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Abstract: The aim of this study was to examine the relationship between dietary contribution
of ultra-processed foods and urinary phytoestrogen concentrations in the US. Participants from
cross-sectional 2009–2010 National Health and Nutrition Examination Survey aged 6+ years, selected
to measure urinary phytoestrogens and with one 24-h dietary recall were evaluated (2692 participants).
Food items were classified according to NOVA (a name, not an acronym), a four-group food
classification based on the extent and purpose of industrial food processing. Ultra-processed
foods are formulations manufactured using several ingredients and a series of processes (hence
“ultra-processed”). Most of their ingredients are lower-cost industrial sources of dietary energy
and nutrients, with additives used for the purpose of imitating sensorial qualities of minimally
processed foods or of culinary preparations of these foods. Studied phytoestrogens included lignans
(enterolactone and enterodiol) and isoflavones (genistein, daidzein, O-desmethylangolensin and
equol). Gaussian regression was used to compare average urinary phytoestrogen concentrations
(normalized by creatinine) across quintiles of energy share of ultra-processed foods. Models
incorporated survey sample weights and were adjusted for age, sex, race/ethnicity, family income,
and education, among other factors. Adjusted enterodiol geometric means decreased monotonically
from 60.6 in the lowest quintile to 35.1 µg/g creatinine in the highest, while adjusted enterolactone
geometric means dropped from 281.1 to 200.1 across the same quintiles, respectively. No significant
linear trend was observed in the association between these quintiles and isoflavone concentrations.
This finding reinforces the existing evidence regarding the negative impact of ultra-processed food
consumption on the overall quality of the diet and expands it to include non-nutrients such as lignans.

Keywords: national health and nutrition examination survey (NHANES); ultra-processed foods;
phytoestrogens; lignans; isoflavones; enterolignans

1. Introduction

Phytoestrogens are the most abundant class of natural xenoestrogens, a group of
estrogen-mimicking compounds structurally or functionally related to the human sex hormone
17β-estradiol with the capacity of binding to estrogen receptors [1]. Phytoestrogens may also modulate
the concentration of endogenous estrogens by inducing sex hormone binding globulin or through
the inhibition of enzymes such as aromatase. In addition to tissue-specific hormonal effects and
estrogen receptor-specific effects, phytoestrogens may also exert other biological effects via antioxidant
mechanisms [2,3]. In fact, studies have shown that consumption of foods rich in phytoestrogens
may protect against diseases and dysfunctions related to aging, mental processes, metabolism,
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malignant transformation, cardiovascular diseases, breast and prostate cancers, menopausal symptoms,
osteoporosis, atherosclerosis and stroke, and neurodegeneration [3–6]. Yet, more research is needed in
order to fully understand the mechanisms of phytoestrogen action. Indeed, even though studies have
reported that isoflavone (a type of phytoestrogen) intake has the potential benefit of preventing colon,
endometrial and ovarian cancer, the effects on breast cancer risk are more controversial [3]. On the
other hand, some authors do not exclude their negative effect on reproductive disorders, even though
no adverse events have been reported in humans [3]. Further details on the effects of each type of
phytoestrogen have been described elsewhere [1–3].

Based on their chemical structure and biosynthesis patterns, phytoestrogens have been divided
into chalcones, flavonoids (flavones, flavonols, flavanones, isoflavonoids), lignans, stilbenoids, and
miscellaneous classes. Lignans and flavonoids are the two main forms [3]. Lignans are polyphenolic
components of plant cell walls found in berries, seeds, grains, nuts, fruits, cruciferous vegetables
and red wine, with flaxseed being one of the major sources [1]. Flavonoids can be found in berries,
wine, grains, nuts, legumes, and especially soybeans and soy-based products which contain relevant
amounts of isoflavones genistein and daidzein [1].

Dietary phytoestrogens are first metabolized by intestinal bacteria, then absorbed, conjugated
in the liver, circulated in plasma and lastly excreted in urine [4]. Gut metabolism is, apparently,
key in determining the biological effects of dietary phytoestrogens [2,6]. For example, mammal
lignans enterolactone and enterodiol are produced from plant lignans matairesinol, secoisolariciresinol,
lariciresinol and pinoresinol, their glycosides, and other precursors in the diet by the microflora in the
proximal colon [2]. Bioavailability of isoflavones, on the other hand, depends on the initial hydrolysis
of glucose-conjugated isoflavones to corresponding aglycones by colon microbial families [7] to allow
the subsequent uptake by enterocytes and the flow through the peripheral circulation [3].

During the past decades, analyses of lignan and isoflavone food contents have allowed the
compilation of databases to estimate intakes of these compounds, such as the food composition
database for isoflavones from The US Department of Agriculture [8,9]. However, accurate measurement
intake is limited both because of intake measurement methodology constraints and difficulties
with establishing the phytoestrogen content of foods [10]. Furthermore, the lignan or isoflavone
concentration within a food varies substantially according to variety, crop season, location and
processing methods [11–15]. Also, the fast-growing list of pre-prepared foods, functional foods
and dietary supplements available to consumers makes it difficult to have an updated food-intake
instrument which fully captures the intake of these phytoestrogens [16]. An alternative approach is
estimating human exposure to lignans and isoflavones through the use of biologic samples such as
urine [16]. Even though using these types of measurements has its own limitations, several studies
have shown that urinary concentrations of phytoestrogens are reliable biomarkers of phytoestrogen
intake in both Asian and western populations [16–21] and at least one study found a strong correlation
between spot urine and serum phytoestrogen concentrations [10].

Ultra-processed foods include sweet or savory snacks, soft drinks, ready meals and
other formulations manufactured using several ingredients and a series of processes (hence
‘“ultra-processed”). Most of their ingredients are lower-cost industrial sources of dietary energy.
Nutrients and additives are used with the purpose of imitating sensorial qualities of minimally
processed foods or of culinary preparations of these foods, or to disguise undesirable sensory qualities
of the final product [22–27]. Evidence exists that global food supplies are increasingly becoming
dominated by these foods [24,27–31] and that consumption of ultra-processed food is associated with
excess weight, obesity [32–34], and other diet-related non-communicable diseases (NCDs) [35,36]. Also,
nationally representative studies carried out in the US [37,38] and other countries [39–42] have shown
that a high dietary contribution of ultra-processed foods renders grossly nutritionally unbalanced diets.
Yet, studies carried out to date have focused mainly on nutrients, and did not evaluate the association
between ultra-processed food consumption and phytoestrogens in the diet.

This study aims to expand the knowledge on the impact of ultra-processed food consumption
on dietary quality by assessing its relationship with urinary concentrations of phytoestrogens in the
US population.
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2. Subjects and Methods

2.1. Data Source, Population and Sampling

Nationally representative data from the 2009–2010 National Health and Nutrition Examination
Survey (NHANES), specifically the dietary component What we eat in America (WWEIA) was utilized.
NHANES is a continuous, nationally representative, cross-sectional survey of the non-institutionalized,
civilian US residents [43].

The survey included an interview conducted in the home and a subsequent health examination
performed at a mobile examination center (MEC), including blood and urine collection. All NHANES
examinees were eligible for two 24-h dietary recall interviews. The first dietary recall interview was
collected in-person in the MEC [44] while the second was collected by telephone 3–10 days later [45].
Dietary interviews were conducted by trained interviewers using the validated [46–48] US Department
of Agriculture Automated Multiple-Pass Method [49].

Of the 13,272 people screened in NHANES 2009–2010, 10,537 (79.4%) participated in the household
interview and 10,253 (77.3%) also participated in the MEC health examination [50]. A one-third
subsample of 2,941 participants 6 years and over (8,591 individuals) was selected to measure
urinary phytoestrogens.

After excluding participants with missing dietary data (129) and an additional 120 with missing
urinary phytoestrogens data, 2,692 participants who provided one day of complete dietary intakes
were evaluated, 2,411 of which provided two days. The final sample had similar socio-demographic
characteristics (gender, age, race/ethnicity, family income and educational attainment) to the full
subsample of 2,941 participants selected to measure urinary phytoestrogens (Table S1).

