vib-
rio parahaemolyticus [59] a carA transposon mutant
forms only thin pellicles at the air-medium interface.
The involvement of carA in biofilm formation and
swarming of P. syringae suggests that the reduced fitness
in planta may be the result of multiple factors.

carAB mutants of Pseudomonas spp. strain G are
auxotrophic for arginine as well as pyrimidines but also
deficient in several traits [34] such as extracellular poly-
saccharide production. Interestingly, the carAB genes
from Pseudomonas sp. strain G are required for the
degradation of diffusible signal factor (DSF), a fatty acid
signal molecule involved in regulation of virulence in
several Xanthomonas species as well as Xylella fastidiosa
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formation by P. syringae DC3000, AargR, AP32, and AcarA. Cells
were grown for 72 h at 28 °C in 96-well microtiter plates containing
nutrient broth, and surface-associated biofilm formation was analyzed
by crystal violet staining of the adherent biofilm, extraction of the
crystal violet with acetic acid, and measurement of the absorbance
(ODs70). All experiments were done in triplicate with at minimum of
three technical repeats. Data were analyzed by one-way analysis of
variance (ANOVA) followed by Tukey HSD for pair-wise comparisons.
Asterisks indicate statistically significant difference (P < 0.003 by ANOVA;
P <001 using Tukey HSD)

[34]. Interestingly, a carAB mutant strain of Halomonas
eurihalina is also deficient in exopolysaccharide produc-
tion [41]. This deficiency is thought to be a result of a
decrease in the UDP-sugar pool. These compounds are
essential to the synthesis of nucleotide di-phospho-sugar
precursors such as UDP glucose and UDP galactose.
UDP sugar is utilized in the synthesis not only of extra-
cellular polysaccharides but also of lipopolysaccharides
and the glycosylation of lipids and fatty acids. It is pos-
sible that the carA mutant of P. syringae displays altered
production of extracellular polysaccharides. At least
three exopolysaccharides (Psl, Pel, and alginate) contrib-
ute to biofilm formation in P. aeruginosa [60]. P. syrin-
gae DC3000 is able to produce Psl and alginate but does
not encode for genes for the polysaccharide Pel [61].
Alterations in production of Psl can influence biofilm
formation and swarming motility of P. aeruginosa [62].
Our future studies will explore if there is an involvement
of carA in exopolysaccharide production in P. syringae.

Conclusions

In this study we found that carA of P. syringae plays an
important role in providing arginine and uracil for
growth of the bacterium and also influences other
factors that are potentially important for growth and
survival during infection. In conclusion, our data also
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show that carA is important for growth and survival of
P. syringae in planta.

Methods

Bacterial strains and growth conditions

The bacterial strains and plasmids used in this study can
be found in Additional file 2: Table S1. Pseudomonas
syringae pv. tomato DC3000 (DC3000) was cultured at
28 °C or at room temperature on King’s B (KB) agar
[63]. Where noted, the minimal media used were MG
Mannitol-Glutamate (MG) medium (10 g/L of mannitol,
2 g/L of L-glutamic acid, 0.5 g/L of KH,PO,, 0.2 g/L of
NaCl, 0.2 g/L of MgSOy, final pH of 7) [64] and VBMM
[65]. When desired arginine and uracil were used at final
concentrations of 40 mM and 10 mM, respectively.

Bacterial growth assays

For evaluating growth, overnight cultures of each strain
were prepared in liquid KB and incubated at 28 ° C with
shaking. The next morning cultures were centrifuged
and the pellets re-suspended in 1 mL of sterile water.
The pellets were washed two more times and then re-
suspended in 1 mL of sterile water. Following re-
suspension, the ODggo of the cultures was measured,
suspensions were diluted to ODgpp=2.0 in 1 mL of
water, and the ODggg was measured again. The wells of
a 96-well plate were filled with 200 pL of appropriate
medium and then inoculated with 20 pL of bacterial
suspension. Plates were incubated at 28.0 °C with shak-
ing in a Biotek Synergy 2 microplate reader (Biotek,
Winooski, VT). ODggo was measured every 30 min for
24 h. Three wells were measured for each bacterial
strain/medium. When necessary, medium was supple-
mented with arginine (final concentration of 40 mM)
and/or uracil (final concentration of 10 mM). Growth
curves were repeated three times. Growth at time points
6, 12, 18 and 24 h was used for post-hoc statistical
analysis. Statistical significance was assessed using Tukey
HSD for pair-wise comparisons (a = 0.05).

