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Diagnostic performance of
radiomics in adrenal masses:
A systematic review and
meta-analysis

Hao Zhang, Hanqi Lei and Jun Pang*

Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh
Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
Objectives: (1) To assess the methodological quality and risk of bias of

radiomics studies investigating the diagnostic performance in adrenal masses

and (2) to determine the potential diagnostic value of radiomics in adrenal

tumors by quantitative analysis.

Methods: PubMed, Embase, Web of Science, and Cochrane Library databases

were searched for eligible literature. Methodological quality and risk of bias in the

included studies were assessed by the Quality Assessment of Diagnostic Accuracy

Studies 2 (QUADAS-2) and Radiomics Quality Score (RQS). The diagnostic

performance was evaluated by pooled sensitivity, specificity, diagnostic odds

ratio (DOR), and area under the curve (AUC). Spearman’s correlation coefficient

and subgroup analysis were used to investigate the cause of heterogeneity.

Publication bias was examined using the Deeks’ funnel plot.

Results: Twenty-eight studies investigating the diagnostic performance of

radiomics in adrenal tumors were identified, with a total of 3579 samples.

The average RQS was 5.11 (14.2% of total) with an acceptable inter-rater

agreement (ICC 0.94, 95% CI 0.93–0.95). The risk of bias was moderate

according to the result of QUADAS-2. Nine studies investigating the use of

CT-based radiomics in differentiating malignant from benign adrenal tumors

were included in the quantitative analysis. The pooled sensitivity, specificity,

DOR and AUC with 95% confidence intervals were 0.80 (0.68-0.88), 0.83

(0.73-0.90), 19.06 (7.87-46.19) and 0.88 (0.85–0.91), respectively. There was

significant heterogeneity among the included studies but no threshold effect in

themeta-analysis. The result of subgroup analysis demonstrated that radiomics

based on unenhanced and contrast-enhanced CT possessed higher diagnostic

performance, and second-order or higher-order features could enhance the

diagnostic sensitivity but also increase the false positive rate. No significant

difference in diagnostic ability was observed between studies with machine

learning and those without.

Conclusions: The methodological quality and risk of bias of studies

investigating the diagnostic performance of radiomics in adrenal tumors

should be further improved in the future. CT-based radiomics has the
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potential benefits in differentiating malignant from benign adrenal tumors. The

heterogeneity between the included studies was a major limitation to obtaining

more accurate conclusions.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/

CRD 42022331999 .
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Introduction

Due to the increasing use of abdominal imaging, the

discovery of adrenal incidentalomas has kept rising. It is

reported that adrenal incidentalomas account for 4-5% of

patients without malignancy (1). Although most adrenal

masses are benign and non-functional, their functional status

and malignant potential should be evaluated when they are

detected, according to the latest recommendations (2). However,

it is challenging for radiologists to accurately diagnose adrenal

masses via conventional imaging assessments (3, 4). To begin,

imaging features of pitfalls and mimics that are related to various

abnormalities and aberrant appearances may potentially lead to

misdiagnosis (3). For example, large adenomas usually present

as heterogeneous masses on computed tomography (CT) images

can not be easily differentiated from adrenocortical carcinoma

visually (5, 6). Secondly, conventional imaging assessments

depend largely on the experience and knowledge level of the

radiologist. Consequently, exploring better approaches to

improve the diagnostic value of adrenal imaging is crucial,

considering that inappropriate diagnosis can lead to increased

treatment costs or unnecessary examination (7).

Radiomics, first pioneered by Philippe Lambin, generally aims

to extract quantitative and reproducible data that are

imperceptible to the human eye from biomedical images for a

series of medical purposes (8, 9). Extracted features, divided into

shape-based, first-, second-, and higher-order statistics, can be

translated into high-throughput and quantitative data for analysis

(10, 11). The features that contribute the most to the objective will

be selected for constructing the model via statistical approaches

and artificial intelligence. Furthermore, radiomics features may

achieve complementarity and improve accuracy when combined

with clinically acquired, treatment-related, and genomic data (12).

As artificial intelligence advances by leaps and bounds, radiomics

has been extensively tested and applied in various aspects of

oncology, including diagnosis, classification, and prognosis

prediction (10). Recently, an increasing number of studies also

established that radiomics could offer a risk-free and efficient
02
method to increase the value of diagnostic imaging of adrenal

masses. Nakajo et al. investigated the diagnostic performance of

standardized uptake value (SUV)-related and texture parameters

of F-18-fluorodeoxyglucose positron emission tomography/

computedtomography (FDG PET/CT) between benign and

metastatic adrenal tumors (13). In one study, texture analysis

was applied to evaluate CT-abnormal adrenal glands in order to

differentiate between malignant and benign tumors in patients

with lung cancer (14). Moreover, Kong et al. designed a radiomic-

based nomogram for pheochromocytoma diagnosis and achieved

robust performance (15).