2.2. Urinary Phytoestrogen Measurement

Studied phytoestrogens were measured in spot urine samples and included lignans (enterolactone
and enterodiol) and isoflavones (genistein, daidzein, O-desmethylangolensin, and equol).

Urine specimens were collected the morning after a recommended fast at the MEC, and processed,
stored, and shipped to the Division of Laboratory Sciences, National Center for Environmental Health,
Centers for Disease Control and Prevention for analysis. Vials were stored under appropriate frozen
(–20 ◦C) conditions until they were shipped to National Center for Environmental Health for testing.

The test principle for the quantitative detection of genistein, daidzein, equol, O-desmethylangolensin
(O-DMA), enterodiol, and enterolactone utilized high performance liquid chromatography–atmospheric
pressure photoionization–tandem mass spectrometry (HPLC–APPI–MS/MS). Human urine samples
were processed using enzymatic deconjugation of the glucuronidated phytoestrogens followed
by size-exclusion filtration. Phytoestrogens were then separated from other urine components by
reversed-phase HPLC, detected by APPI–MS/MS, and quantified by isotope dilution. Assay precision
was improved by incorporating carbon-13 labeled internal standards for each of the analytes, as
well as a 4-methylumbelliferyl glucuronide and 4-methylumbelliferyl sulfate standards to monitor
deconjugation efficiency (further details are provided in NHANES Laboratory Procedure Manual) [51].

In order to correct for urine dilution, urinary phytoestrogen concentrations were normalized
by urinary creatinine (expressed in µg/g creatinine). This was done by dividing each individual’s
phytoestrogen concentration value (expressed in ng/mL) by the corresponding urinary creatinine
value (expressed in mg/dL). Creatinine was measured using Roche/Hitachi Modular P Chemistry
Analyzer (Roche Diagnostics, Indianapolis, IN, USA) at the University of Minnesota [52].

For the sample of 2,692, 12 individuals were below the lower detection limit for enterodiol
(0.04 ng/mL), 0 for enterolactone (0.1 ng/mL), 2 for daidzein (0.4 ng/mL), 3 for equol (0.06 ng/mL),
0 for genistein (0.2 ng/mL), and 129 for O-desmethylangolensin (0.2 ng/mL) [51]. Several approaches
exist to handle left-handed censored data. In NHANES, urinary phytoestrogen measurements below
the limits of detection of the used method [51] were replaced with 1/

√
2 fraction of the detection limit.

Treating these left-handed censored values incorrectly may introduce bias when estimating the point
and confidence interval of distributions [53]. Still, censoring should not affect estimate reliability in
this study, as it has been shown that little bias is introduced by any of the replacement techniques if
only a small percentage of the values have been censored (i.e., less than 5%) [54].
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2.3. Food Classification According to Processing

All recorded food items (n = 238,239 Food Codes) were classified according to NOVA (a name, not
an acronym), a food classification based on the extent and purpose of industrial food processing [25,55].
NOVA includes four groups: “unprocessed or minimally processed foods” (such as fresh, dry or
frozen fruits or vegetables; packaged grains and pulses; grits, flakes or flours made from corn, wheat
or cassava; pasta, fresh or dry, made from flours and water; eggs; fresh or frozen meat and fish and
fresh or pasteurized milk); “processed culinary ingredients” (including sugar, oils, fats, salt, and other
substances extracted from foods and used in kitchens to season and cook unprocessed or minimally
processed foods and to make culinary preparations), “processed foods” (including canned foods,
sugar-coated dry fruits, salted meat products, cheeses and freshly made unpackaged breads, and other
ready-to-consume products manufactured with the addition of salt or sugar or other substances of
culinary use to unprocessed or minimally processed foods), and “ultra-processed foods”.

The NOVA group of ultra-processed foods, of particular interest in this study, includes soft
drinks, sweet or savory packaged snacks, confectionery and industrialized desserts, mass-produced
packaged breads and buns, poultry and fish nuggets and other reconstituted meat products, instant
noodles and soups, and many other ready-to-consume formulations of several ingredients. Besides
salt, sugar, oils, and fats, these ingredients include food substances not commonly used in culinary
preparations, such as modified starches, hydrogenated oils, protein isolates and classes of additives
whose purpose is to imitate sensorial qualities of unprocessed or minimally processed foods and
their culinary preparations, or to disguise undesirable qualities of the final product. These additives
include colorants, flavorings, non-sugar sweeteners, emulsifiers, humectants, sequestrants, and firming,
bulking, de-foaming, anti-caking and glazing agents. Unprocessed or minimally-processed foods
represent a small proportion of or are even absent from the list of ingredients of ultra-processed
products. A detailed definition of each NOVA food group and examples of food items classified in
each group has been previously published [37]. The rationale underlying the classification is also
shown elsewhere [22–24,56,57].

For all food items (Food codes) judged to be a handmade recipe, the classification was applied to
the underlying ingredients (Standard Reference codes or SR codes) obtained from the United States
Department of Agriculture (USDA) Food and Nutrient Database for Dietary Studies (FNDDS) 5.0 [58]
as further explained in a previously published paper [37].

2.4. Assessing Energy Content

For this study, Food code energy values as provided by NHANES were used.
On the other hand, for handmade recipes, the underlying ingredient (SR code) energy values

were calculated using variables from both FNDDS 5.0 [58] and USDA National Nutrient Database for
Standard Reference, Release 24 (SR24) [59].

2.5. Data Analysis

All available day 1 dietary intake data for each participant were utilized.
Food items were sorted into mutually exclusive food subgroups within unprocessed or minimally

processed foods (n = 11), processed culinary ingredients (n = 4), processed foods (n = 4) and
ultra-processed foods (n = 17), as shown in Table 1. First, the contributions of each of the NOVA food
groups and subgroups to total energy intake and across quintiles of the dietary energy contribution
of ultra-processed foods (henceforth ‘dietary share of ultra-processed foods’) were evaluated. The
group of unprocessed or minimally processed foods was also combined with the group of processed
culinary ingredients, as foods belonging to these two groups are usually combined together in culinary
preparations and therefore consumed together.
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Table 1. Distribution (%) of the total daily per capita energy intake (kcal) according to NOVA food groups by quintiles of the dietary share of ultra-processed foods a.

Quintile of Dietary Share of Ultra-Processed Foods (% of Total Energy Intake) b

All Quintiles Q1 Q2 Q3 Q4 Q5
(n = 2,692) (n = 539) (n = 530) (n = 521) (n = 540) (n = 562)
(2,153 kcal) (2,040.5 kcal) (2,212.1 kcal) (2,143.0 kcal) (2,143.9 kcal) (2,227.6 kcal)

Unprocessed or minimally processed foods 29.2 50.7 35.7 29.5 20.8 9.4 *

Meat (includes poultry) 8.2 13.2 10.5 8.7 6.3 2.4 *
Fruit and freshly squeezed fruit juices 4.7 7.7 5.1 5.2 3.6 2.0 *
Milk and plain yoghurt 4.3 5.6 4.6 5 4.1 2.2 *
Grains 3 7.4 3.9 1.9 1.4 0.4 *
Roots and tubers 1.4 2.3 1.9 1.8 0.9 0.4 *
Eggs 1.5 2.1 2.1 1.7 1.3 0.5 *
Pasta 1.3 2.8 1.8 0.9 0.9 0.2 *
Fish and sea food 1 1.9 1.3 0.9 0.5 0.4 *
Legumes 0.9 2 1.1 0.7 0.3 0.1 *
Vegetables 0.7 1.3 0.7 0.7 0.5 0.3 *
Other unprocessed or minimally processed foods 1 2 4.4 2.5 1.9 0.9 0.4 *

Processed culinary ingredients 3.2 5.6 4.1 3.1 2.1 1.0 *

Sugar 2 1.3 1.9 1.7 1.5 0.9 0.5 *
Plant oils 1.3 2.7 1.7 0.9 0.7 0.3 *
Animal fats 3 0.5 0.7 0.6 0.6 0.5 0.2 *
Other processed culinary ingredients 4 0.04 0.12 0.04 0.03 0.01 0.01

Unprocessed or minimally processed foods + Processed culinary
ingredients 32.4 56.2 39.8 32.6 22.9 10.4 *

Processed foods 9.8 15.3 13.2 9.2 7.5 3.9 *

Cheese 3.5 4 4.6 3.8 3.3 2.0 *
Ham and other salted, smoked or canned meat or fish 1.3 1.4 1.6 1.7 1.5 0.6
Vegetables and other plant foods preserved in brine 0.8 0.8 0.9 0.7 0.7 0.3 *
Other processed foods 5 4.2 9.1 6.1 2.9 2.1 0.9 *
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Table 1. Cont.