Apoplastic fluid extraction and growth

Apoplastic fluid was extracted from four-week old Sola-
num lycopersicum cv. MoneyMaker tomato plants fol-
lowing the protocol described in [53] with the following
modifications. Whole leaves were removed and sub-
merged in a container of DI water. The container was
placed in a bell jar and a series of vacuum-pressure
cycles were applied to the leaves at approximately 24 psi
until the leaves were fully infiltrated. The leaves were
removed, blotted dry, and carefully rolled into a 5-mL
syringe barrel. The syringe was placed in a 15-mL con-
ical vial and centrifuged at 2,000 rpm for 5 min at 4 °C
to collect apoplastic fluid. Fluid was aliquoted into
1.5 mL microcentrifuge tubes and centrifuged again at
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3,000 rpm for 10 min at 4 °C. The supernatant was
removed and placed into a 1.5 mL microcentrifuge tube
and stored at —80 °C. To test for cytoplasmic contamin-
ation, a fraction of the extracted apoplastic fluid was eval-
uated for Glucose-6-Phosphate Dehydrogenase (G6PDH)
activity and compared to a leaf homogenate using a
G6PDH Asssy Kit (Sigma-Aldrich, St. Louis, MO) accord-
ing to the manufacturer’s instructions. Only apoplastic
fluid that had little to no cytoplasmic contamination was
used in growth analysis. Growth was evaluated using the
protocol described above for bacterial growth assays.
Three biological replicates were performed per strain,
each with three technical replicates. Statistical significance
was assessed using Tukey HSD (a = 0.05).

Creation of reporter constructs

Genomic regions upstream of carA (PSPTO_4502) were
amplified via PCR using chromosomal DNA isolated
from wild-type DC3000. Primers 94 and 95 were de-
signed to amplify the entire region between dapB
(PSPTO_4503) and carA (PSPTO_4502) for a total prod-
uct length of 228 bp. Primers 94 and 97 yielded a prod-
uct of 187 bp in length that disrupted the putative stem
loop region. Primers 94 and 98 amplified a region
upstream of P32 (143 bp). The 117 bp product obtained
using primers 99 and 95 lacks the putative promoter
upstream of P32. Primers 100 and 95 amplified a region
of 51 bases upstream of carA that does not include P32.
These amplified regions were cloned by PCR and TOPO
cloning using the pENTR/D-TOPO vector (Invitrogen,
Carlsbad CA). Positive clones were selected by plating
on LB supplemented with 50 pg/ml of kanamycin.
Inserts were then sequenced (Biotechnology Resource
Center (BRC) at Cornell University) to identify correct
clones. LR cloning and the Gateway® LR Clonase® II
Enzyme mix (Invitrogen) were used to move the pro-
moter regions into the destination vector pBS58, which
contains a promoterless [ux operon [66, 67]. The LR
mixture was transformed into One Shot Omni-Mach
2 T1 cells (Invitrogen). Positive clones were selected by
plating on LB supplemented with 50 pg/ml of kana-
mycin and 10 pg/ml of tetracycline and subsequently
confirmed by sequencing.

Promoter fusion assays

Promoter fusion constructs were introduced into the
appropriate P. syringae strains using electroporation and
plating transformants on KB plates containing kanamy-
cin. Overnight cultures were prepared in KB medium
supplemented with kanamycin and incubated at 28.0 °C
with shaking then diluted the next day to an ODggo = 0.1
in VBMM or VBMM supplemented with 40 mM argin-
ine and/or 10 mM uracil. 200 pL of the culture was
dispensed into individual wells of a 96 well plate in a
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Biotek Syngery 2 microplate reader. The cultures were
incubated at 28.0 °C with shaking. ODgo, and relative
luminescence were measured every 2 h and relative lu-
minescence calculated as luminescence/ODgy,. The ex-
periment was performed at least three times. Statistical
significance was assessed using Tukey HSD (a = 0.05).

RNA isolation

Total RNA was prepared using Trizol (Invitrogen) follow-
ing the manufacturer’s instructions. Once isolated, RNA
was treated with DNAse (Ambion, Austin, TX) to remove
residual DNA. RNA was extracted using phenol:chloro-
form: IAA (isoamyl alcohol) then cleaned and concentrated
using RNA Clean-up & Concentrator kit (Zymo Research,
Irvine, CA). Removal of DNA was verified by quantitative
real-time PCR with primers to the normalizing genes gap 1
(PSPTO_1287) or gyrA (PSPTO_1745) [68].

Reverse transcription-PCR (RT-PCR)

Total RNA (100 ng) was reverse transcribed using Super-
script III (Invitrogen) and primers listed in Additional
file 2: Table S1 according to the manufacturer’s
instructions. PCR reactions were performed for 30 cy-
cles. The PCR products were separated by agarose gel
electrophoresis.