Although radiomics offers a relatively objective and

quantitative diagnostic pattern, it is also subjected to data

collection, radiomics characteristics processing, and modeling

methods. Considering that the quality and results of published

studies are mixed, diagnostic performance and feasibility of

radiomics in adrenal masses remain elusive. Hence, the aim of

the present review was to assess the methodological quality and risk

of bias of radiomics studies investigating diagnostic performance in

adrenal masses and to determine the potential diagnostic value of

radiomics in adrenal tumors by quantitative analysis.
Materials and methods

This review followed the Cochrane Handbook for Systematic

Reviews of Interventions and was conducted in accordance with

the PRISMA-DTA (Preferred Reporting Items for Systematic

Reviews and Meta-analysis for Diagnostic Test Accuracy)

statement (16, 17). The protocol of this review is available

through PROSPERO (CRD 42022331999).
Literature search

PubMed, Embase, Web of Science, and Cochrane Library

databases were searched by two independent observers to

identify eligible studies in May 2022. Additionally, the
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reference lists of the included studies were manually searched for

studies that might meet the inclusion criteria.
Study selection

The titles and abstracts of potentially relevant studies were

screened by two reviewers (HZ and HL) independently. Then,

the same two reviewers analyzed the full texts of eligible studies

and determined the pieces of literature that met the inclusion

criteria. Discrepancies between the two investigators were

resolved by consensus with a third reviewer (JP).

All single, comparative studies, and primary studies that met

the following PICO criteria were selected:
Fron
P (patients): Patients with benign or malign adrenal tumors;

I (interventions): Radiomics or texture analysis;

C (comparison): Standard-of-care imaging including

computed tomography (CT) and magnetic resonance

imaging (MRI), and positron emission tomography/

computedtomography (PET/CT);

O (outcome): Histologic typing (including differentiation

between different adrenal masses and differentiation

between benign and malign adrenal tumors).
The exclusion criteria were as follows: (a) letters, reviews,

editorials, expert opinions, case reports, meeting abstracts and

comments; (b) non-human research; (c) the study was not

written in English. The full search terms are outlined in Table S1.
Quality assessment

The Radiomics Quality Score (RQS) and Quality Assessment

of Diagnostic Accuracy Studies 2 (QUADAS-2) tools were utilized

to assess the methodological quality and risk of bias of the included

studies, respectively (18, 19). RQS comprises a total of 16 criteria,

and the score of each item corresponds to the importance of the

methodological quality of the study. The total score ranges from -8

to +36 points, with -8 to 0 points defined as 0% and 36 as 100%

(16). The QUADAS-2 tool includes four evaluation criteria: (a)

patient selection; (b) index test; (c) reference standard; and (d) flow

and timing. Two independent reviewers (HZ and HL) performed

the quality assessment, and disagreements between the two

reviewers were resolved by consensus with a third reviewer (JP).
Meta-analysis

A meta-analysis may be performed only when a sufficient

number of studies attempt to answer a similar question. In this

study, we performed a meta-analysis of all studies investigating

the diagnostic performance of CT-based radiomics between
tiers in Oncology 03
malign and benign adrenal tumors. Data from all the eligible

studies were extracted by two independent reviewers (HZ and

HL). Discrepancies were resolved by consensus with a third

reviewer (JP). Only studies from which a two-by-two

contingency table could be extracted or reconstructed were

included. If there were multiple models in the study, only the

one with the highest area under the curve (AUC) was extracted.

Moreover, the data from the model with the highest Youden’s

Index was selected if AUC was not reported. When multiple

publications were from the same research, only the study with

the higher methodological quality was included.
Statistical analysis

Pooled sensitivity, specificity, diagnostic odds ratio (DOR),

positive likelihood ratio (PLR), and negative likelihood ratio (NLR)

with 95% confidence intervals (CIs) were employed to quantify the

diagnostic performance. In addition, diagnostic accuracy was

outlined by the summary receiver operating characteristic curve

(SROC) and area under the curve (AUC). The heterogeneity of

studies was assessed by calculating the I 2 index, where an I 2 value

of 0–25% represents insignificant heterogeneity, >25–50%

indicates low heterogeneity, >50–75% indicates moderate

heterogeneity, and >75% indicates high heterogeneity (20). A p <

0.05 was considered statistically significant. A random-effects

model was employed to evaluate effect size and pool studies.

Forest plots were constructed for visualization of the results.

Spearman’s correlation coefficient was used to assess the

threshold effect between sensitivity logit and (1-specificity) logit.

In order to investigate the source of heterogeneity, a subgroup

analysis was also conducted with the following covariates: (a) CT

Type; (b) CT Feature Type; (c) Machine Learning; (d) Reference.