Quintile of Dietary Share of Ultra-Processed Foods (% of Total Energy Intake) b

All Quintiles Q1 Q2 Q3 Q4 Q5
(n = 2,692) (n = 539) (n = 530) (n = 521) (n = 540) (n = 562)
(2,153 kcal) (2,040.5 kcal) (2,212.1 kcal) (2,143.0 kcal) (2,143.9 kcal) (2,227.6 kcal)

Ultra-processed foods 57.8 28.5 47 58.2 69.6 85.6 *

Breads 9.8 6.9 9.8 11.5 11.5 9.4 *
Soft and fruit drinks 6 7.3 3.1 5.3 7 8.9 11.9 *
Cakes, cookies and pies 5.7 2 4.3 6.7 7.7 7.6 *
Salty-snacks 4.5 1.6 3.9 4.2 5.5 7.4 *
Frozen and shelf-stable plate meals 3.6 0.6 2.1 2.6 4.6 7.9 *
Pizza (ready-to-eat/heat) 3.7 0.2 1.5 2.7 4.6 9.8 *
Breakfast cereals 2.5 1.7 2.6 2.9 2.8 2.7
Sauces, dressings and gravies 2.5 2 2.4 2.8 3.4 1.9
Reconstituted meat or fish products 2.5 0.6 2.6 2.3 3.1 3.9 *
Sweet-snacks 2.4 1.3 1.9 2.1 3.1 3.8 *
Ice cream and ice pops 2.1 0.8 1.4 2.1 2.6 3.7 *
Desserts 7 1.7 1.5 1.4 1.6 1.9 1.9
French fries and other potato products 1.7 0.4 0.9 1.7 2 3.6 *
Sandwiches and hamburgers on bun (ready-to-eat/heat) 1.5 0.1 0.6 0.9 1.7 3.9 *
Milk-based drinks 1.4 0.8 1.3 1.3 1.4 2
Instant and canned soups 0.8 0.7 0.5 1 0.9 0.9
Other ultra-processed foods 8 3.9 4 4.4 4.6 3.7 2.9

Total 100 100 100 100 100 100

a Subsample of US population aged 6+ years (National Health and Nutrition Examination Survey, NHANES 2009–2010); b Mean (range) dietary share of ultra-processed foods per quintile:
first = 28.5 (1.6–39.5); second = 47.0 (39.5–52.9); third = 58.2 (52.9–63.5); fourth = 69.6 (63.5–75.9); fifth = 85.6 (76.0–100); 1 Including nuts and seeds (unsalted); yeast; dried fruits (without
added sugars) and vegetables; non pre-sweetened, non-whitened, non-flavored coffee and tea; coconut water and meat; homemade soup and sauces; flours; tapioca; 2 Including honey,
molasses, maple syrup (100%); 3 Including butter, lard and cream; 4 Including starches; coconut and milk cream; unsweetened baking chocolate, cocoa powder and gelatin powder;
vinegar; baking powder and baking soda; 5 Including salted or sugared nuts and seeds; peanut, sesame, cashew and almond butter or spread; beer and wine; 6 Including energy drinks,
sports drinks, nonalcoholic wine; 7 Including ready-to-eat and dry-mix desserts such as pudding; 8 Including soy products such as meatless patties and fish sticks; baby food and baby
formula; dips, spreads, mustard and catsup; margarine; sugar substitutes, sweeteners and all syrups (excluding 100% maple syrup); distilled alcoholic drinks; * Significant linear trend
across all quintiles (p < 0.01), both in unadjusted and models adjusted for sex, age group (6–11, 12–19, 20–39, 40–59, 60+ years), race/ethnicity (Mexican-American, other Hispanic,
non-Hispanic White, non-Hispanic Black and other race—including multi-racial) ratio of family income to poverty (Supplemental Nutrition Assistance Program, SNAP 0.00–1.30, >1.30–3.50,
and >3.50 and over) and educational attainment (<12, 12 years and >12 years).



Nutrients 2017, 9, 209 7 of 15

As urinary phytoestrogen concentrations (both in ng/mL and normalized by creatinine) had
skewed distributions, these variables were log transformed (using natural logarithms) and geometric
means were presented.

The average phytoestrogen urinary concentrations were compared across quintiles of the dietary
share of ultra-processed foods using Gaussian regression. Tests of linear trend were performed in
order to evaluate the effect of quintiles as a single continuous variable. For each phytoestrogen,
four models were explored: (1) crude (in ng/mL); (2) normalized by creatinine (µg/g); (3) normalized
by creatinine and adjusted for socio-demographic variables: sex, age group (6–11 years, 12–19 years,
20–39 years, 40–59 years, 60+ years), race/ethnicity (Mexican-American, other Hispanic, non-Hispanic
White, non-Hispanic Black, other race including multi-racial), ratio of family income to poverty
(categorized based on Supplemental Nutrition Assistance Program (SNAP) eligibility as 0.00–1.30,
>1.30–3.50, and >3.50 and above) [43], and educational attainment of respondents for participants
aged 20+ years and of household reference person otherwise (<12, 12 years and >12 years);
and (4) normalized by creatinine and adjusted for socio-demographic + other variables:
socio-demographic variables, difference between recommended and actual energy intake (z-score),
BMI (body weight divided by height squared, kg/m2: z-score for age if <20 years; z-score if ≥20 years
old), minutes per week of physical activity (z-score; estimated separately in <12 and ≥12 years old)
and current smoking (yes, no).

As 264 participants had missing values on family income and/or educational attainment,
adjusted analysis included 2,428 individuals. Analyses which also adjusted for difference between
recommended and actual energy intake, BMI and minutes per week of physical activity included
2,403 individuals.

NHANES survey sample weights were used in all analyses to account for differential probabilities
of selection for the individual domains, nonresponse to survey instruments, and differences between
the final sample and the total US population. The Taylor series linearization variance approximation
procedure was used for variance estimation in all analysis in order to account for the complex sample
design and the sample weights [43].

Statistical hypotheses were tested using a two-tailed p < 0.01 level of significance.
Data were analyzed using Stata statistical software package version 12.1 (StataCorp LP, College
Station, Texas, USA).

3. Results

3.1. Contribution of Nova food Groups to Total Energy Intake

Table 1 presents estimates for the daily energy intake of the US population 6 years and over,
the distribution of this intake according to the four NOVA food groups, and the NOVA group
distribution across quintiles of the energy share of ultra-processed foods. The population average
daily energy intake was 2,153 kcal. Most calories (57.8%) came from ultra-processed foods, 29.2%
came from unprocessed or minimally processed foods, 9.8% from processed foods and 3.2% from
processed culinary ingredients. An inverse linear trend (p < 0.01) was observed in the relationship
between the share of ultra-processed foods (quintiles) and the dietary contribution of unprocessed
or minimally processed foods, as well as processed culinary ingredients and processed foods.
The same applies to individual sub-groups within these three NOVA groups including (but not limited
to) lignan and isoflavone food sources such as fruit, grains, roots and tubers, legumes, vegetables,
other unprocessed (including nuts and seeds) and other processed (including wine) foods. The energy
contribution of most subgroups belonging to ultra-processed foods, many of which are also potential
sources of isoflavones [60], increased monotonically from the first to the last quintile of the dietary
share of ultra-processed foods, with a few exceptions which showed a slight decrease between the
fourth and fifth quintiles (i.e., breakfast cereals or sauces).
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3.2. Association between Consumption of Ultra-Processed Foods and Urinary Phytoestrogen Concentrations

Table 2 presents the average concentrations of urinary phytoestrogens across quintiles of the
dietary share of ultra-processed foods. An inverse linear trend (p < 0.01) was observed in the association
between quintiles of the dietary share of ultra-processed foods and enterolignan concentration averages
(geometric mean). Indeed, adjusted enterodiol concentrations decreased monotonically from 60.6 in
the lowest quintile to 35.1 µg/g creatinine in the highest quintile, while enterolactone concentrations
dropped from 281.1 to 200.1 µg/g creatinine across the same quintiles.

