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Robust Mendelian randomization in the presence
of residual population stratification, batch effects
and horizontal pleiotropy
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Mendelian Randomization (MR) studies are threatened by population stratification, batch

effects, and horizontal pleiotropy. Although a variety of methods have been proposed to

mitigate those problems, residual biases may still remain, leading to highly statistically sig-

nificant false positives in large databases. Here we describe a suite of sensitivity analysis

tools that enables investigators to quantify the robustness of their findings against such

validity threats. Specifically, we propose the routine reporting of sensitivity statistics that

reveal the minimal strength of violations necessary to explain away the MR results. We

further provide intuitive displays of the robustness of the MR estimate to any degree of

violation, and formal bounds on the worst-case bias caused by violations multiple times

stronger than observed variables. We demonstrate how these tools can aid researchers in

distinguishing robust from fragile findings by examining the effect of body mass index on

diastolic blood pressure and Townsend deprivation index.
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Many fundamental questions in the social and medical
sciences are questions of cause and effect. For instance,
what are the social and health consequences of obesity?

In practice, however, it is often infeasible or unethical to perform
a randomized controlled trial to answer these types of questions.
Moreover, observational studies are prone to being biased due to
the presence of unmeasured confounders. In such cases, the
method of instrumental variables1–4 (IVs) may be an appealing
alternative, allowing one to infer cause-effect relationships even in
the presence of unmeasured confounding between the exposure
and the outcome.

Mendelian randomization (MR) exploits genetic variants
associated with an “exposure” trait of interest as IVs to investigate
whether that exposure has a causal effect on an “outcome” trait of
interest5–11. The technique of MR has become a standard tool for
inferring causal relationships, with numerous applications pub-
lished in medical, genetic and epidemiological journals6–14. This
growth has been accelerated by the availability of large genetic
databases15 and Genome-Wide Association Studies (GWAS)
linking many genetic variants to complex phenotypes8. Never-
theless, the validity of MR studies depends on its own set of
assumptions, and this rapid growth has not been accompanied
with sufficient attention to those assumptions16–23.

In particular, beyond being associated with the exposure, for a
genetic variant to be a valid IV it must satisfy two important and
often (though not always24–28) untestable conditions6–9: (i) it
must not be itself confounded with the outcome trait; and, (ii) it
must affect the outcome trait only through its effect on the
exposure trait. These conditions may be violated in several ways
due to populational and methodological artifacts, as well as bio-
logical mechanisms. Most notably, population stratification29–34

and batch effects34–36 are well-known sources of confounding
biases in high-throughput genomic data. Likewise, many genetic
variants tend to exert horizontal pleiotropy, meaning they affect
the outcome trait through channels other than the exposure
trait37,38.

The prevailing method for dealing with population stratifica-
tion and batch effects in MR is to adjust for genomic principal
components and surrogate technical covariates representing
genomic batch or assessment center20. In the case of horizontal
pleiotropy, researchers are advised to perform alternative analyses
that rely on modified identification assumptions (such as MR-
Egger39, MR-PRESSO40, MR-MBE41, MR-Mix42, MR-GENIUS43,
among a plethora of variations). Although these methods have
proved useful for partially mitigating these problems, residual
biases may still remain9,44. Since those biases are impervious to
sample size, they may lead to highly statistically significant false
findings with large genomic data, as we demonstrate later via
simulations.

Here we build on recent developments of the sensitivity ana-
lysis literature in statistics45–50 to provide a suite of sensitivity
analysis tools for MR studies that quantifies the robustness of
inferences to the presence of residual population stratification,
batch effects, and horizontal pleiotropy. Specifically, we

introduce robustness values46 (RV) for MR, summarizing the
minimal strength that residual biases must have (in terms of
variance explained of the genetic instrument and of the pheno-
types) in order to explain away the MR causal effect estimate. We
also provide intuitive sensitivity plots that allow researchers to
quickly inspect how their inferences would have changed under
biases of any postulated strength. Finally, we show how to place
formal bounds on the worst-case bias caused by putative
unmeasured variables with strength expressed in terms of mul-
tiples of the effect of observed variables, thereby facilitating
expert judgment regarding the plausibility of such strong viola-
tions of the traditional MR assumptions. We demonstrate how
these tools can aid researchers in distinguishing robust from
fragile findings by examining the sensitivity of the effect of body
mass index on diastolic blood pressure and Townsend depriva-
tion index.

Results
MR-SENSEMAKR overview—a suite of sensitivity analysis tools for
MR. We developed MR-SENSEMAKR51, a suite of sensitivity analysis
tools for MR that allows researchers to perform robust inferences
of causal effect estimates in the presence of violations of the
standard MR assumptions. These tools quantify both how much
the inferences would have changed under a postulated degree of
violation, as well as the minimal strength of violation necessary to
overturn a certain conclusion. MR-SENSEMAKR builds on an exten-
sion of the “omitted variable bias” framework for regression
analysis46,47 to the Anderson–Rubin method52 and Fieller’s
theorem53 for testing null hypotheses in the IV setting. This
approach has a number of benefits, such as: (i) correct test size
regardless of instrument strength; (ii) handling multiple con-
founding or pleiotropic effects acting simultaneously, possibly
non-linearly; (iii) providing simple sensitivity statistics for routine
reporting; and, (iv) exploiting expert knowledge to bound the
maximum strength of biases (see Methods for details).

Let D denote the “exposure” trait, Y the “outcome” trait, and Z
the genetic instrument (e.g, a polygenic risk score). Additionally,
let X denote a set of observed “control” covariates which accounts
for potential violations of the MR assumptions, such as
population stratification (e.g, genetic principal components),
batch effects (e.g, batch indicators) and traits that could block
putative horizontal pleiotropic pathways20. Traditional MR
analysis assumes that X is sufficient for making Z a valid
instrumental variable for identifying the effect of the exposure
trait D on the outcome trait Y. An example for which this is the
case is depicted in the directed acyclic graph (DAG) of Fig. 1a—in
this example there are no pleiotropic pathways, and although
there is confounding due to population structure, adjusting for X
(say, genomic principal components and batch indicators) is
sufficient for eliminating all biases (note this DAG is for
illustration purposes, as there are many alternative structures
compatible with the IV assumptions; see Supplementary Infor-
mation for other examples).

Fig. 1 Directed acyclic graphs (DAGs) illustrating the traditional MR assumptions and possible violations. Graphically, conditional on X, the genetic
instrument Z is a valid IV for the causal effect of trait D on trait Y, if X blocks all paths from Z to Y on the graph where the edge D→ Y is removed4.
a Example in which the IV conditions hold, and X alone accounts for all population structure. b Here X does not account for all population structure, and
valid MR requires conditioning on both X and Wps. c Similarly, here we have a violation of the standard MR assumptions due to horizontal pleiotropy
through trait Whp; again, valid MR requires conditioning on both X and Whp.
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The problem arises, however, when X does not suffice for
making Z a valid instrument; instead, an extended set of control
covariates would be necessary to do so, but some of these
variables are, unfortunately, unobserved. Figure 1b and c illustrate
two of such cases. In Fig. 1b, although X accounts for part of the
confounding biases due to population structure (ps), it cannot
account for all of it, and further adjustment for Wps would be
necessary for making Z a valid instrument. In Fig. 1c, we have a
different type of problem; there, the genetic instrument exerts
horizontal pleiotropy (hp) through trait Whp, which needs to be
accounted for in a valid MR analysis. In practice, of course, all
these residual biases will often be acting simultaneously—we
denote by W the set of all additional unmeasured variables that
would be necessary for making Z a valid genetic instrument for
the target effect of interest. If Z is a valid instrument conditional
on both X and W, the target of estimation of traditional MR,
denoted here by τ, is the IV estimand consisting of a ratio of the
two genetic associations

τ ¼ βYZjXW
βDZjXW

ð1Þ

where βYZ∣XW is the partial regression coefficient of the genetic
instrument with the outcome trait, and βDZ∣XW the partial regression
coefficient of the genetic instrument with the exposure trait. The
interpretation of τ as a (weighed average of local) treatment effect(s)
depends on additional functional constraints3,26,54,55, but this has
no consequence for our analysis (see Supplementary Information).
Here we consider the case in which investigators are interested in
the IV estimand τ.