The sensitivity analysis was performed by eliminating the included

studies one after another. Publication bias was explored using the

Deeks’ funnel plot, and statistical significance was assessed by

Deeks’ asymmetry test. Clinical utility was examined using a Fagan

plot, which provided the posttest probability when pretest

probabilities were calculated (21).

Stata software (Stata Corporation, College Station, TX, USA,

version 16.0) and the Open Meta-analyst (a completely open-

source, cross-platform software) were used to conduct the meta-

analysis. The interclass correlation coefficient (ICC), which

described inter-rater agreement for the RQS and QUADAS-2

and Spearman’s correlation coefficient, was determined by SPSS

software (IBM, Armonk, NY, USA, version 25.0).

Results

Included studies

The PRISMA flow-chart of the literature search of this

systematic review and meta-analysis is presented in Figure 1.
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613 studies were screened following the removal of 316 duplicate

records. Then, 574 articles were excluded by evaluating the

abstract and title. After thoroughly screening the full-text, 3

studies were excluded for being reviews or meta-analyses; 6 for

being meeting abstracts; one for being a letter; and one for being

in a non-English language. Eventually, 28 studies were enrolled

in this research. Table 1 summarizes the characteristics of the

included studies.

All 28 studies were retrospective cohort studies, and the

sample size (number of lesions) ranged from 19 to 377. Most

objectives of the included studies were differentiation between

benign and malignant adrenal neoplasms by radiomics, followed

by the differentiation between pheochromocytoma and

adenoma. Other studies distinguished adrenal adenomas from

non-adenomas or identified subtypes of adrenal adenomas. The

majority of studies focused on the diagnostic performance of

radiomics using CT imaging (n=19), while a quarter was based

on magnetic resonance imaging (n=7). Additionally, one study

explored the use of radiomics based on a combination of CT and

MR and one based on FDG PET/CT. More than 78% (22/28) of

studies used manual segmentation. Radiomics feature types used

by different studies varied. Interestingly, over half of the included

studies (n=17) extracted second or higher-order features for

analyses. As for the modeling method, 12 studies conducted

logistic regression, eight studies did not provide relevant

information and the remainder employed other algorithms

such as support vector machine, random forest, extra trees
Frontiers in Oncology 04
classifier and so forth. More than half studies utilized

histopathology as the gold reference (n=15). Ten studies

combined histopathology and follow-up imaging. Two articles

exclusively considered clinical and imaging follow-ups, and one

study failed to report the reference standard. Outcomes of the

included studies are summarized in Table 2.
Data quality assessment

The included studies achieved an mean ± standard deviation

RQS of 5.11 ± 7.70, a median of 3.5, interquartile range 14, and a

range of -5 to 25. The mean RQS proportion was 14.2%, with a

maximum of 69.4%. The mode scores for the 16 dimensions are

summarized in Table 3. The individual scores of each study and

final scores of RQS are presented in Tables S2 and

S3, respectively.

The majority of studies provided details about the imaging

scheme, applied discrimination statistics and achieved their

potential clinical utility. Conversely, none of the included

studies employed phantoms, considered biological correlates

or assessed the repeatability of radiomics analysis at multiple

time points. Moreover, feature reduction or adjustment of

multiple tests were performed in 16/28 (57%) studies, and

non-radiomics features were applied in 3/28 (11%) studies.

Only a few studies conducted model calibration, assessed the

cost-effectiveness and publicly shared segmentations or code.
FIGURE 1

Flow diagram of study selection.
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TABLE 1 Characteristics of the included studies.

Study ID Ref Study Diagnostic Subject Sample Image Modality Segmentation Method Feature Extraction Features Type Modeling method Reference Standard Validation

igher-order Binary logistic regression Histopathology NR

-order and Support vector machine, radial

basis function network (ML)

Histopathology Internal

validation

-order and Logistic regression, boruta

random forest

Histopathology Internal

validation

-order and Logistic regression Histopathology NR

-order,

higher-

Logistic regression Histopathology Internal and

external

validation

-order,

higher-

Bounded particle swarm

optimisation-neural network

NR Internal

validation

Bayesian spatial gaussian

process classifier

Histopathology NR

Support vector machine (ML) Histopathology Internal

validation

NR Clinical and imaging follow-ups NR

-order,

higher-

Random forest (ML) Histopathology Internal

validation

NR Histopathology or follow-up

imaging

NR

econd-order J48 classifier, Weka software

(ML)

Histopathology Internal

validation

Logistic regression Histopathology or follow-up

imaging

NR

igher-order Logistic regression, support

vector machin (ML)

Histopathology or follow-up

imaging

Internal

validation

econd-order Logistic regression Histopathology Internal

validation

-order,

higher-

Extra trees classifier (ML) Histopathology or follow-up

imaging

Internal

validation
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Design Size (Software/Algorithm)

Andersen

et al. (2021)

(14) Retrospective Adrenal metastases/Benign lesions 160 Contrast-enhanced CT Semi-automatic (Philips

Intellispace Tumor

Tracking)

TexRAD First-order and h

Chai et al.