In the association between quintiles of the dietary share of ultra-processed foods and each of the
four urinary isoflavone concentrations (genistein, daidzein, O-desmethylangolensin, and equol) no
significant linear trend was observed.
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Table 2. Phyto-estrogen concentrations according to the quintiles of the dietary share of ultra-processed foods a.

Quintile of Dietary Share of Ultra-Processed Foods
(% of Total Energy Intake) b

Q1 Q2 Q3 Q4 Q5 All Quintiles

Enterolignans (GM c)

Enterodiol

Crude (ng/mL) (n = 2,692) 52.7 42.9 38.4 35.8 33.1 * 40.05

Normalized by creatinine (µg/g) (n = 2,692) 61.2 49.2 39.8 38.3 31.6 *

Normalized and adjusted for socio-demographic variables d (n = 2,428) 60.8 51.9 38.3 39.3 33.6 *

Normalized and adjusted for socio-demographic + other variables (n = 2,403) e 60.6 50.7 38.5 40.0 35.1 *

Enterolactone

Crude (ng/mL) 255.6 224.4 226.2 209.7 176.4 216.9

Normalized by creatinine (µg/g) 297.1 257.2 234.4 224.3 168.4 *

Normalized and adjusted for socio-demographic variables d 291.8 261.2 219.0 237.5 186.9 *

Normalized and adjusted for socio-demographic + other variables e 281.1 258.0 222.8 245.1 200.1

Isoflavones (GM)

Daidzein

Crude (ng/mL) 57.3 66.8 70.9 70.0 82.3 69.0

Normalized by creatinine (µg/g) 66.6 76.6 73.5 74.9 78.6

Normalized and adjusted for socio-demographic variables d 67.7 79.9 72.1 74.3 71.7

Normalized and adjusted for socio-demographic + other variables e 68.9 79.8 72.5 74.9 71.6

O-Desmethylangolensin
(O-DMA)

Crude (ng/mL) 4.2 4.9 4.3 4.9 5.5 4.7

Normalized by creatinine (µg/g) 4.9 5.6 4.4 5.2 5.2

Normalized and adjusted for socio-demographic variables d 5.0 5.8 4.3 5.2 5.1

Normalized and adjusted for socio-demographic + other variables e 5.1 5.7 4.2 5.3 5.2

Equol

Crude (ng/mL) 6.8 7.6 8.5 7.8 9.0 7.9

Normalized by creatinine (µg/g) 7.9 8.7 8.8 8.4 8.6

Normalized and adjusted for socio-demographic variables d 8.9 8.9 8.7 8.2 7.9

Normalized and adjusted for socio-demographic + other variables e 8.8 8.9 8.8 8.2 7.9

Genistein

Crude (ng/mL) 27.9 29.4 35.6 31.5 38.8 32.4

Normalized by creatinine (µg/g) 32.5 33.7 36.9 33.7 37.1

Normalized and adjusted for socio-demographic variables d 32.4 34.8 35.9 32.7 34.6

Normalized and adjusted for socio-demographic + other variables e 32.6 34.8 36.4 32.8 34.4

a Subsample of US population aged 6+ years (NHANES 2009–2010); b Mean (range) dietary share of ultra-processed foods per quintile: first = 28.5 (1.6–39.5); second = 47.0 (39.5–52.9);
third = 58.2 (52.9–63.5); fourth = 69.6 (63.5–75.9); fifth = 85.6 (76.0–100); c GM = geometric mean; d Normalized by creatinine (µg/g) and adjusted for sex, age group, race/ethnicity, ratio of
family income to poverty and educational attainment; e Normalized by creatinine (µg/g) and adjusted for all socio-demographic variables + difference between recommended and actual
energy intake (z-score), BMI (body weight divided by height squared, kg/m2: z-score), minutes per week of physical activity (z-score) and current smoking; * Significant linear trend across
all quintiles (p < 0.01).
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4. Discussion

In this analysis of US nationally representative data, a strong inverse linear trend was observed
in the association between the quintiles of the dietary contribution of ultra-processed foods and
urinary concentrations of enterolignans, one of the two main groups of dietary phytoestrogens.
Indeed, adjusted enterodiol concentrations decreased monotonically from 60.6 in the lowest quintile
to 35.1 µg/g creatinine in the highest quintile, while enterolactone concentrations dropped from 281.1
to 200.1 µg/g creatinine across the same quintiles. This is consistent with the fact that the main dietary
sources of lignans are whole foods (berries, seeds, grains, nuts, fruits, and cruciferous vegetables [1]),
which are absent from most ultra-processed foods or present in very small amounts.

Studies have found statistically significant correlations between urine and serum concentrations
for enterodiol (r = 0.83; r = 0.62) [10,61] and enterolactone (r = 0.94; r = 0.84) [10,61], while
several intervention studies found that dietary intake of lignan-containing foods leads to increased
enterolignan blood concentrations in nearly all individuals [62]. Several studies have also shown that
urinary concentrations of enterolignans are reliable biomarkers of lignan intake [16,18,21]. Based on
this evidence, we may also conclude that diets rich in ultra-processed foods lead to a reduced lignan
bioavailability, either because of low lignan intake, low conversion to enterolignans or low absorption
at the colon. Any component altering intestinal flora or its environment, such as diet, may potentially
affect the degree to which precursors are converted to enterolignans and absorbed.

Decreased urinary enterolactone concentrations as observed in high ultra-processed food
consumers may have serious health consequences if, as was shown in a study carried out with
US NHANES 2003–2010 survey, urinary enterolactone concentrations are inversely associated with
serum g-glutamyl transaminase (GGT) levels in adult males and females, with alkaline phosphatase
(ALP) in females, and with aspartate aminotransferase (AST) and alanine aminotransferase (ALT)
levels in adult males as well [63]. Also, another study carried with US NHANES 2001–2010, found
an inverse association between urinary enterolactone levels and obesity, waist circumference, serum
triacylglycerols (TAG) levels, fasting glucose levels, fasting insulin levels and metabolic syndrome
in adult males, and a direct association with high-density lipoprotein HDL-cholesterol levels [64].
Another study found an inverse association between urinary concentrations of total enterolignans
and cardiovascular mortality and between urinary concentrations of both total enterolignans and
enterolactone and all-cause mortality [65]. Interestingly, this study also found a direct association
between urinary concentration of total isoflavones and daidzein and risk of death from cardiovascular
disease and all causes [65].

The somewhat unexpected absence of association between the dietary contribution of
ultra-processed foods and the other important group of dietary phytoestrogens—isoflavones—may
be explained by the widespread presence of soy in ultra-processed foods [60], in the form of soybean
oil, soy flour, soy protein concentrates, soy protein isolates, textured soy protein or soymilk among
others [60]. The presence of these ingredients in ultra-processed foods, probably compensate the
absence of other food sources of isoflavones in diets rich in ultra-processed foods.

This study has several strengths. A large, nationally representative sample of the US population
was used, increasing generalizability. This investigation was based on individual consumption data,
rather than market disappearance or household purchasing data which cannot account for differences
between amounts purchased and amounts actually consumed.