In this setting, MR-SENSEMAKR answers the following question:
how strong would the unmeasured variables W have to be such
that, if accounted for in the analysis, they would have changed the
conclusions of the MR study? As it has been extensively discussed
elsewhere7,9,17,20, MR studies are more reliable to test the
presence or direction of a causal effect, rather than to precisely
estimate its magnitude. Thus, here we focus on two problematic
changes that W could cause—turning a statistically significant
result into an insignificant one; or, leading to unbounded or
uninformative confidence intervals due to weak instruments
(when using Fieller’s theorem, confidence intervals can be: (i)
connected and finite; (ii) the union of two disjoint unbounded
intervals; or, (iii) the whole real line; see Methods).

It can be shown that, given a significance level α, the
confidence interval for the MR causal effect is unbounded if,
and only if, we cannot reject the hypothesis that the genetic
association with the exposure, βDZ∣XW, is zero. Likewise, the MR
causal effect estimate is statistically insignificant if, and only if, we
cannot reject the hypothesis that the genetic association with the
outcome, βYZ∣XW is zero (to understand this intuitively, note again
that the MR estimate is the ratio of the genetic association with
the outcome over the genetic association of the exposure. Note
this ratio is zero if the numerator is zero; likewise, the ratio can be
made arbitrarily large if the denominator can be made arbitrarily
close to zero). Therefore, the problem of sensitivity analysis of the
MR estimate can be reduced to the simpler problem of sensitivity
analysis of these two genetic associations, and we can leverage all
recent developments of sensitivity analysis for regression
estimates (Cinelli and Hazlett46,47,50) to the sensitivity of MR.

MR-SENSEMAKR thus performs sensitivity analysis for the MR
causal effect estimate by examining how strong W needs to be to
explain away either the observed genetic association with the
exposure or the observed genetic association with the outcome. It
deploys two main tools for assessing the sensitivity of these
quantities. First, it computes key sensitivity statistics suited for
routine reporting46, including

● The partial R2 of the genetic instrument with the
(exposure/outcome) trait, revealing the minimal share of
residual variation that W needs to explain of the genetic
instrument in order to fully eliminate the genetic associa-
tion with the (exposure/outcome) trait;

● The robustness value (RVα) of the genetic instrument with
the (exposure/outcome) trait, revealing the minimal share
of residual variation (partial R2), both of the genetic
instrument and of the trait, that W needs to explain in
order to make the genetic association with the (exposure/
outcome) trait statistically insignificant at the α level; and,

● Bounds on the maximum residual variation explained by
unmeasured variables W if they were as strong as: (i)
observed principal components; (ii) measured batch effects;
and, (iii) observed pleiotropic pathways.

MR-SENSEMAKR also provides sensitivity contour plots46 that,
given any hypothetical strength of W (measured in terms of the
partial R2 of W with the genetic instrument and with the trait),
allows researchers to investigate what would have been the result
of a significance test of the genetic association with the (exposure/
outcome) trait had a W with such strength been incorporated in
the analysis (see Fig. 2). The sensitivity statistics can in fact be
interpreted visually as summaries of critical lines of the contour
plot. For instance, RVα is the point of equal association of the
critical contour corresponding to the significance level α, whereas
the partial R2 corresponds to a vertical line tangent to the critical
contour of zero, which is never crossed (see Methods for further
details). Finally, these plots can also include several bounds on the
maximum amount of residual variation that W could explain,
both of the genetic instrument and of the (exposure/outcome)
trait, if W were multiple times stronger than observed variables.
Next, we apply these tools in a real example that examines the
robustness of previous MR findings regarding the causal effect of
BMI on blood pressure and deprivation56–58.

MR-SENSEMAKR helps distinguishing robust from fragile findings.
Previous studies56–58 used MR on the UK Biobank data15 to
assess the causal effect of body mass index (BMI) on multiple
outcome traits of interest. These MR analyses found a statistically
significant effect of BMI on diastolic blood pressure (DBP)57 and
on Townsend deprivation index (deprivation)—a measure of
socioeconomic status56. Following these studies, we filtered the
data to only include people with self-reported white British
ancestry who were not closely related, leaving a sample size of
291,274 people; the genetic instrument consisted of a polygenic
risk score (PRS) derived from 97 SNPs previously found to be
associated with BMI, with external weights given by the effect
sizes from the GIANT study57,59 (see Methods for details).

The first part of Table 1 reports the results of the traditional
MR analysis of the effects of BMI both on DBP and on
deprivation. As it is usually recommended20 and following the
original studies, these MR analyses further adjust for: age, gender,
20 leading genomic principal components, assessment center,
batch indicators, as well as smoking and drinking status (both are
putative pleiotropic pathways, especially for DBP60–65). In
consonance with the previous studies, we found that the
conventional MR analyses led to positive and statistically
significant effects of BMI on both traits, at the 5% significance
level. The results, however, rely on the assumptions of zero
residual population stratification, zero batch effects and zero
horizontal pleiotropy, which are unlikely to hold. We thus used
MR-SENSEMAKR to investigate the robustness of these findings to
potential violations of the standard MR assumptions.

We first examined the robustness of the genetic association
with the exposure trait (BMI). Recall that, if the MR violations are
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strong enough to explain away the genetic association with the
exposure, this can lead to unbounded or uninformative
confidence intervals for the MR causal effect estimate—the
exercise we are performing here is thus tantamount to assessing
the “weak instrument” problem, except that now we are
accounting both for sampling uncertainty and potential violations
due to unmeasured variables W. The results are shown in the
section entitled “Sensitivity PRS-Exposure” of Table 1. (Note the
results are the same both for DBP and deprivation, since the
exposure trait, BMI, is the same in both cases.) The first

sensitivity measure is the partial R2 of the PRS with BMI, which
amounted to 1.67%. Although this quantity is already reported as
a measure of instrument strength in many MR studies20, it is
perhaps less known that it is also a measure of its robustness to
extreme confounding. In particular, this means that, even if the
unmeasured variables W explained all left-out variation in BMI,
they would still need to account for at least 1.67% of the variance
of the genetic instrument, otherwise W cannot explain away the
genetic association with the exposure. Next we obtained a
robustness value of 11.88% for the PRS-exposure association. This
means that any unmeasured variables W that explain less than
11.88% of the residual variation, both of the PRS and of BMI, are
not strong enough to make the genetic association with the
exposure statistically insignificant.