(2017)

(22) Retrospective Aldosterone-producing adenomas/

Pheochromocytomas/Cushing adenomas

218 Unenhanced

and contrast-enhanced CT

Automatic (Multiscale

sparse representations)

NR Shape-based, firs

second-order

Elmohr

et al. (2019)

(23) Retrospective Adrenocortical carcinomas/Adrenocortical

adenomas

54 Unenhanced

and contrast-

enhanced CT

Manual (Amira Software) PyRadiomics Shape-based, firs

second-order

Ho et al.

(2019)

(24) Retrospective Adrenal malignancy/Lipid-poor adenoma 23 Unenhanced and contrast-enhanced CT,

MRI 3T or 1,5T T1 in- and opposed-phase

Manual (Seg3D) Lesion Tool (software

developed by the

authors)

Shape-based, firs

second-order

Kong et al.

(2022)

(15) Retrospective Pheochromocytoma/Other adrenal lesions 309 MRI 3T T2w Semi-automatic (3D Slicer) 3D Slicer Shape-based, firs

second-order and

order

Koyuncu

et al. (2019)

(25) Retrospective Adrenal malignant/Benign lesions 114 Contrast-enhanced CT Semi-automatic

(AbSeg)

MATLAB Shape-based, firs

second-order and

order

Li et al.

(2018)

(26) Retrospective Adrenal malignant/Benign lesions 210 Unenhanced and contrast-enhanced CT Manual (NR) NR Second-order

Liu et al.

(2021)

(27) Retrospective Adrenal Adenoma/Pheochromocytoma 60 MRI 3T T1 in- and opposed-phase, T2w Manual (Mazda) MaZda First-order

Nakajo et al.

(2017)

(13) Retrospective Adrenal metastases/Benign lesions 35 FDG PET/CT Semi-automatic (Advantage

Windows Workstation)

Python First-order

Moawad

et al. (2021)

(28) Retrospective Adrenal malignant/Benign lesions 40 Unenhanced and contrast-enhanced CT Manual (Amira Software) PyRadiomics Shape-based, firs

second-order and

order

Rocha et al.

(2018)

(29) Retrospective Adrenal adenomas/Malignant lesions 108 Unenhanced CT Manual (OsiriX Software) OsiriX First-order

Romeo et al.

(2018)

(30) Retrospective Lipid-rich/Lipid-poor/Nonadenoma

adrenal lesions

60 MRI 3T T1w, T2w Manual (ITK-SNAP) 3D Slicer First-order and s

Schieda

et al. (2017)

(31) Retrospective Adrenal metastases/Adrenal adenoma 44 MRI 1.5T or 3T T1 in- and opposed-phase,

T2w, GRE

Manual (Image J) Image J First-order

Shi et al.

(2019)

(32) Retrospective Adrenal metastases/Benign lesions 265 Unenhanced and contrast-enhanced CT Manual (NR) TexRAD First-order and h

Shoemaker

et al. (2018)

(33) Retrospective Adrenal malignant/Benign lesions; Adrenal

functioning/Non-functioning lesions

377 Unenhanced CT NR NR First-order and s

Stanzione

et al. (2021)

(34) Retrospective Adrenal malignant/Benign lesions 55 MRI 3T T1w, T2w Manual (ITK-SNAP) PyRadiomics Shape-based, firs

second-order and

order
t
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TABLE 1 Continued

Study ID Ref Study

Design

Diagnostic Subject Sample

Size

Image Modality Segmentation Method

(Software/Algorithm)

Feature Extraction Features Type Modeling method Reference Standard Validation

Manual (Advantage

Windows workstation)

“Volume Histogram”

tool

First-order NR Histopathology NR

Manual (PMOD) PMOD First-order and second-order K-means clustering technique

(ML)

Histopathology or follow-up

imaging

NR

Manual (ImageJ) Image J First-order Logistic regression Previously described imaging

thresholds or follow-up imaging

NR

Manual (Image J) Image J First-order Logistic regression Histopathology or follow-up

imaging

Internal

validation

Manual (Advantage

Windows workstation)

“Volume Histogram”

tool

First-order NR Histopathology or follow-up

imaging

NR

Manual (Synapse Vincent

software)

Synapse Vincent software First-order NR Histopathology or follow-up

imaging

NR

Manual (PACS software) PACS software First-order NR Histopathology or follow-up

imaging

NR

Manual (MaZda) MaZda First-order, second-order and

higher-order

Logistic regression (ML) Histopathology NR

Manual (MaZda) MaZda First-order, second-order and

higher-order

Lasso, logistic regression Histopathology Internal

validation

Manual (TexRAD) TexRAD First-order and higher-order NR Histopathology or follow-up

imaging

NR

Manual (TexRAD) TexRAD First-order and higher-order NR Histopathology NR

Manual (ITK-SNAP) NR Shape-based, first-order Lasso, logistic regression (ML) Histopathology Internal

validation

Z
h
an

g
e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
2
.9
75

18
3

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

0
6

Szász et al.