Exposure to individual phytoestrogens was assessed by measuring their urinary concentrations,
the only option at present to assess dietary intake of lignans as these are not captured by the US
Department of Agriculture food composition database (isoflavones are not fully captured either).
The advantage of urinary measurements is that they are free of recall bias inherent in self-reported
dietary data and represent phytoestrogen intakes from all sources, including those that may be
inadequately captured in food composition databases [10,16,65]. An additional advantage of using
urinary phytoestrogen testing is that it also captures phytoestrogen metabolites (such as equol and
O-desmethylangolensin) produced by intestinal bacteria [66].
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Potential limitations should be considered. As with most population measures, dietary data
obtained by 24-h recalls is imperfect [67]. However, 24-h recalls are the least-biased self-report
instrument available. Also, standardized methods and approach of NHANES have been shown to
produce accurate intake estimates [46–48], and will therefore be suitable for assessing population
averages. Previous studies suggest that people with obesity may underreport consumption of foods
with caloric sweeteners [68] such as desserts and sweet baked goods [69,70], which may lead to an
underestimation of the dietary contribution of ultra-processed foods or a dilution of the association
between ultra-processed food consumption and enterodiol and enterolactone urinary concentrations.
Although NHANES collects limited information indicative of food processing (i.e., place of meals,
product brands), these data are not consistently determined for all food items and may also not
provide updated, market-representative nutrient information [71], which could lead to modest over-or
underestimation of the dietary contribution of ultra-processed foods.

A further limitation arises from the use of spot urine samples for the determination of
phytoestrogen concentrations as these measurements might be different from those obtained using
24-h urine due to potential circadian rhythm [65]. Even though there have been no studies examining
the correlation between spot and 24-h urinary phytoestrogen concentrations, the concentrations of
phytoestrogens in spot urine have been reported to be statistically significantly correlated with their
concentrations measured in serum [10,61] and with their dietary intake [16–21]. Also, even though
single measurements in spot urines might not accurately reflect individual usual dietary intake due to
within-person variation, in this study we were more interested in the urinary measurements actually
reflecting the individual’s dietary intake during the previous 24 h. Taking into account that isoflavone
metabolites, like equol, are excreted in the urine within 24 h after exposure [66] and, that peak serum
daidzein and genistein concentrations are attained 4–8 h after ingestion while elimination half-lives
are in the range of 8–10 h, respectively [72], we may assume this is the case.

5. Conclusions

This study shows there is a strong inverse linear trend in the association between the dietary
share of ultra-processed foods and urinary concentrations of enterodiol and enterolactone in the US,
which probably reflects a lower intake and/or bioavailability of lignans among high consumers of
ultra-processed foods. This finding reinforces the existing evidence regarding the negative impact of
ultra-processed food consumption on the overall quality of the diet [37–42], and expands it to include
non-nutrients such as lignans.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/9/3/209/s1,
Table S1. Characteristics of study participants and full subsample of participants selected to measure urinary
phytoestrogens. Subsample of US population aged 6+ years (NHANES 2009–2010).

Acknowledgments: This research received funding from Conselho Nacional de Desenvolvimento Científico e
Tecnológico, Edital MCTI/CNPq/Universal (Processo CNPq n◦ 443477/2014-0) and from Fundação de Amparo à
Pesquisa do Estado de São Paulo (Processo FAPESP n◦ 2015/14900-9).

Author Contributions: E.M.S. and C.A.M. conceived and designed the study; E.M.S. and C.A.M. analyzed the
data; E.M.S. and C.A.M. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Paterni, I.; Granchi, C.; Minutolo, F. Risks and Benefits Related to Alimentary Exposure to Xenoestrogens.
Crit. Rev. Food Sci. Nutr. 2016. [CrossRef] [PubMed]

2. Wang, L.Q. Mammalian phytoestrogens: Enterodiol and enterolactone. J. Chromatogr. B 2002, 777, 289–309.
[CrossRef]

3. Sirotkin, A.V.; Harrath, A.H. Phytoestrogens and their effects. Eur. J. Pharmacol. 2014, 741, 230–236. [CrossRef]
[PubMed]

http://www.mdpi.com/2072-6643/9/3/209/s1
http://dx.doi.org/10.1080/10408398.2015.1126547
http://www.ncbi.nlm.nih.gov/pubmed/26744831
http://dx.doi.org/10.1016/S1570-0232(02)00281-7
http://dx.doi.org/10.1016/j.ejphar.2014.07.057
http://www.ncbi.nlm.nih.gov/pubmed/25160742


Nutrients 2017, 9, 209 12 of 15

4. Cassidy, A. Potential risks and benefits of phytoestrogen-rich diets. Int. J. Vitam. Nutr. Res. 2003, 73, 120–126.
[CrossRef] [PubMed]

5. Tuohy, P.G. Soy infant formula and phytoestrogens. J. Paediatr. Child Health 2003, 39, 401–405. [CrossRef]
[PubMed]

6. Branca, F.; Lorenzetti, S. Health effects of phytoestrogens. Forum Nutr. 2005, 57, 100–111.
7. Vitale, D.C.; Piazza, C.; Melilli, B.; Drago, F.; Salomone, S. Isoflavones: Estrogenic activity, biological effect

and bioavailability. Eur. J. Drug Metab. Pharmacokinet. 2013, 38, 15–25. [CrossRef] [PubMed]
8. Bhagwat, S.; Haytowitz, D.B.; Holden, J.M. USDA Database for the Isoflavone Content of Selected

Foods, Release 2.0. U.S. Department of Agriculture, Agricultural Research Service, Nutrient Data
Laboratory Home Page, 2008. Available online: http://www.ars.usda.gov/nutrientdata/isoflav (accessed on
12 February 2017).

9. U.S. Department of Agriculture, Agricultural Research Service. USDA Database for the Flavonoid Content
of Selected Foods, Release 3.0. Nutrient Data Laboratory Home Page, 2011. Available online: http://www.
ars.usda.gov/nutrientdata/flav (accessed on 12 February 2017).

10. Grace, P.B.; Taylor, J.I.; Low, Y.L.; Luben, R.N.; Mulligan, A.A.; Botting, N.P.; Dowsett, N.; Welch, A.A.;
Khaw, K.T.; Wareham, N.J.; et al. Phytoestrogen Concentrations in Serum and Spot Urine as Biomarkers for
Dietary Phytoestrogen Intake and Their Relation to Breast Cancer Risk in European Prospective Investigation
of Cancer and Nutrition-Norfolk. Cancer Epidemiol. Biomark. Prev. 2004, 13, 698–708.

11. Eldrige, A.; Kwolek, W. Soybean isoflavones: Effect of environment and variety on composition. J. Agric.
Food Chem. 1983, 31, 394–396. [CrossRef]

12. Wang, H.-J.; Murphy, P.A. Isoflavone composition of American and Japanese soybeans in Iowa: Effects of
variety, crop year and location. J. Agric. Food Chem. 1994, 42, 1674–1677. [CrossRef]

13. Wang, H.-J.; Murphy, P.A. Isoflavone content in commercial soybean foods. J. Agric. Food Chem. 1994, 42,
1666–1673. [CrossRef]

14. Thompson, L.U.; Rickard, S.E.; Cheung, F.; Kenaschuk, E.O.; Obermeyer, W.R. Variability in anticancer lignan
levels in flaxseed. Nutr. Cancer 1997, 27, 26–30. [CrossRef] [PubMed]

15. Setchell, K.D.; Cole, S.J. Variations in isoflavone levels in soy foods and soy protein isolates and issues related
to isoflavone databases and food labeling. J. Agric. Food Chem. 2003, 51, 4146–4155. [CrossRef] [PubMed]

16. Lampe, J.W. Isoflavonoid and lignan phytoestrogens as dietary biomarkers. J. Nutr. 2003, 133, 956S–964S.
[PubMed]

17. Seow, A.; Shi, C.Y.; Franke, A.A.; Hankin, J.H.; Lee, H.P.; Yu, M.C. Isoflavonoid levels in spot urine are
associated with frequency of dietary soy intake in a population-based sample of middle aged and older
Chinese in Singapore. Cancer Epidemiol. Biomark. Prev. 1998, 7, 135–140.