Next we examined the robustness of the genetic association
with the outcome traits; recall that any unobserved variables
capable of explaining away the genetic association with the
outcome trait are also capable of explaining away the MR causal
effect estimate. The results are shown in the section entitled
“Sensitivity PRS-Outcome” of Table 1, and here we have two
separate results for each trait. Specifically, we obtained a partial
R2 of the PRS with DBP of 0.035% and a robustness value 1.47%.
This means that, even if unobserved variables explained all
variation of DBP, they still need to explain at least 0.035% of the
residual variation of the genetic instrument to fully account for
the observed PRS-DBP association; moreover, the RV reveals that
unobserved variables that explain less than 1.47% of the residual
variation, both of the genetic instrument and of DBP, are not
sufficiently strong to overturn the statistical significance found in
the original MR study. Moving to the next trait, the bottom row
of Table 1 shows the sensitivity statistics for the effect of BMI on
deprivation. Here we found a partial R2 of 0.002% and a
robustness value of 0.08%, revealing that much weaker residual
biases would be able to overturn the MR effect estimate of BMI
on deprivation.

Confronted with those results, the next step is to make
plausibility judgments on whether unobserved variables with the
strengths revealed to be problematic can be ruled out. To aid in
these plausibility judgments, MR-SENSEMAKR computes bounds on
the amount of variance explained by the unmeasured variables W
if it were as strong as observed variables. For our running
example, these bounds are shown in Table 2; they reveal the
maximum partial R2 of unobserved variables W with the genetic
IV and with the traits, if it were as strong as: (i) 20 leading
genomic principal components (1× PCs); (ii) observed batch and
center effects (1× Batch+Center); and, finally, (iii) smoking and
drinking status (1× Alc.+Smok.).

Starting with instrument strength, first note that all bounds on
the PRS and BMI columns of Table 2 are (substantially) lower
than than the RV of 11.88% for the genetic association with BMI;
this means that, even if W were as strong as those variables, this
would not be sufficient to result in a “weak instrument” problem.
Moreover, since all values of the PRS column are less than the
partial R2 of 1.67% of the variant-exposure association, even a
“worst-case” W that explains 100% of the variance of BMI, and as
strongly associated with the genetic instrument as the observed
variables, cannot account for the observed association of the
genetic instrument with the exposure. Moving to statistical
significance concerns, similar results hold for the PRS-DBP
association. Since the bounds on both columns, for the PRS
(column 1) and DBP (column 3), are below the robustness value
of 1.47%, Table 2 reveals that biases as strong as the observed
variables are not sufficient to make the MR causal effect estimate
of BMI on DBP statistically insignificant. However, in stark
contrast, note that all bounds on the PRS and deprivation
columns are above the RV of 0.08% for deprivation, meaning that

Fig. 2 Sensitivity contour plot with benchmark bounds. The horizontal axis
shows the partial R2 of unobserved variablesW with the genetic instrument;
this corresponds to the percentage of residual variation of the genetic
instrument explained by W. The vertical axis shows the partial R2 of W with
the trait of interest, which can be either the exposure trait or the outcome
trait; again, this stands for the percentage of residual phenotypic variance
explained by W. Given any pair of partial R2 values, the contour lines show
the t-value that one would have obtained for testing the significance of the
genetic association with the (exposure/outcome) trait, had a W with such
strengths been included in the analysis. The point represented by a black
triangle (left lower corner) shows the t-value of a traditional MR study (i.e.,
t= 13)—note it assumes exactly zero biases due to unobserved variablesW.
As we move along both axes, the biases due to W get worse, and can
eventually be strong enough to reduce the t-value below a chosen critical
level t*, shown in the red dashed line (e.g., t*≈ 2 for a significance level of
α= 5%). Unobserved variables W with strength below the critical red line
are not strong enough to change the conclusions of the original MR study;
on the other hand, unobserved variables W with strength above the critical
red line are strong enough to be problematic. The point represented by a red
diamond bounds the maximum strength of W if it were as strong as
observed genomic principal components (1× PCs). They show the maximum
bias caused by residual population stratification, if it had the same
explanatory power as the PCs in explaining genetic and phenotypic variation.
In this example, the plot reveals that residual population stratification as
strong as the first genomic principal components would not be sufficient to
make the genetic association statistically insignificant (i.e., the adjusted
t-value accounting for a W with such strength is 7.88, which is still above
the critical threshold of t*≈ 2). Finally, we note that if the unobserved
variable W is a singleton, then all the sensitivity analysis results are exact. If
W consists of multiple variables, then all sensitivity analysis results are
conservative, meaning that this is the worst bias that a multivariateW could
cause if it had such strengths46.
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unobserved variables W strong as those could easily overturn the
original MR analysis.

Table 1 forms our proposed minimal reporting for sensitivity
analysis in MR studies. Often, when supplemented with bounds
such as those of Table 2, these metrics are sufficient to give a
broad picture of the robustness of MR findings, as demonstrated
above. Researchers, however, can refine their analyses and fully
explore the whole range of robustness of their inferences with
sensitivity contour plots, placing several different bounds on the
strength of confounding multiple times stronger than observed
variables.

The plots for DBP and deprivation are shown in Fig. 3 (see
caption of Fig. 2 for details on how to read the plot). For DBP,
note that neither residual population stratification up to 14×
stronger than observed principal components nor residual batch-
effects up to 6× stronger than observed batch-effects are sufficient
to make the MR estimate statistically insignificant. Likewise, if
residual pleiotropy were up to 7× stronger than important
observed pleiotropic pathways, such as alcohol and smoking, this
is also not sufficient to change the original conclusions. Finally,
even if unobserved variables W had the same explanatory power
of all the observed variables combined, this again would not
change the results for DBP. In contrast, the sensitivity plot for
deprivation reveals that the MR causal effect estimate of BMI on
deprivation is sensitive to confounding with explanatory power as
weak as a fraction (e.g, 0.5) of current observed variables. For
completeness, Fig. 3c also shows the contour plots for the
sensitivity of the genetic association with the exposure. We can
see that, as already had been suggested by the RV of 11.88% and
the bounds of Table 2, the PRS-BMI association is robust to
relatively strong residual biases.

Putting these results in context requires assessing the quality of
the benchmarks involved. For example, it does not seem
unreasonable to argue that genomic principal components
(PCs) correct for most, or at least a large part, of population
structure31, and that it is thus implausible to imagine residual
population stratification multiple times stronger than what has
been already corrected by observed principal components.
Therefore, observed PCs may be useful benchmarks against this
type of residual confounding. On the other hand, PCs may not be
appropriate benchmarks against pleiotropy. Benchmarks for

horizontal pleiotropy require specific knowledge of the etiology
of the disease, or of the social process under investigation. That is,
researchers should inquire the main channels through which
genetic effects could affect the outcome other than through the
exposure. In this application, for instance, alcohol consumption is
indeed suspected to be an important channel for horizontal
pleiotropy in the case of DBP60,61, and smoking also leads to a
short-term increase in blood pressure (although its long-term
effects are disputed)62–64. Therefore, one could plausibly argue
that it is unlikely (although not impossible) that residual
horizontal pleiotropy multiple times as strong as those still
remains.