(2020)

(35) Retrospective Adrenal adenomas/Non-adenomas 233 Unenhanced CT

Torresan

et al. (2021)

(36) Retrospective Adrenocortical carcinomas/Adenoma 19 Unenhanced and contrast-enhanced CT

Tu et al.

(2018)

(37) Retrospective Adrenal metastases/Adenomas 76 Contrast-enhanced CT

Tu et al.

(2020)

(38) Retrospective Adrenal Metastases/Lipid-poor adenomas 63 MRI 1.5T or 3T T1w, T2w, GRE

Tüdös et al.

(2019)

(39) Retrospective Adrenal lipid-poor adenomas/Non-

adenomas

163 Unenhanced CT

Umanodan

et al. (2017)

(40) Retrospective Pheochromocytomas/Adrenal adenomas 52 MRI 3T ADC

Wu et al.

(2020)

(41) Retrospective Adrenal adenoma/Nonadenoma 94 Unenhanced CT

Yi et al.

(2018)

(42) Retrospective Pheochromocytomas/Adrenal lipid-poor

adenomas

110 Unenhanced CT

Yi et al.

(2018) (2)

(43) Retrospective Pheochromocytoma/Adrenal lipid-poor

adenoma

265 Unenhanced and contrast-enhanced CT

Yu et al.

(2020)

(44) Retrospective Adrenal malignant/Benign lesions 125 Contrast-enhanced CT

Zhang et al.

(2017)

(45) Retrospective Pheochromocytomas/Lipid-poor

adrenocortical adenoma

164 Unenhanced and contrast-enhanced CT

Zheng et al.

(2020)

(46) Retrospective Aldosterone-producing/Cortisol-producing

functional adrenocortical adenomas

83 Unenhanced and contrast-enhanced CT

Ref, reference; NR, not report; ML, machine learning; PACS, picture archiving and communication system.

https://doi.org/10.3389/fonc.2022.975183
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.975183
The inter-reader agreement was found to be moderate to

excellent for radiomics features in 39% (11/28) of the included

studies. Nevertheless, validation of more than half of the

included studies was missing (15/28, 50%). Only one study

(28) compared the diagnostic performance of the classifier

with an expert radiologist, but no significant differences were

noted. In general, the quality of included articles was acceptable,

and the assessment of the risk of bias and applicability of the 28

included studies are illustrated in Figure 2. The detail of the

individual and final evaluation of the risk of bias and

applicability concerns are presented in Tables S4 and

S5, respectively.

Inter-rater agreements of RQS and QUADAS-2 were also

assessed by the ICC. The ICC for the RQS was 0.94 (95% CI

0.93–0.95). Six criteria of RQS reached a moderate agreement,

while ten items achieved substantial or almost perfect agreement

(Table 4). The ICC for the QUADAS-2 was 0.96 (95% CI 0.95–

0.97). Except for two dimensions reaching a moderate

agreement, the others exceeded 75% agreement (Table 5).
Frontiers in Oncology 07
Meta-analysis

We performed a meta-analysis investigating the use of CT-

based radiomics in differentiating malignant from benign

adrenal tumors and enrolled nine eligible studies, from which

a two-by-two contingency table could be extracted or

reconstructed. As shown in Table 6, the mean values and 95%

CIs of the pooled sensitivity, specificity, PLR, NLR, and DOR for

the radiomics signature based on CT in differentiating malignant

adrenal tumors from benign tumors were 0.80 (0.68-0.88), 0.83

(0.73-0.90), 4.70 (2.80-8.00), 0.25 (0.15-0.41) and 19.06 (7.87-

46.19) respectively. The summary receiver operating

characteristic curve showed an overall pooled AUC of 0.88

(95% CI 0.85–0.91) (Figure 3). Significant heterogeneity in

sensitivity (I 2 = 87.09%) and specificity (I 2 = 72.1%) were

noted, as depicted in Figure 4. Consequently, diagnostic

threshold analysis was carried out, which revealed that there

was no threshold effect, given that the Spearman’s correlation

coefficient was -0.036 and the p-value was 0.932. In order to
TABLE 2 Outcomes of the included studies.