18. French, M.R.; Thompson, L.U.; Hawker, G.A. Validation of a phytoestrogen food frequency questionnaire
with urinary concentrations of isoflavones and lignan metabolites in premenopausal women. J. Am.
Coll. Nutr. 2007, 26, 76–82. [CrossRef] [PubMed]

19. Maskarinec, G.; Singh, S.; Meng, L.; Franke, A.A. Dietary soy intake and urinary isoflavone excretion among
women from a multiethnic population. Cancer Epidemiol. Biomark. Prev. 1998, 7, 613–619.

20. Jaceldo-Siegl, K.; Fraser, G.E.; Chan, J.; Franke, A.; Sabate, J. Validation of soy protein estimates from a
food-frequency questionnaire with repeated 24-h recalls and isoflavonoid excretion in overnight urine in a
western population with a wide range of soy intakes. Am. J. Clin. Nutr. 2008, 87, 1422–1427. [PubMed]

21. Lampe, J.W.; Gustafson, D.R.; Hutchins, A.M.; Martini, M.C.; Li, S.; Wahala, K.; Grandits, G.A.; Potter, J.D.;
Slavin, J.L. Urinary isoflavonoid and lignan excretion on a western diet: Relation to soy, vegetable, and fruit
intake. Cancer Epidemiol. Biomark. Prev. 1999, 8, 699–707.

22. Monteiro, C.A. Nutrition and health. The issue is not food, nor nutrients, so much as processing.
Public Health Nutr. 2009, 12, 729–731. [CrossRef] [PubMed]

23. Ludwig, D.S. Technology, diet, and the burden of chronic disease. JAMA 2011, 305, 1352–1353. [CrossRef]
[PubMed]

24. Moodie, R.; Stuckler, D.; Monteiro, C.; Sheron, N.; Neal, B.; Thamarangsi, T.; Lincoln, P.; Casswell, S.;
Lancet NCD Action Group. Profits and pandemics: Prevention of harmful effects of tobacco, alcohol, and
ultra-processed food and drink industries. Lancet 2013, 381, 670–679. [CrossRef]

http://dx.doi.org/10.1024/0300-9831.73.2.120
http://www.ncbi.nlm.nih.gov/pubmed/12747219
http://dx.doi.org/10.1046/j.1440-1754.2003.00178.x
http://www.ncbi.nlm.nih.gov/pubmed/12919490
http://dx.doi.org/10.1007/s13318-012-0112-y
http://www.ncbi.nlm.nih.gov/pubmed/23161396
http://www.ars.usda.gov/nutrientdata/isoflav
http://www.ars.usda.gov/nutrientdata/flav
http://www.ars.usda.gov/nutrientdata/flav
http://dx.doi.org/10.1021/jf00116a052
http://dx.doi.org/10.1021/jf00044a017
http://dx.doi.org/10.1021/jf00044a016
http://dx.doi.org/10.1080/01635589709514497
http://www.ncbi.nlm.nih.gov/pubmed/8970178
http://dx.doi.org/10.1021/jf026199b
http://www.ncbi.nlm.nih.gov/pubmed/12822960
http://www.ncbi.nlm.nih.gov/pubmed/12612182
http://dx.doi.org/10.1080/07315724.2007.10719588
http://www.ncbi.nlm.nih.gov/pubmed/17353586
http://www.ncbi.nlm.nih.gov/pubmed/18469267
http://dx.doi.org/10.1017/S1368980009005291
http://www.ncbi.nlm.nih.gov/pubmed/19366466
http://dx.doi.org/10.1001/jama.2011.380
http://www.ncbi.nlm.nih.gov/pubmed/21467290
http://dx.doi.org/10.1016/S0140-6736(12)62089-3


Nutrients 2017, 9, 209 13 of 15

25. Monteiro, C.A.; Cannon, G.; Levy, R.B.; Claro, R.M.; Moubarac, J.-C. Ultra-processing and a new classification
of foods. In Introduction to U.S. Food System. Public Health, Environment, and Equity; Neff, R., Ed.; Jossey Bass
A Wiley Brand: San Francisco, CA, USA, 2015.

26. Food and Agriculture Organization. Guidelines on the Collection of Information on Food Processing through Food
Consumption Surveys; FAO: Rome, Italy, 2015.

27. World Health Organization. Ultra-Processed Food and Drink Products in Latin America: Trends, Impact on Obesity,
Policy Implications; Panamerican Health Organization: Washington, DC, USA, 2015.

28. Stuckler, D.; McKee, M.; Ebrahim, S.; Basu, S. Manufacturing epidemics: The role of global producers
in increased consumption of unhealthy commodities including processed foods, alcohol, and tobacco.
PLoS Med. 2012, 9, e1001235. [CrossRef] [PubMed]

29. Monteiro, C.A.; Cannon, G. The impact of transnational ‘Big Food’ companies on the South: A view from
Brazil. PLoS Med. 2012, 9, e1001252. [CrossRef] [PubMed]

30. Monteiro, C.A.; Moubarac, J.C.; Cannon, G.; Popkin, B.M. Ultra-processed products are becoming dominant
in the global food system. Obes. Rev. 2013, 14 (Suppl. S2), 21–28. [CrossRef] [PubMed]

31. Juul, F.; Hemmingsson, E. Trends in consumption of ultra-processed foods and obesity in Sweden between
1960 and 2010. Public Health Nutr. 2015, 18, 3096–3107. [CrossRef] [PubMed]

32. Mendonça, R.D.; Pimenta, A.M.; Gea, A.; de la Fuente-Arrillaga, C.; Martinez-Gonzalez, M.A.; Lopes, A.C.;
Bes-Rastrollo, M. Ultraprocessed food consumption and risk of overweight and obesity: The University of
Navarra Follow-Up (SUN) cohort study. Am. J. Clin. Nutr. 2016, 104, 1433–1440. [CrossRef] [PubMed]

33. Louzada, M.L.; Baraldi, L.G.; Steele, E.M.; Martins, A.P.; Canella, D.S.; Moubarac, J.C.; Levy, R.B.; Cannon, G.;
Afshin, A.; Imamura, F.; et al. Consumption of ultra-processed foods and obesity in Brazilian adolescents
and adults. Prev. Med. 2015, 81, 9–15. [CrossRef] [PubMed]

34. Canella, D.S.; Levy, R.B.; Martins, A.P.; Claro, R.M.; Moubarac, J.C.; Baraldi, L.G.; Cannon, G.; Monteiro, C.A.
Ultra-processed food products and obesity in Brazilian households (2008–2009). PLoS ONE 2014, 9, e92752.
[CrossRef] [PubMed]

35. Rauber, F.; Campagnolo, P.D.; Hoffman, D.J.; Vitolo, M.R. Consumption of ultra-processed food products
and its effects on children’s lipid profiles: A longitudinal study. Nutr. Metab. Cardiovasc. Dis. 2015, 25,
116–122. [CrossRef] [PubMed]

36. Tavares, L.F.; Fonseca, S.C.; Garcia Rosa, M.L.; Yokoo, E.M. Relationship between ultra-processed foods and
metabolic syndrome in adolescents from a Brazilian Family Doctor Program. Public Health Nutr. 2012, 15,
82–87. [CrossRef] [PubMed]

37. Martinez Steele, E.; Baraldi, L.G.; Louzada, M.L.; Moubarac, J.C.; Mozaffarian, D.; Monteiro, C.A.
Ultra-processed foods and added sugars in the US diet: Evidence from a nationally representative
cross-sectional study. BMJ Open 2016, 6, e009892. [CrossRef] [PubMed]

38. Martinez Steele, E.; Popkin, B.M.; Swinburn, B.; Monteiro, C.A. The share of ultra-processed foods and the
overall nutritional quality of diets in the US: evidence from a nationally representative cross-sectional study.
Population Health Metrics 2017. (accepted for publication). [CrossRef] [PubMed]

39. Monteiro, C.A.; Levy, R.B.; Claro, R.M.; de Castro, I.R.; Cannon, G. Increasing consumption of ultra-processed
foods and likely impact on human health: Evidence from Brazil. Public Health Nutr. 2010, 14, 5–13. [CrossRef]
[PubMed]