As to deprivation, the analysis reveals a more fragile finding.
First, there is ambiguity as to the role of variables such as alcohol
and smoking: they could be acting as proxies of pleiotropic
pathways (genetics→ behavior→ deprivation), or acting as
colliders, as it is plausible that greater deprivation causes
increased consumption of alcohol and smoking. This is an
unfortunate practical problem that can only be solved with better
longitudinal data—if the measured smoking and alcohol
consumption referred unambiguously to past behavior (relative
to deprivation), then we could be assured they are not affected by
the outcome. Given this ambiguity, in practice we recommend
researchers still assess whether results are sensitive to such
variables. In our example, not only there is no a priori reason to
suspect that alcohol and smoking should be among the strongest
pleiotropic pathways for deprivation, but the bounding exercise
shows that residual pleiotropy a fraction as strong as those could
easily overturn the MR results.

Overall, the sensitivity analyses suggest that: (i) the genetic
association of the instrument (PRS) with the exposure (BMI) is
relatively robust, and instrument strength is unlikely to be an
issue; (ii) it would take substantial residual confounding and
pleiotropy to reverse the original MR finding of the causal effect
of BMI on DBP; and that, in contrast, (iii) the previous MR causal
effect estimate of BMI on deprivation is fragile, meaning that
there is little room for small residual biases, which could easily
overturn the original analysis.

In the supplementary note we apply MR-SENSEMAKR to the MR
analysis of the effects of High Density Lipoprotein (HDL) and
Low Density Lipoprotein (LDL) on Coronary Artery Disease

Table 2 Bounds on the maximum explanatory power of W (partial R2), if it were as strong as: (i) 20 leading genomic principal
components (1× PCs); (ii) observed batch and center (1× Batch+Center); and, (iii) smoking and drinking status (1× Alc.+Smok.).

Bound partial R2 with genetic IV Bound partial R2 with trait

W as strong as PRS (Genetic IV) BMI (Exposure) DBP (Outcome) Deprivation (Outcome)

1× PCs 0.20% 0.11% 0.05% 0.37%
1× Batch+Center 0.06% 0.07% 0.84% 15.76%
1× Alc.+Smok. 0.10% 2.97% 0.34% 4.50%

BMI Body Mass Index, DBP Diastolic Blood Pressure, IV Instrumental Variable, MR Mendelian Randomization, PCs Principal Components, RV Robustness Value.

Table 1 Traditional MR results and sensitivity analyses.

Traditional MR Sensitivity PRS-outcome Sensitivity PRS-exposure

Outcome Risk difference (95% CI) P value Partial R2 RVα= 0.05 Partial R2 RVα= 0.05

DBP 0.145 (0.116–0.173) 4.2 × 10−22 0.035% 1.47% 1.67% 11.88%
Deprivation 0.033 (0.006–0.060) 0.017 0.002% 0.08%

P-values correspond to two-sided t-tests in a two-stage least squares regression. No multiple testing corrections were performed.
CI Confidence Interval, DBP Diastolic Blood Pressure, MR Mendelian Randomization, PRS Polygenic Risk Score, RV Robustness Value.
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(CAD). We find that, although the strength of association is
similar for both exposure traits, the effect of LDL on CAD is
relatively more robust to residual pleiotropy than the effect of
HDL on CAD, which could be overturned by residual pleiotropy
as strong as LDL and triglycerides.

Current proposals for MR “sensitivity analyses” can lead to
false positive findings in the presence of small residual biases
in large samples. Prevailing proposals for sensitivity analyses of
MR studies have focused on replacing traditional instrumental
variable assumptions with alternative assumptions about how
pleiotropy operates, such as the InSIDE39,40 (Instrument Strength
Independent of Direct Effect) or ZEMPA41,42 (Zero Modal
Pleiotropy) assumptions. Although an improvement of traditional
MR, under the presence of residual population stratification,
batch effects, and certain forms of pleiotropy, such approaches
may still lead to statistically significant false findings given large
enough samples. Therefore, the sensitivity statistics and exercises
we propose here can be a useful complement to those alternative
analyses.

To demonstrate this, we performed a simulation study in
which the InSIDE assumption is only slightly violated through

small pleoitropic effects via confounders of the exposure and
outcome trait. Our simulation largely follows the same specifica-
tion of previous work40,66,67, with the following data-generating
process (DGP):

Wi ¼ ∑
J

j¼1
ϕjGij þ εi;W ; Xi ¼ ∑

J

j¼1
δjGij þ εi;X ð2Þ

Di ¼ ∑
J

j¼1
βjGij þ Xi þWi þ Ui þ εi;D ð3Þ

Yi ¼ τDi þ ηXi þ γWi þ Ui þ εi;Y ð4Þ
where Di is the exposure trait for individual i; Yi is the outcome
trait; Wi is an unobserved trait, and Xi an observed trait, both
carriers of pleiotropy in a way that violates the InSIDE
assumption. The genetic variants Gij are drawn independently
from a Binomial distribution, Binom(2, 1/3); the remaining error
terms Ui, εi,W, εi,X, εi,D and εi,Y are drawn from standard
gaussians. The DAG corresponding to the model of Eqs. (2)–(4)
is shown in Fig. 4.

We set the number of variants J= 90, similar to our previous
BMI analysis, and consider genetic effects drawn from an uniform

Fig. 3 Sensitivity contours for the null hypothesis of zero effect of each genetic association. a Diastolic Blood Pressure (DBP). b Townsend deprivation
index (deprivation). c Body Mass Index (BMI). The caption of Fig. 2 provides details on how to interpret the contour plots.
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distribution from 0.01 to 0.05 for ϕj, δj and βj. The parameters η
and γ give further control to the level of pleiotropy, and here
we set both to 0.05. To put this value in context, for the
usual simulated sample size considered in previous work
(10,000–30,000 individuals), this level of pleitropy is small
enough that it does not meaningfully affect type I errors for
MR-Egger. Here, however, we simulate larger sample sizes,
similar to those found in large genetic databases, ranging from
N= 150,000 to N= 450,000 individuals. Also note that we have a
violation of the ZEMPA assumption41,42, since the modal value of
pleiotropy, though very small, is not zero.

We investigated the performance of alternative MR methods in
a two-sample Mendelian randomization setting, meaning that
only summary level data was used in the analyses, and the genetic
associations with the exposure trait and the outcome trait were
obtained in separate simulated data (both with the same sample
size N). Table 3 shows the results of 1000 simulations of the data-
generating process for each of the sample sizes, considering two
cases: (i) a true null causal effect with τ= 0; (ii) and a true
positive causal effect of τ= 0.1. Note that Xi and Wi have similar
strengths—a fact that, if known, can be exploited for sensitivity
analysis.

We first focus on the case of a null causal effect. The first
columns of the table shows the proportion of cases in which the
null hypothesis of zero effect was rejected, using different MR
methods: (i) the traditional inverse variance weighted (IVW); (ii)
MR-PRESSO40; (iii) MR-Egger39; (iv) MR-GENIUS43; (iv) MR-
MBE41; and (v) MR-Mix42. Since the true causal effect is zero,
these results indicate the proportion of false positives. We see that
IVW, MR-PRESSO and MR-GENIUS give similar results with a
virtually 100% false positive rate for all sample sizes, and that
MR-Egger, MR-MBE and MR-Mix start with false positive rates
of 16%, 28% and 61% for N= 150,000, and this rate grows up to
46%, 80% and 69% at N= 4500,000, respectively. Note MR-
GENIUS requires the assumption of a heteroscedastic first stage,
which is not satisfied in the DGP (the performance of MR-
GENIUS when gradually increasing the level of heteroscedasticity
is assessed in the Supplementary Information).