Study ID P N TP FP TN FN Sensitivity, % Specificity, % Accuracy, % AUC 95%CI

Andersen et al. (2021) 71 89 41 20 69 30 58 77 68 0.730 –

Chai et al. (2017) – – – – – – – – 81.8 ~ 95.4 – –

Elmohr et al. (2019) – – – – – – 81 83 82 0.890 –

Ho et al. (2019) 8 15 – – – – – – 80 – –

Kong et al. (2022) – – – – – – 85.7 75 84 0.906 0.841-0.971

Koyuncu et al. (2019) 12 45 9 8 37 3 75 82.2 80.7 0.786 –

Li et al. (2018) 96 114 91 37 77 5 94.8 67.5 80 – –

Liu et al. (2021) – – – – – – – – 85 0.917 –

Nakajo et al. (2017) 22 13 22 2 11 0 100 84.6 94.3 0.970 0.840-0.990

Moawad et al. (2021) 19 21 16 6 15 3 84.2 71.4 77.5 0.850 –

Rocha et al. (2018) 88 20 77 1 19 11 87.5 95 88.9 – –

Romeo et al. (2018) – – – – – – – – 80 – –

Schieda et al. (2017) 15 29 14 4 25 1 93.3 86.2 88.6 0.970 0.930-1.000

Shi et al. (2019) 101 164 78 37 127 23 77 77 77.4 0.850 0.800-0.890

Shoemaker et al. (2018) – – – – – – – – – 0.780~1.000 –

Stanzione et al. (2021) 18 37 – – – – – – 0.91 0.970 0.870-1.000

Szász et al. (2020) 123 110 – – – – – – – 0.919 –

Torresan et al. (2021) 8 10 7 1 9 1 87.5 90 88.9 – –

Tu et al. (2018) 40 36 19 9 27 21 47.5 75 60.5 0.650 0.520-0.770

Tu et al. (2020) 40 23 30 0 23 10 75 100 84.1 0.950 0.910-0.990

Tüdös et al. (2019) 83 80 44 1 79 39 53 98.8 75.5 – –

Umanodan et al. (2017) 39 13 37 1 12 2 94.9 92.3 94.2 0.920 –

Wu et al. (2020) 58 36 51 16 20 7 87.9 55.6 75.5 0.740 –

Yi et al. (2018) 29 79 25 2 77 4 86.2 97.5 94.4 0.952 0.897-1.000

Yi et al. (2018) (2) 67 145 64 14 131 3 95.5 90.3 92 0.957 –

Yu et al. (2020) 81 44 66 0 44 15 81 100 88 0.970 0.940-0.990

Zhang et al. (2017) 98 66 78 11 55 20 79.6 83.3 81.1 0.860 0.810-0.910

Zheng et al. (2020) – – – – – – 91.5 92.8 92.2 0.902 0.822-0.982
fron
P,condition positive; N, condition negative; TP, true positive; FP, false positive; TN, true negative; FN, false negative; AUC, area under the receiver operating characteristic; CI, confidence interval.
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further explore the cause of heterogeneity, subgroup analysis was

also performed, as outlined in Table 6.

Four studies with radiomics based on unenhanced and

contrast-enhanced CT demonstrated higher sensitivity (0.87

vs. 0.66) but lower specificity (0.74 vs. 0.80) than studies using

only contrast-enhanced CT. Studies (n=2) that only included

first-order features had lower sensitivity (0.72 vs. 0.81) but

higher specificity (0.86 vs. 0.77) compared to those that

combined with second-order or higher-order features.

Interestingly, the studies (n=3) that applied machine learning

gained equivalent sensitivity (0.79 vs. 0.78) as well as specificity

(0.77 vs. 0.79) compared to those did not use (n=6). Four studies

that considered histopathology or follow-up imaging as a

reference had higher specificity (0.91 vs. 0.72) and equivalent

sensitivity (0.82 vs. 0.83) than studies (n=3) using only

histopathology. The corresponding forest plots for sensitivity

and specificity are delineated in Figures S1–S4.
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As shown in Table S6, we can hardly identify significant

changes in the pooled effect value when eliminating studies one

by one. There was no publication bias based on the Deeks’ funnel

plot (p=0.77), as presented in Figure 5. Furthermore, the clinical

utility was also evaluated using a Fagan plot. Using a CT-based

radiomics model would increase the posttest probability to 54%

from 20% with a PLR of 5 when the pretest was positive and

reduce the posttest probability to 6% with an NLR of 0.25 when

the pretest was negative, as depicted in Figure S5.
Discussion

Radiomics has recently attracted the attention of oncology

researchers, given that it can noninvasively and effectively reflect

tumor heterogeneity, treatment response, prognosis, and other

information (47–49). Published studies involving radiomics for
TABLE 3 Elements of the RQS and average rating achieved by the studies included in this systematic review.