3' rapid amplification of cDNA ends (RACE)
3" RACE was performed as described by Moll et al. [69].
This protocol was adapted from Argaman et al. [70].

Quantitative real-time PCR (qPCR)

qPCR was performed as described by Park et al. [71]. Ex-
tracted RNA was synthesized into cDNA using the qScript
¢DNA Supermix (Quanta Biosciences, Gaithersburg, MD)
and qPCR was performed using IQ SYBR green Supermix
(Bio-Rad, Hercules, CA) on a iQ5 multicolor real-time
detection system (BioRad). The production of nonspecific
products was determined by the dissociation protocol
included in the software provided with the machine. All
primer pairs were found to yield unique products using
the dissociation protocol (data not shown). The PCR
assay was carried out as previously described [71]. Gene
expression fold-change was calculated using the AA C,
method. C, values of each gene tested were normalized
to the C; values of the housekeeping gene gapl
(PSPTO_1287). Primers used for qRT-PCR are listed in
Additional file 2: Table S1.

Construction of mutant strains

Primers used for the construction of mutant strains are
listed in Additional file 2: Table S1. Unmarked deletion
strains were constructed using pK18mobsacB plasmid
[72]. DNA fragments of approximately 1.0 kb upstream
and downstream of P32, carA, and argR were amplified
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by PCR, gel purified and then joined by splicing by
overlap extension PCR. The P32, carA, and argR genes
were then deleted from DC3000 using the deletion con-
structs and marker exchange mutagenesis [71]. Mutant
clones (those containing the deletion) were confirmed
by DNA sequencing.

Complementation of AcarA

The coding region of carA along with its native Shine
Dalgarno sequence was amplified from DC3000 genomic
DNA using oligos SCMF3 F and SCMF4 R and the
Expand High Fidelity PCR System from Roche. The
primers contained the restriction enzyme site Xbal at
their 5° ends. The Xbal-digested PCR product was
cloned into the Xbal site of broad host range vector
pUCP22 containing the lac promoter [73], and se-
quenced to confirm the presence of carA. The resulting
plasmid was designated as pUCP22:carA.pUCP22::carA
was electroporated into DC30004carA to generate the
complementation strain of AcarA. For controls, pUCP22
was electroporated into DC3000 and AcarA. The strains
were selected on gentamycin at 5 upg/ml. Bacterial
growth assays were performed as described above.

Evaluating virulence in Arabidopsis plant seedlings

To assess virulence, the Arabidopsis seedling flood-
inoculation assay was used [74] following the modifica-
tions described in Park et al. [71].

Tomato Dip-inoculation
Tomato dip inoculations were performed as described
by Park et al. [71].

Motility assays

P. syringae strains were grown overnight at 28 °C in KB.
Overnight cultures were diluted to ODgyy of ~0.3 and
5 pl were used to spot onto swarming plates or stab onto
swimming plates. Swarming plates consisted of nutrient
broth (8 g/L) and 0.5 % (wt/vol) agar. Swimming assays
were performed using nutrient broth (8 g/L) and 0.3 %
(wt/vol) agar. Swarm and swim zones were measured
after plates were incubated for 24 h at room temperature.
Three technical replicates were performed for each
experiment and each experiment was performed three
times. Data were analyzed by one-way analysis of
variance (ANOVA) followed by Tukey HSD for pair-
wise comparisons.

Biofilm formation

P. syringae strains were grown overnight at 28 °C in KB.
Overnight cultures were washed three times with nutri-
ent broth and diluted to ODggy of 1.0. Cultures were
added to 96-well plates pre-filled with media to final
ODggp of 0.1 and allowed to incubate at 28 °C for 72 h
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under static conditions. After 72 h of incubation the
ODggp was measured and media was removed from each
well. Biofilm formation was assessed based on protocols
described by Merritt et al. [75] and O’Toole et al. [76].
Approximately 250 pl of 0.1 % crystal violet stain was
added to each well and allowed to incubate for 5 min.
The stain was removed and wells were washed three
times with ddH,0. The stained biofilms were resus-
pended in 30 % acetic acid and ODs5,, was recorded for
each well. Four replicates of each strain were normalized
using the final ODgg, averaged, and standard deviation
was computed. Statistical significance was assessed using
a one-way ANOVA test followed by Tukey HSD for
pair-wise comparisons.

Additional files

Additional file 1: Figure S1. Expression of carA in the P32 mutant.
Figure S2 Growth of the complemented mutant of AcarA is comparable
to wild type DC3000. (PDF 167 kb)

Additional file 2: Table S1. List of plasmids, strains, and primers.
(PDF 96 kb)
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