Next, the last four columns show how the sensitivity exercises
proposed in this paper could help interpreting the results in such
cases. The “Critical k” columns show the 5th and 95th percentiles,
across simulations, of the multiple of the strength of W relative to
X that would be necessary to explain away the observed
association. Visually, the critical k is the value of the relative
strength k that would be necessary to bring the benchmark bound
up to a critical line in the sensitivity contour plot (see Methods).
For instance, in the previous DBP analysis, the critical k for a
confounder k times as strong as observed principal components
(Fig. 3a) is about 14, whereas for deprivation (Fig. 3b) this is
about 0.5. Here, note that in 95% of the simulated scenarios the
critical k is safely below 1. Therefore, if the researcher suspects
that residual pleiotropy could be as strong as that of X, she would
correctly be warned that such biases are strong enough to be
problematic. The last two columns show the 5th and 95th
percentiles, across simulations, of the robustness values for the
association of the genetic instrument with the outcome. Note
these always remain roughly below 0.6%, correctly warning the
researcher that residual biases of those magnitudes are capable of
overturning those MR findings.

We now turn to the second scenario, in which there is a true
positive causal effect of D on Y. Here all MR methods correctly
reject the null hypothesis of zero effect from 84% to 100% of the
time. The challenge in this setting, thus, comes not from rejecting
the null hypothesis, but from the fact that potential critics of the
study could correctly be skeptical of the results, and conjecture
that the reason why the null was rejected was simply due to
residual pleiotropic pathways. To mitigate those concerns, the
researcher could again use the bounding procedure, and in over
95% of the simulations she would conclude that one would still
reject the null, even when allowing for residual pleiotropy as
strong as that due to the observed X. Likewise, the results for the
RV show that a researcher obtains a robustness value above 2.2%
in at least 95% of the settings, meaning that, in all such cases, the
critic would need to argue that biases of at least these magnitudes
are plausible in order to forcefully dismiss the observed MR
finding.

We can further illustrate the impact of small biases in large
databases with the simulation of Table 4. Here we fix the sample
size at 450,000 individuals and we also fix the true causal effect at
τ= 0. But now we concentrate pleiotropic effects violating the
InSIDE assumption on only a subset of the variants, allowing
from 20 up to all of the 90 genetic variants to be fully valid
instruments. Observe that false-positive rates remains excessively
high, except when all variants are indeed valid. Of particular
interest are the results of MR-MBE and MR-Mix, since, in theory,
the ZEMPA assumption holds in all scenarios (i.e, the mode of
pleiotropic effects is zero in the population). In practice, however,

Table 3 Simulation of weak pleiotropic pathways violating the InSIDE assumption.

Proportion of rejections of the null (α= 5%) Critical k RVα=0.05

Sample size IVW PRESSO Egger GENIUS MBE Mix 5th 95th 5th 95th

Scenario 1: true null causal effect (τ= 0)
150,000 100% 100% 16% 100% 28% 61% 0.00 0.85 0.0% 0.6%
300,000 100% 100% 35% 100% 60% 68% 0.02 0.87 0.0% 0.6%
450,000 100% 100% 46% 100% 80% 69% 0.17 0.88 0.0% 0.6%
Scenario 2: true positive causal effect (τ= 0.1)
150,000 100% 100% 97% 100% 100% 84% 1.06 1.55 2.2% 3.1%
300,000 100% 100% 100% 100% 100% 84% 1.19 1.59 2.5% 3.1%
450,000 100% 100% 100% 100% 100% 84% 1.23 1.59 2.6% 3.1%

All methods are run with default parameter choices.
RV Robustness Value.

Fig. 4 DAG of the data-generating process for the simulation study (Eqs.
(2)–(4)). For simplicity, only one Gj is shown.
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the mode is not exactly zero in finite samples, and certain default
choices of tuning parameters for these procedures (such as the
bandwith) may still lead to bias.

The phenomenon demonstrated in these simulations is simply
the well known but often overlooked fact that, with large enough
data, virtually any residual bias will eventually be statistically
significant. It is for that reason that alternative analyses leveraging
exact, sharp assumptions, such as the ones just described, are
bound to lead to false positives with large enough genetic
databases, unless their modified identification assumptions also
hold exactly (or, of course, if they are extremely under-powered).
In contrast, the sensitivity statistics we propose here, such as the
partial R2 and the RV, are directly quantifying the strength of
biases needed to overturn a finding—and they will simply
converge to their population values as the sample size increases.
In the Supplementary Information we provide an additional set of
simulations varying the relative strength of W to be 2, 3 or 4 times
stronger than that of X, under the null hypothesis of zero causal
effect. In that scenario, the sensitivity analysis now correctly
reveals that it would take stronger confounding (about 2, 3 or 4
times as strong as X) to explain away the results.

Discussion
We have described a suite of sensitivity analysis tools for per-
forming valid MR inferences under the presence of residual biases
of any postulated strength. The approach we proposed here starts
from the premise that all MR studies will be imperfect in some
way or another, but also that a study does not have to be perfect
in order to be informative—what matters is not whether certain
assumptions hold exactly, but the extent to which certain con-
clusions are robust to violations of those assumptions, and
whether such strong violations are plausible.

We showed how two simple sensitivity statistics, the partial R2

and the robustness value (RV), can be used to easily communicate
the minimum strength of residual biases necessary to invalidate
the results of a MR study. Since researchers are already well
advised to report the partial R2 of the genetic instrument with the
exposure trait, routinely reporting the partial R2 of the genetic
instrument with the outcome trait and the robustness value is but
a small addition to current practices, and can greatly improve the
transparency regarding the robustness of MR findings. These
sensitivity statistics have roots on a strong tradition in sensitivity
analysis, dating back to at least Cornfield68, that seeks to derive
the minimal strength that unobserved variables must have in
order to logically account for the observed association. The RV
and the partial R2, first developed in Cinelli and Hazlett46, can in
fact be interpreted as generalized “Cornfield conditions” for
partial regression coefficients.

Related work by VanderWeele and Ding69 introduced the E-
value, establishing generalized Cornfield conditions for the risk-
ratio. The E-value has also been proposed for sensitivity analysis
of MR studies70. Cinelli and Hazlett46,p.61] provide some

discussion of the differences between the RV and the E-value.
Briefly, for effect measures such as βYZ∣XW and βYD∣XW (the targets
of inference of the traditional IV estimand), the E-value provides
an approximation, while the RV and the partial R2 are exact.
Moreover, while the RV parameterizes the association of the
confounder in terms of residual variance explained, the E-value
parameterizes those in terms of risk ratios. Whether one scale is
preferable over the other is context dependent. In particular, we
note that in MR and genetics, effect measures in terms of partial
R2 seem to be ubiquitous (e.g. see notions such as “heritability”).
In the Supplementary Information we provide the E-values for
our running example and further discussion.

We also showed that, whenever researchers are able to argue
that, although not perfect, they have credibly accounted for most
of the population structure with genomic principal components,
most of possible batch effects with technical covariates, and have
measured known important pleiotropic pathways, this knowledge
can be leveraged to formally bound the worst possible inferences
due to residual biases. Such bounding exercises can be an
important piece of the scientific debate when arguing in favor or
against the robustness of a certain finding. A seemingly related
tool to the contour plots with benchmark bounds we discussed in
this paper is known in epidemiology as “bias-components”
plot71,72. Although such plots can be useful for understanding
and decomposing the difference between an IV estimate includ-
ing and excluding observed variables, and contrasting this to
“usual” estimates (adjusting for observed confounders), again
including and excluding observed variables, these plots do not
provide formal sensitivity analysis due to unmeasured con-
founding. If used for that purpose, they can lead users to erro-
neous conclusions even when unobserved variables are assumed
to be identical to observed ones (see example in the Supplemen-
tary Information).