RQS scoring item Interpretation Mode

Image Protocol +1 for well documented protocols, +1 for publicly available protocols 1

Multiple Segmentations +1 if segmented multiple times (different physicians, algorithms, or perturbation of regions of interest) 1

Phantom Study +1 if texture phantoms were used for feature robustness assessment 0

Multiple Time Points +1 multiple time points for feature robustness assessment 0

Feature Reduction −3 if nothing, +3 if either feature reduction or correction for multiple testing 3

Non Radiomics +1 if multivariable analysis with non-radiomics features 0

Biological Correlates +1 if present 0

Cut-off +1 if cutoff either pre-defined or at median or continuous risk variable reported 0

Discrimination and
Resampling

+1 for discrimination statistic and statistical significance, +1 if resampling applied 1

Calibration +1 for calibration statistic and statistical significance, +1 if resampling applied 0

Prospective +7 for prospective validation within a registered study 0

Validation −5 if no validation/+2 for internal validation/+3 for external validation/+4 two external validation
datasets or validation of previously published signature/+5 validation on ≥3 datasets from >1 institute

-5

Gold Standard +2 for comparison to gold standard 2

Clinical Utility +2 for reporting potential clinical utility 2

Cost-effectiveness +1 for cost-effectiveness analysis 0

Open Science +1 for open-source scans, +1 for open-source segmentations, +1 for open-source code, +1 open-source representative
segmentations and features

0

frontier
FIGURE 2

The risk of bias and concerns regarding applicability of 28 included studies.
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adrenal tumors mainly focused on the differentiation of benign

and malignant tumors and the differentiation of histological

types of adrenal masses, but no clinical transformation or

practical application has been described so far. Considering

that the research of radiomics remains in its infancy, there are

a host of problems to be addressed, such as the lack of a robust

workflow based on standardized and strict methods to ensure

the stability and reliability of the results (50, 51).

It is well-established that the quality of reporting of existing

predictive models is poor (52). Lambin et al. proposed a

comprehensive and clear standard to evaluate all aspects of

predictive models in the field of radiomics to enhance their

qualities (18). In our systematic review, the overall quality was

relatively low (mean RQS of 5.11, ranging from -5 to 25). The

primary causes impacting the RQS score included the absence of

feature reduction, scarcity of open science and source, deficiency

in internal or external validation and prospective data support,

minimal consideration of cost-effectiveness, and so on. Reducing
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features that are poorly reproducible is crucial for reducing the

risk of overfitting when the number of radiomics features

exceeds the number of patients (53). 43% of studies did not

conduct feature reduction or adjustment in our review owing to

specific diagnostic algorithms or processing, which may partially

undermine the stability of the models. Following internal and

external validation, the diagnostic performance of the model can

be confirmed. Furthermore, the practical application of

radiomics in clinical practice also requires multi-center

validation and prospective testing (54, 55). Regrettably, over

half of the included studies failed to process validation

attributable to the limited sample size. Most of the remaining

studies merely conducted internal validation in a single center.

Furthermore, only one study performed validation with multiple

data sets and tested prospectively (15). Furthermore, comparing

the diagnostic performance with the radiologist is also a pivotal

step in verifying the performance of the model. Because only

when the diagnostic effect is better than that of the radiologist

can the superiority of radiomics be demonstrated. However,

most studies did not compare the diagnostic performance with a

radiologist. The choice of scanner manufacturer and model, 2D

or 3D segmentation of the region of interest, acquisition, and

reconstruction parameters all lead to the heterogeneity of

imaging data. Most studies (25/28) provided image acquisition

parameters in our review, but values varied considerably.

Zwanenburg et a l . des igned the Image Biomarker

Standardization Initiative (IBSI) to enhance the reproducibility

of radiomics research, including establishing general feature

naming, definition, general radiological image processing

scheme, and so on (56). Thus, open science and the source of

radiomics is the premise to realizing reproducibility. In the

present review, only three included studies publicly shared

segmentations or code. The challenge of open science and

validation based on a sufficient sample size may hinder further

development and practice of radiomics in the diagnosis of

adrenal masses. Besides, the cost-effectiveness analyses of

radiomics cannot be overlooked because it may boost the

superiority of this technology.

Although radiomics studies differ methodologically from

conventional trials, and there may be potential unsuitability of

the QUADAS-2 tool, the results that reflected the risk of bias and

applicability of included studies is advisable to some extent. The

results of QUADAS-2 exposed that the risk of bias needs to be

minimized in terms of patient selection, index test, and reference

standards. The concerns regarding applicability are excellent

except for the reference standard. The reliablity of individual

ratings needs to be assessed by inter-rater agreement analysis. In

this review, the ICC was applied to describe the inter-rater

agreement of RQS and QUADAS-2. The fact that most items

achieved substantial or almost perfect agreement while others

had moderate agreement demonstrates that the scores accurately

reflect the quality of the included studies.
TABLE 4 Inter-rater agreement in RQS assessment.