40. Louzada, M.L.; Martins, A.P.; Canella, D.S.; Baraldi, L.G.; Bertazzi, R.L.; Claro, R.M.; Moubarac, J.C.;
Cannon, G.; Monteiro, C.A. Ultra-processed foods and the nutritional dietary profile in Brazil. Rev. Saúde
Pública 2015, 49. [CrossRef] [PubMed]

41. Louzada, M.L.; Martins, A.P.; Canella, D.S.; Baraldi, L.G.; Bertazzi, R.L.; Claro, R.M.; Moubarac, J.C.;
Cannon, G.; Monteiro, C.A. Impact of ultra-processed foods on micronutrient content in the Brazilian diet.
Rev. Saúde Pública 2015, 49. [CrossRef] [PubMed]

42. Moubarac, J.-C.; Martins, A.P.B.; Claro, R.M.; Levy, R.B.; Cannon, G.; Monteiro, C.A. Consumption of
ultra-processed foods and likely impact on human health. Evidence from Canada. Public Health Nutr. 2012,
16, 1–9. [CrossRef] [PubMed]

43. Johnson, C.L.; Paulose-Ram, R.; Ogden, C.L.; Carroll, M.D.; Kruszon-Moran, D.; Dohrmann, S.M.; Curtin, L.R.
National Health and Nutrition Examination Survey: Analytic guidelines, 1999–2010; Vital Health Stat 2; National
Center for Health Statistics: Hyattsville, MD, USA, 2013; Volume 161.

http://dx.doi.org/10.1371/journal.pmed.1001235
http://www.ncbi.nlm.nih.gov/pubmed/22745605
http://dx.doi.org/10.1371/journal.pmed.1001252
http://www.ncbi.nlm.nih.gov/pubmed/22802732
http://dx.doi.org/10.1111/obr.12107
http://www.ncbi.nlm.nih.gov/pubmed/24102801
http://dx.doi.org/10.1017/S1368980015000506
http://www.ncbi.nlm.nih.gov/pubmed/25804833
http://dx.doi.org/10.3945/ajcn.116.135004
http://www.ncbi.nlm.nih.gov/pubmed/27733404
http://dx.doi.org/10.1016/j.ypmed.2015.07.018
http://www.ncbi.nlm.nih.gov/pubmed/26231112
http://dx.doi.org/10.1371/journal.pone.0092752
http://www.ncbi.nlm.nih.gov/pubmed/24667658
http://dx.doi.org/10.1016/j.numecd.2014.08.001
http://www.ncbi.nlm.nih.gov/pubmed/25240690
http://dx.doi.org/10.1017/S1368980011001571
http://www.ncbi.nlm.nih.gov/pubmed/21752314
http://dx.doi.org/10.1136/bmjopen-2015-009892
http://www.ncbi.nlm.nih.gov/pubmed/26962035
http://dx.doi.org/10.1186/s12963-017-0119-3
http://www.ncbi.nlm.nih.gov/pubmed/28193285
http://dx.doi.org/10.1017/S1368980010003241
http://www.ncbi.nlm.nih.gov/pubmed/21211100
http://dx.doi.org/10.1590/S0034-8910.2015049006132
http://www.ncbi.nlm.nih.gov/pubmed/26176747
http://dx.doi.org/10.1590/S0034-8910.2015049006211
http://www.ncbi.nlm.nih.gov/pubmed/26270019
http://dx.doi.org/10.1017/S1368980012005009
http://www.ncbi.nlm.nih.gov/pubmed/23171687


Nutrients 2017, 9, 209 14 of 15

44. NHANES. MEC In-Person Dietary Interviewers Procedures Manual. 2009. Available online: https://www.
cdc.gov/nchs/data/nhanes/nhanes_09_10/mec_in_person_dietary_procedures_manual_mar_2010.pdf
(accessed on 12 February 2017).

45. NHANES. Phone Follow-Up Dietary Interviewer Procedures Manual. 2009. Available online:
https://www.cdc.gov/nchs/data/nhanes/nhanes_09_10/phone_follow_up_dietary_procedures_
manual_mar_2010.pdf (accessed on 12 February 2017).

46. Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.;
Kuczynski, K.C.; Ingwersen, L.A.; et al. The USDA Automated Multiple-Pass Method reduces bias in the
collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [PubMed]

47. Blanton, C.A.; Moshfegh, A.J.; Baer, D.J.; Kretsch, M.J. The USDA Automated Multiple-Pass Method
accurately estimates group total energy and nutrient intake. J. Nutr. 2006, 136, 2594–2599. [PubMed]

48. Rumpler, W.V.; Kramer, M.; Rhodes, D.G.; Moshfegh, A.J.; Paul, D.R.; Kramer, M. Identifying sources of
reporting error using measured food intake. Eur. J. Clin. Nutr. 2008, 62, 544–552. [CrossRef] [PubMed]

49. Automated Multiple-Pass Method. United States Department of Agriculture. Agriculture Research Service.
Available online: http://www.ars.usda.gov/ba/bhnrc/fsrg (accessed on12 February 2017).

50. National Health and Nutrition Examination Survey. NHANES Response Rates and Population
Totals. Response Rates. Available online: http://www.cdc.gov/nchs/nhanes/response_rates_CPS.htm
(accessed on 12 February 2017).

51. Laboratory Procedure Manual. Phytoestrogens in Urine NHANES 2009–2010. Bioactive Dietary Compounds
Laboratory (BDCL); Nutritional Biomarkers Branch (NBB); Division of Laboratory Sciences (DLS); National
Center for Environmental Health (NCEH). Available online: https://www.cdc.gov/nchs/data/nhanes/
nhanes_09_10/Phyto_F_met_phytoestrogens.pdf (accessed on 12 February 2017).

52. Laboratory Procedure Manual. Urinary Creatinine. University of Minnesota, January 2011. Available online:
https://www.cdc.gov/nchs/data/nhanes/nhanes_09_10/ALB_CR_F_met_creatinine.pdf (accessed on
12 February 2017).

53. Lyles, R.H.; Fan, D.; Chuachoowong, R. Correlation coefficient estimation involving a left censored laboratory
assay variable. Statist. Med. 2001, 20, 2921–2933. [CrossRef] [PubMed]

54. Croghan, C.; Egeghy, P.P. Methods of Dealing with Values below the Limit of Detection Using SAS.
In Presented at Southeastern SAS User Group, St. Petersburg, FL, USA, 22–24 September 2003.

55. Monteiro, C.A.; Levy, R.B.; Claro, R.M.; de Castro, I.R.R.; Cannon, G. A new classification of foods based on
the extent and purpose of their processing. Cad. Saúde Pública 2010, 26, 2039–2049. [CrossRef] [PubMed]

56. Moubarac, J.C.; Parra, D.C.; Cannon, G.; Monteiro, C.A. Food Classification Systems Based on Food
Processing: Significance and implications for policies and actions: A systematic literature review and
assessment. Curr. Obes. Rep. 2014, 3, 256–272. [CrossRef] [PubMed]

57. Monteiro, C.A.; Cannon, G.; Levy, R.B.; Claro, R.M.; Moubarac, J.C. The Food System. Processing. The big
issue for disease, good health, well-being. World Nutr. 2012, 3, 527–569.

58. Ahuja, J.K.A.; Montville, J.B.; Omolewa-Tomobi, G.; Heendeniya, K.Y.; Martin, C.L.; Steinfeldt, L.C.;
Anand, J.; Adler, M.E.; LaComb, R.P.; Moshfegh, A.J. USDA Food and Nutrient Database for Dietary Studies, 5.0;
U.S. Department of Agriculture, Agricultural Research Service, Food Surveys Research Group: Beltsville,
MD, USA, 2012.

59. U.S. Department of Agriculture, Agricultural Research Service. USDA National Nutrient Database for
Standard Reference, Release 24. Nutrient Data Laboratory Home Page, 2011. Available online: http:
//www.ars.usda.gov/ba/bhnrc/ndl (accessed on 12 February 2017).