In this paper we focused on biases due to residual population
structure, batch effects or horizontal pleiotropy. Nevertheless, so
long as the identifying functional of the MR study is the tradi-
tional IV estimand, as given by Eq. (1), the sensitivity analysis we
propose here is still applicable, as it is agnostic to the particular
structure that creates bias, or the particular causal interpretation
of the target of inference. This encompasses biases due to several
different DAG structures, such as time-varying treatments and
outcomes, linkage disequilibrium21,69, and even selection bias70

(see examples in the Supplementary Information).
Finally, we remind readers that sensitivity analysis tools, such

as the ones we propose here, are not aiming to replace con-
temporary MR methods (such as MR-PRESSO40 MR-Egger39,
MR-GENIUS43, MR-MBE41, MR-Mix42 and others), nor aiming
to be a substitute to expert judgment. On the contrary, these tools
can be used as a useful complement to traditional MR analyses,
by aiding experts in leveraging certain types of knowledge that
would have been otherwise neglected, such as judgments
regarding the maximum plausible strength of residual biases, or

Table 4 Simulation in which pleiotropic pathways are concentrated on only a subset of variants.

Proportion of rejections of the null (α= 5%) Critical k RVα=0.05

# of valid variants IVW PRESSO Egger GENIUS MBE Mix 5th 95th 5th 95th

20 100% 100% 99% 100% 88% 67% 0 0.9 0% 0.5%
40 100% 100% 99% 100% 91% 60% 0 0.9 0% 0.4%
60 99% 99% 98% 100% 87% 56% 0 0.9 0% 0.3%
80 57% 56% 68% 100% 55% 25% 0 0.7 0% 0.1%
90 4.3% 4.6% 3.5% 100% 0.5% 2.1% 0 0 0% 0

Sample size of 450,000 and τ= 0. All methods are run with default parameter choices.
RV Robustness Value.
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knowledge regarding the relative importance of certain causal
pathways. In sum, strong conclusions from Mendelian rando-
mization studies still need to rely on the quality of the research
design, substantive understanding both of the genetic variants as
well as the traits under investigation, and the triangulation of
evidence from multiple sources and methods. Extension of these
sensitivity analysis tools to the context of generalized linear
models, or to explicitly leverage the information created by
multiple instruments, is currently under work.

Methods
Study design and participants
Study population. The UK Biobank73 is a resource that links genetic data to a variety
of physiological and social traits in a cohort of 503,325 British people aged 37–73
years. It has been a valuable resource for estimating causal effects of exposures on a
multitude of outcomes using MR56–58. We filtered the data to only include people
with self-reported white British ancestry who were not closely related, (e.g. no first,
second, or third degree relatives), as defined by pairs of individuals who had a kinship
coefficient < (1/2)(9/2) (following74), leaving 291,274 people. We also removed indi-
viduals who were not measured for BMI (non-impedence). For our analysis of the
Lyall et al.57 study, we also excluded patients who responded to a question on whether
they were taking anti-hypertensive medication with “don’t know.”

Polygenic risk score. The Polygenic Risk Scores (PRS) was constructed in the same
manner as in Lyall et al.57. This PRS score was derived from 97 SNPs that were
genome-wide significantly associated with BMI in the GIANT consortium study59.
Two of these SNPs were not directly genotyped in the UK Biobank, and two failed
Hardy-Weinberg equilibrium, leaving 93 SNPs to comprise the PRS. The PRS was
computed as a weighted score based on these SNPs, with the weights derived from
the effect estimated reported by GIANT (β per 1-SD unit of BMI)57,59. We used the
exact same weights computed by Lyall et al.57 (Supplementary Data 1).

Exposure, outcome and control traits. During the initial visit to the UK Biobank
assessment center, height was measured to the nearest centimeter using a Seca 202
device and weight was measured to the nearest 0.1 kg using a Tanita BC418MA
body composition analyzer. These measurements were subsequently used to cal-
culate body mass index (BMI), in kg/m2 (field category ID: 21001). The two
outcomes of interest were the Townsend deprivation index and diastolic blood
pressure. The Townsend deprivation index was calculated using the postcode of the
participant at the time of recruitment (field category ID: 189). Diastolic blood
pressure was obtained by an automated reading from an Omron blood pressure
monitor (field category ID: 4079). In our analyses, we adjusted for age, sex,
assessment center, genetic batch effects, drinking and smoking status, given by the
following variables: “Sex” (field category ID: 31); “Age when attended assessment
center" (field category ID: 21003); “UK Biobank assessment center” (field category
ID: 54); “Genotype measurement batch” (field category ID: 22000); “Smoking
status” (field category ID: 20116); “Frequency of drinking alcohol” (field category
ID: 20414); “Alcohol intake frequency” (field category ID: 1558).

Statistical methods
Traditional Mendelian Randomization. Suppose we are interested in assessing the
causal effect of an exposure trait D on an outcome trait Y, by performing a
Mendelian Randomization study with a polygenic risk score (PRS) Z ¼ ∑k

j¼1 βjGj

(comprised of a linear combination of SNPs Gj with weights βj) as the putative
instrumental variable. Note the weights βj of the PRS could have been obtained
either from external data (such as a previous GWAS), or via cross-validation as well
as other methods9. To give credibility to the study, the researcher considers a set of
observed control covariates X that accounts for potential MR violations of popu-
lation stratification, batch effects and horizontal pleiotropy20. That is, X consists of,

X ¼ fXps; Xbatch; Xhp; Xindg

Where Xps denotes the variables to adjust for population stratification, such as, for
instance, genomic principal components; Xbatch denotes variables to adjust for batch
effects, for example, indicator variables for the assessment center and genotype bat-
ches; Xhp denotes measured variables which are suspected to be capable of blocking
suspected pleoitropic pathways; and, finally, Xind are participant characteristics that
are usually included in MR, such as the age and sex of the individual.

The traditional MR estimate of the causal effect of D on Y, here denoted by τ̂res,
would consist of the ratio of the genetic association with the outcome trait, β̂YZjX ,

and the genetic association with the exposure trait, β̂DZjX , after adjusting for
observed covariates X, namely,

τ̂res ¼
β̂YZjX
β̂DZjX

Confidence intervals that have nominal coverage regardless of instrument strength
can be obtained via Fieller’s theorem53 or via the Anderson–Rubin regression52.
These confidence intervals can be of three forms: (i) a connected closed interval; (ii)
the union of disjoint unbounded intervals; or, (iii) the whole real line.

Violation of traditional assumptions. The traditional MR estimate, τ̂res, however
adjusts for X only, and it is unlikely that X controls for all possible threats to the
study validity. Instead, the researcher would have preferred to have also adjusted
for additional unobserved variables W to satisfy the MR assumptions. For instance,
we would like to have controlled for the true population indicators Wps instead of
its approximation as recovered by the principal components Xps; likewise, the
researcher suspects that Xhp is not enough to block all pleiotropic pathways, and
would have liked to have further adjusted for covariates Whp.

In sum, instead, of performing the MR analysis using X alone, resulting in τ̂res
as our MR estimate, the researcher would have wanted to compute instead

τ̂ ¼ β̂YZjXW
β̂DZjXW

which adjusts for the extended set of covariates {X,W}, such that Z is a valid
instrument for estimating a specific target causal effect of D on Y, conditional on
{X,W}. Likewise, confidence intervals should have also been computed adjusting
for {X,W}. How would accounting for the omitted variables W have changed our
inferences regarding the causal effect of D on Y?

The sensitivity analysis of the MR estimate can be reduced to the sensitivity of the
genetic associations. We now explain how to perform sensitivity analysis within the
Anderson–Rubin (AR) approach52, which as we show is also numerically
equivalent to Fieller’s proposal53 when considering a single instrumental variable Z.
Here we take an exact algebraic approach—that is, all results here hold both for
sample or population estimates.

Let Y and D denote (n × 1) vectors containing the outcome and exposure of
interest for each of the n observations, respectively. Now let τ denote the causal
effect of interest, and define a new variable Yτ0

:¼ Y � τ0D, in which we subtract
from Y the causal effect of D, considering a hypothetical value for τ, say, τ0. Next
consider the following linear regression,

Yτ0
¼ ϕ̂τ0Z þ Xη̂τ0 þW γ̂τ0 þ ε̂τ0 ð5Þ

Where Z is a (n × 1) vector with the genetic instrument; X is a (n × p) matrix of
observed covariates, including the constant; and W is a (n × k) matrix of
unobserved covariates the analyst wished to have measured in order to make Z a
valid instrument. Here ϕ̂τ0 , η̂τ0 , γ̂τ0 are the OLS coefficient estimates of the
regression of Yτ0

on Z, X,W, and ε̂τ0 its corresponding residual.
Note that, if τ= τ0 and if Z is valid instrument conditional on X,W, then we

must have that Yτ0
?? ZjX;W , and thus that ϕτ0 ¼ 0. Following this logic, the AR

confidence interval with confidence level 1− α is thus defined as all values of τ0
such that we cannot reject the null hypothesis H0 : ϕτ0 ¼ 0 at the chosen
significance level. More precisely,

CI1�αðτÞ ¼ τ0 ; t
2
ϕ̂τ0

≤ t�2α; df

� �
ð6Þ

Where tϕ̂τ0
is the t-value for testing the null hypothesis that H0 : ϕτ0 ¼ 0 and t�α; df

is the critical threshold of the t distribution for a significance level α and df degrees
of freedom. This confidence interval can be obtained analytically as a function of
the genetic association with the exposure and the genetic association with the
outcome, which is now useful to write out explicitly.

By appealing to the Frisch–Waugh–Lovell (FWL) theorem75–77, we can write
ϕ̂τ0 as,

ϕ̂τ0 ¼
cov Y?XW � τ0D

?XW ;Z?XW
� �

var Z?XW
� �

¼ cov Y?XW ;Z?XW
� �
var Z?XW

� � � τ0
cov D?XW ;Z?XW

� �
var Z?XW

� �
¼ β̂YZjXW � τ0β̂DZjXW

ð7Þ

Where Y⊥XW denotes the variable Y after removing the components linearly
explained by X and W, and β̂YZjXW denotes the regression coefficient of Z on Y (the

genetic association with the outcome) after adjusting for both X and W; β̂DZjXW
denotes the regression coefficient of Z on D (the genetic association with the
exposure) after adjusting for X and W. Likewise, the estimated variance of ϕ̂τ0 can
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be written as,

dvar ðϕ̂τ0 Þ ¼ var Y?ZXW � τ0D
?ZXW

� �
var Z?XW

� � ´ df�1

¼ dvar β̂YZjXW
� �

þ τ20dvar β̂DZjXW
� �

� 2τ0dcov β̂YZjXW ; β̂DZjXW
� � ð8Þ

To construct the confidence interval of Eq. (6), we thus need to find all values of τ0
such that the following inequality holds,

ϕ̂
2
τ0dvar ϕ̂τ0

� � ≤ t�2α; df ) ϕ̂
2
τ0
� dvar ϕ̂τ0

� �
t�2α; df ≤ 0 ð9Þ

Squaring and rearranging terms we obtain the following quadratic inequality,

β̂
2

DZjXW � cvar β̂DZjXW
� �

´ t�2
α;df

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

a

τ20

þ 2 ccov β̂YZjXW ; β̂DZjXW
� �

´ t�2
α;df � β̂YZjXW β̂DZjXW

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

b

τ0

þ β̂
2

YZjXW � cvar β̂YZjXW
� �

´ t�2
α;df

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

c

≤ 0

ð10Þ

These conditions are exactly Fieller’s solution53 to the confidence interval of the

ratio τ ¼ βYZjXW
βDZjXW

.

Our task has thus simplified to find all values of τ0 that makes the above
quadratic equation, with coefficients a, b and c, non-positive. But here we have
special interest in two specific cases: (i) when the confidence interval for τ is
unbounded; and, (ii) when the confidence interval for τ includes zero.

Let us first consider the case of unbounded confidence intervals. Note this
happens when a < 0, which means the quadratic curve in Eq. (10) will be concave
(will have a “∩” shape)—as we increase τ0 to plus or minus infinity, the inequality is
bound to hold and the confidence interval will be unbounded. Also note that a < 0
if, and only if,

β̂
2

DZjXW � dvar β̂DZjXW
� �

´ t�2α; df ≤ 0 )
jβ̂DZjXW jcse β̂DZjXW
� � ¼ jtβ̂DZjXW j≤ t

�
α; df

ð11Þ

That is, the confidence interval for τ will be unbounded if and only if we cannot
reject that the genetic association with the exposure is zero.

We now turn our attention to the null hypothesis of zero effect, that is,
H0: τ= 0. Notice in this case the first two terms of the quadratic equation, a and b,
vanish. What we have left is only the term c which will be negative if, and only if,

β̂
2

YZjXW � dvar β̂YZjXW
� �

´ t�2α; df ≤ 0 )
jβ̂YZjXW jcse β̂YZjXW
� � ¼ jtβ̂YZjXW j≤ t

�
α; df

ð12Þ

In other words, the null hypothesis of zero effect for the causal effect is not
rejected if, and only if, the null hypothesis of zero association between the
instrument Z with the outcome Y is also not rejected.

We have thus simplified the sensitivity analysis of the MR estimate to the
sensitivity analysis of the two genetic associations. If W is strong enough to explain
away the genetic association with the exposure, then W is strong enough to make
the causal effect arbitrarily large in either direction. If W is strong enough to
explain away the genetic association with the outcome trait, than W is strong
enough to explain away the MR estimate. This is summarized in Table 5.

Since we have reduced the problem of sensitivity analysis of MR to the problem
of sensitivity analysis of the genetic associations, we can leverage all tools of Cinelli
and Hazlett46 for our problem. To conclude we thus review the main sensitivity
analysis results of Cinelli and Hazlett, in the context of the genetic association with
the outcome. All results below, of course, also apply to the genetic association with
the exposure, by just replacing Y with D where appropriate.