60. Barnes, S. The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products.
Lymphat. Res. Biol. 2010, 8, 89–98. [CrossRef] [PubMed]

61. Valentin-Blasini, L.; Blount, B.C.; Caudill, S.P.; Needham, L.L. Urinary and serum concentrations of seven
phytoestrogens in a human reference population subset. J. Expo. Anal. Environ. Epidemiol. 2003, 13, 276–282.
[CrossRef] [PubMed]

62. Clavel, T.; Doré, J.; Blaut, M. Bioavailability of lignans in human subjects. Nutr. Res. Rev. 2006, 19, 187–196.
[CrossRef] [PubMed]

63. Xu, C.; Liu, Q.; Zhang, Q.; Jiang, Z.Y.; Gu, A. Urinary enterolactone associated with liver enzyme levels in
US adults: National Health and Nutrition Examination Survey (NHANES). Br. J. Nutr. 2015, 114, 91–97.
[CrossRef] [PubMed]

https://www.cdc.gov/nchs/data/nhanes/nhanes_09_10/mec_in_person_dietary_procedures_manual_mar_2010.pdf
https://www.cdc.gov/nchs/data/nhanes/nhanes_09_10/mec_in_person_dietary_procedures_manual_mar_2010.pdf
https://www.cdc.gov/nchs/data/nhanes/nhanes_09_10/phone_follow_up_dietary_procedures_manual_mar_2010.pdf
https://www.cdc.gov/nchs/data/nhanes/nhanes_09_10/phone_follow_up_dietary_procedures_manual_mar_2010.pdf
http://www.ncbi.nlm.nih.gov/pubmed/18689367
http://www.ncbi.nlm.nih.gov/pubmed/16988132
http://dx.doi.org/10.1038/sj.ejcn.1602742
http://www.ncbi.nlm.nih.gov/pubmed/17426745
http://www.ars.usda.gov/ba/bhnrc/fsrg
http://www.cdc.gov/nchs/nhanes/response_rates_CPS.htm
https://www.cdc.gov/nchs/data/nhanes/nhanes_09_10/Phyto_F_met_phytoestrogens.pdf
https://www.cdc.gov/nchs/data/nhanes/nhanes_09_10/Phyto_F_met_phytoestrogens.pdf
https://www.cdc.gov/nchs/data/nhanes/nhanes_09_10/ALB_CR_F_met_creatinine.pdf
http://dx.doi.org/10.1002/sim.901
http://www.ncbi.nlm.nih.gov/pubmed/11568949
http://dx.doi.org/10.1590/S0102-311X2010001100005
http://www.ncbi.nlm.nih.gov/pubmed/21180977
http://dx.doi.org/10.1007/s13679-014-0092-0
http://www.ncbi.nlm.nih.gov/pubmed/26626606
http://www.ars.usda.gov/ba/bhnrc/ndl
http://www.ars.usda.gov/ba/bhnrc/ndl
http://dx.doi.org/10.1089/lrb.2009.0030
http://www.ncbi.nlm.nih.gov/pubmed/20235891
http://dx.doi.org/10.1038/sj.jea.7500278
http://www.ncbi.nlm.nih.gov/pubmed/12923554
http://dx.doi.org/10.1017/S0954422407249704
http://www.ncbi.nlm.nih.gov/pubmed/19079885
http://dx.doi.org/10.1017/S000711451500149X
http://www.ncbi.nlm.nih.gov/pubmed/25990984


Nutrients 2017, 9, 209 15 of 15

64. Xu, C.; Liu, Q.; Zhang, Q.; Gu, A.; Jiang, Z.Y. Urinary enterolactone is associated with obesity and metabolic
alteration in men in the US National Health and Nutrition Examination Survey 2001–10. Br. J. Nutr. 2015,
113, 683–690. [CrossRef] [PubMed]

65. Reger, M.K.; Zollinger, T.W.; Liu, Z.; Jones, J.; Zhang, J. Urinary phytoestrogens and cancer, cardiovascular,
and all-cause mortality in the continuous National Health and Nutrition Examination Survey. Eur. J. Nutr.
2016, 55, 1029–1040. [CrossRef] [PubMed]

66. Rowland, I.; Faughnan, M.; Hoey, L.; Wahala, K.; Williamson, G.; Cassidy, A. Bioavailability of
phyto-oestrogens. Br. J. Nutr. 2003, 89, S45–S58. [CrossRef] [PubMed]

67. Subar, A.F.; Freedman, L.S.; Tooze, J.A.; Kirkpatrick, S.I.; Boushey, C.; Neuhouser, M.L.; Thompson, F.E.;
Potischman, N.; Guenther, P.M.; Tarasuk, V.; et al. Addressing Current Criticism Regarding the Value of
Self-Report Dietary Data. J. Nutr. 2015, 145, 2639–2645. [CrossRef] [PubMed]

68. Bingham, S.; Luben, R.; Welch, A.; Tasevska, N.; Wareham, N.; Khaw, K.T. Epidemiologic assessment of
sugars consumption using biomarkers: Comparisons of obese and nonobese individuals in the European
Prospective Investigation of Cancer Norfolk. Cancer Epidemiol. Biomark. Prev. 2007, 16, 1651–1654. [CrossRef]
[PubMed]

69. Lafay, L.; Mennen, L.; Basdevant, A.; Charles, M.A.; Borys, J.M.; Eschwège, E.; Romon, M. Does energy
intake underreporting involve all kinds of food or only specific food items? Results from the Fleurbaix
Laventie Ville Sante (FLVS) study. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 1500–1506. [CrossRef] [PubMed]

70. Pryer, J.A.; Vrijheid, M.; Nichols, R.; Kiggins, M.; Elliott, P. Who are the “low energy reporters” in the dietary
and nutritional survey of British adults? Int. J. Epidemiol. 1997, 26, 146–154. [CrossRef] [PubMed]

71. Slining, M.M.; Yoon, E.F.; Davis, J.; Hollingsworth, B.; Miles, D.; Ng, S.W. An Approach to Monitor Food and
Nutrition from “Factory to Fork”. J. Acad. Nutr. Diet. 2015, 115, 40–49. [CrossRef] [PubMed]

72. Setchell, K.D.R.; Brown, N.M.; Desai, P.; Zimmer-Nechimias, L.; Wolfe, B.; Jakate, A.S.; Creutzinger, V.;
Heubi, J.E. Bioavailability, disposition, and dose-response effects of soy isoflavones when consumed by
healthy women at physiologically typical dietary intakes. J. Nutr. 2003, 133, 1027–1035. [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1017/S0007114514004115
http://www.ncbi.nlm.nih.gov/pubmed/25634494
http://dx.doi.org/10.1007/s00394-015-0917-y
http://www.ncbi.nlm.nih.gov/pubmed/25943648
http://dx.doi.org/10.1079/BJN2002796
http://www.ncbi.nlm.nih.gov/pubmed/12725656
http://dx.doi.org/10.3945/jn.115.219634
http://www.ncbi.nlm.nih.gov/pubmed/26468491
http://dx.doi.org/10.1158/1055-9965.EPI-06-1050
http://www.ncbi.nlm.nih.gov/pubmed/17684141
http://dx.doi.org/10.1038/sj.ijo.0801392
http://www.ncbi.nlm.nih.gov/pubmed/11126348
http://dx.doi.org/10.1093/ije/26.1.146
http://www.ncbi.nlm.nih.gov/pubmed/9126514
http://dx.doi.org/10.1016/j.jand.2014.09.002
http://www.ncbi.nlm.nih.gov/pubmed/25441958
http://www.ncbi.nlm.nih.gov/pubmed/12672914
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Subjects and Methods 
	Data Source, Population and Sampling 
	Urinary Phytoestrogen Measurement 
	Food Classification According to Processing 
	Assessing Energy Content 
	Data Analysis 

	Results 
	Contribution of Nova food Groups to Total Energy Intake 
	Association between Consumption of Ultra-Processed Foods and Urinary Phytoestrogen Concentrations 

	Discussion 
	Conclusions 