Sensitivity formulas for the genetic associations. Consider first a univariate W and
let R2

ZWjX denote the partial R2 of W with the genetic instrument and let R2
YWjZX

denote the partial R2 of W with the outcome trait. Given the observed genetic

association bβYZjX and its estimated standard error cse ðbβYZjX Þ, adjusting for X alone,
the estimate and standard error we would have obtained further adjusting for W
can be recovered with46,

bβYZjXW ¼ bβYZjX ±cse bβYZjX� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
YWjZX R2

ZWjX
1� R2

ZWjX
ð df Þ

s
ð13Þ

and,

cse bβYZjXW� �
¼ cse bβYZjX� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R2
YWjZX

1� R2
ZWjX

df
df � 1


 �s
ð14Þ

Where here now df denote the degrees of freedom of the AR regression actually
run. These formulas allow us to investigate how the estimate, standard error, t-
values, p-values or confidence intervals would have changed, under a confounder
W of any postulated strength, as parameterized by R2

ZWjX and R2
YWjZX . For a

singleton W these formulas are exact, and for multivariate W, it can further be
shown that these formulas are conservative, barring an adjustment on the degrees
of freedom46 (that is, these are the worse biases a multivariate W could cause).
These formulas form the basis of the contour plots shown in Fig. 2.

Bounds on the partial R2 of W based on observed covariates. Where investigators are
unable to make direct claims on the strength of W, it may be helpful to consider
relative claims, by positing, for instance, that W is no stronger than some observed
covariate Xj. For that, consider a confounder orthogonal to the observed covariates,
ie., W⊥X and define

kZ :¼
R2
ZWjX�j

R2
ZXj jX�j

; kY :¼
R2
YWjX�jZ

R2
YXj jX�jZ

: ð15Þ

where X−j represents the vector of covariates X excluding Xj. Then the strength of
W can be bounded by46,

R2
ZWjX ¼ kZf

2
ZXj jX�j

; R2
YWjZX ≤ η2f 2YXj jX�jZ ð16Þ

where η is a scalar computed from kY, kZ and R2
ZXj jX�j

(see Cinelli and Hazlett46 for

details) and f 2 ¼ R2

1�R2 is the partial Cohen’s f2 statistic.

Sensitivity statistics for routine reporting. The previous results allow us to perform
sensitivity analysis to confounding of any postulated strength. However, wide-
spread adoption of sensitivity analysis benefits from simple metrics that users can
report to quickly summarize the robustness of their results. With that in mind,
Cinelli and Hazlett46 introduced two sensitivity statistics for routine reporting: the
Robustness Value (RV) and the partial R2.

Let f≔ ∣fY~Z∣X∣ denote the absolute value of the partial Cohen’s f of the genetic
instrument with the outcome. Now also re-scale the critical threshold,
f �α :¼ jt�α; df�1j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
df � 1

p
, and define f α :¼ f � f �α . The robustness value RVα is

defined as the minimal strength of association that W must have, both with the
genetic instrument Z and the outcome trait Y, in order to make the genetic

Table 5 The sensitivity of the Mendelian Randomization (MR) causal effect estimate can be decomposed into the sensitivity of
its two components: the sensitivity of the genetic association with the exposure and the sensitivity of the genetic association
with the outcome.

Sensitivity analysis Interpretation

Of the genetic association with the
exposure

The sensitivity of the genetic association with the exposure reveals the stability of the MR causal effect
estimate. Biases strong enough to result in a failure of rejection that the genetic association with the exposure
is zero, also lead to unbounded confidence intervals for the MR causal effect estimate.

Of the genetic association with the
outcome

The sensitivity of the genetic association with the outcome is equivalent to the sensitivity of the MR causal
effect estimate with respect to the zero null hypothesis. Biases strong enough to result in a failure of rejection
that the genetic association with the outcome is zero equally result in a failure to reject the null hypothesis
that the MR causal effect estimate is zero.
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association with the outcome statistically insignificant. This is given by46,47

RVα ¼

0; if f α < 0

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 4α þ 4f 2α

q
� f 2α


 �
; if f �α ≤ f < f ��1

α

f 2�f �2α
1þf 2

; otherwise :

8>>>><>>>>: ð17Þ

AnyW with both strength of associations below RVα is not sufficiently strong to
make the genetic association with the outcome statistically insignificant, and, thus,
also not sufficiently strong to make the MR causal effect estimate statistically
insignificant. On the other hand, any W with both strength of associations above
RVα is sufficiently strong to do so.

Moving to the partial R2, in addition to quantifying how much variation of the
outcome trait is explained by the genetic instrument, the partial R2 also tells us how
robust the genetic association with the outcome is to an “extreme sensitivity
scenario.” More precisely, suppose that the unobserved variable W explained all
residual variance of the outcome trait. Then, for W to bring the genetic association
to zero, it must explain at least as much residual variation of the genetic instrument
as the residual variation of the outcome trait that the genetic instrument currently
explains46. Mathematically, if RY~W∣ZX= 1, then for W to make β̂YZjXW ¼ 0, we
need to have that R2

ZWjX ≥R2
YZjX .

It may be helpful to visualize both sensitivity statistics, RVα and R2
YZjX , in a

sensitivity contour plot. These are shown in Fig. 5, using as example the contours
for testing the null hypothesis of zero effect of BMI on Townsend deprivation
index. Starting with Fig. 5a, note that RVα is the point of equal association of both
sensitivity parameters that lies in the critical contour for statistical significance. The
RVα is thus a convenience reference point summarizing a contour of interest,
quickly communicating the types of confounders that can and cannot be
problematic. Now moving to Fig. 5b, our focus in the on the critical contour of zero
(i.e., completely eliminating the point estimate). Note that the axes are now in a
different scale: we “zoom in” on a neighborhood of the partial R2 on the horizontal
axis, so as to be able to show more smoothly the critical contour of zero until it
reaches its maximum in the vertical axis. The partial R2 then corresponds to the
vertical line tangent to the critical contour of zero, which is never crossed. It thus
summarizes the bare minimum strength of association that confounders need to
have with the genetic instrument to fully account for the genetic association,
regardless of how strongly such confounders are associated with the outcome trait.

The vertical line tangent to any contour for a given significance level α is given
by the extreme robustness value, XRVα, derived in Cinelli and Hazlett47, which is
given by:

XRVα ¼
0; if f α ≤ 0
f 2�f �2α
1þf 2

; otherwise.

(
ð18Þ

where f 2 ¼ R2

1�R2 is Cohen’s partial f2 statistic. We thus have that the RV is the point of
equal association of the contour, and the XRV the line tangent to that contour. Note
when we set α= 1 (that is, fully eliminating the point estimate, which corresponds to

the zero contour) the XRV reduces to the partial R2, i.e, XRVα¼1 ¼ f 2

1þf 2
¼ R2

YZjX .

For practical purposes in MR studies, we give preference to the simpler partial
R2. This is because the partial R2 is a well known metric among MR researchers,

and it is also already common practice to report the partial R2 of genetic
instrument with the exposure (to assess the problem of “weak” instruments).
Therefore, instead of introducing yet another metric, we simply suggest
additionally computing the partial R2 for the genetic association with the outcome,
which comes naturally in this setting. Finally, we also note that all sensitivity
statistics are simply transformations of the partial R2 (through Cohen’s f).

Critical k. Consider an unobserved variable W with kZ= kY= k (of Eq. (15)). The
“critical k” is the value of k such that it brings the adjusted t-value for testing the null
hypothesis of zero effect to the critical threshold of interest (say ≈ 1.96 for α= 0.05).
Although we did not find a simple closed-form solution for the critical k (such as the
one we have for the robustness value), it can be easily found numerically.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The UK Biobank data are available under restricted access due to privacy laws. Access
can be obtained by application at: http://www.ukbiobank.ac.uk/. Data from the UK
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Code availability
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