RQS scoring item ICC (95% CI)

Image Protocol 0.52 (0.19-0.75)

Multiple Segmentations 0.93 (0.86-0.97)

Phantom Study 1.00 (1.00–1.00)

Multiple Time Points 1.00 (1.00–1.00)

Feature Reduction 0.86 (0.72-0.93)

Non Radiomics 0.79 (0.59-0.90)

Biological Correlates 1.00 (1.00–1.00)

Cut-off 0.63 (0.34-0.81)

Discrimination and Resampling 0.52 (0.19-0.75)

Calibration 1.00 (1.00–1.00)

Prospective 1.00 (1.00–1.00)

Validation 1.00 (1.00–1.00)

Gold Standard 0.54 (0.22–0.76)

Clinical Utility 0.61 (0.32-0.80)

Cost-effectiveness 1.00 (1.00–1.00)

Open Science 0.79 (0.59-0.90)
CI: confidence interval, RQS: Radiomics Quality Score.
TABLE 5 Inter-rater agreement in QUADAS-2 assessment.

RQS scoring item ICC (95% CI)

Risk of Bias - Patient Selection 0.79 (0.60-0.90)

Risk of Bias - Index Test 0.94 (0.87-0.97)

Risk of Bias - Reference Standard 1.00 (1.00–1.00)

Risk of Bias - Flow and Timing 1.00 (1.00–1.00)

Applicability Concerns- Patient Selection 0.52 (0.19-0.75)

Applicability Concerns- Index Test 0.66 (0.39-0.83)

Applicability Concerns- Reference Standard 1.00 (1.00–1.00)
CI: confidence interval, QUADAS-2: Quality Assessment of Diagnostic Accuracy
Studies-2.
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Since there are few pieces of literature included in the meta-

analysis, the results should be treated with caution. In our meta-

analysis, radiomics technology showed promise for

differentiating malignant from benign adrenal tumors, with a

pooled sensitivity, specificity, and AUC of 0.8, 0.83, and 0.88,

respectively. Nonetheless, it cannot be ignored that there was

distinct heterogeneity between the studies. The threshold effect is

one of the chief causes of heterogeneity in DTA studies (57). A
Frontiers in Oncology 10
threshold effect will result in a correlation coefficient between

sensitivity and a false positive rate of 0.6 or higher (58). The

result of the Spearman correlation coefficient showed no

threshold effect in this meta-analysis. Consequently, we

attempted to determine the causes of heterogeneity via

subgroup analysis. Our results demonstrated that the

radiomics group based on unenhanced and contrast-enhanced

CT had a higher DOR than studies using contrast-enhanced CT
FIGURE 3

Summary receiver operating characteristic (SROC). AUC, area under the curve.
FIGURE 4

Forest plots of the sensitivity and specificity of CT-based radiomics in differentiating malignant from benign adrenal tumors. I2 >50% indicates
substantial heterogeneity among included studies.
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only. This is likely due to the fact that unenhanced CT provides

additional features for analysis and bring higher sensitivity.

Different levels of radiomics features contain distinct

dimensions of information regarding the lesion. First-order
Frontiers in Oncology 11
statistics features describe the distribution of voxel values

without concern for their spatial relationships (11). Second-

order statistics, which describe spatial relationships between

voxels with similar gray levels within a lesion, can provide a

measure of intralesional heterogeneity (11, 59). Higher-order

statistics are obtained after imposing filter grids on an image,

and the processing can confirm repetitive or non-repetitive

patterns, suppress image noise, highlight details, and so on

(60). According to our results, studies that only included first-

order features had lower sensitivity but higher specificity

compared to those that combined second-order or higher-

order features. This finding signals that more complex and

deeper texture features analyses can improve diagnostic

sensitivity while also increasing the false positive rate. Since

deeper texture features analyses inevitably yield a large number

of unstable and unrepeatable features, advanced features have

higher requirements for feature selection and modeling

algorithms. Machine learning is a broad term for a class of

statistical analysis algorithms that can iteratively improve the

predictive performance of a model by “learning” from data (61).

Reliable machine-learning approaches can drive the success of

radiomic applications in clinical care (62). In our subgroup

analysis, studies with machine learning achieved equivalent

diagnostic performance to those without. However, the
TABLE 6 The results of subgroup analysis.

Analysis No. of study Sensitivity Specificity PLR NLR DOR

CT Type

Contrast-enhanced CT 4 0.66(0.47-
0.80)

0.80(0.70-
0.88)

3.15(1.69-5.89) 0.50(0.35-
0.72)

9.02(2.59-31.43)

Unenhanced and contrast-enhanced CT 4 0.87(0.72-
0.95)

0.74(0.66-
0.80)

3.15(2.60-3.82) 0.17(0.07-
0.41)

18.89(8.96-39.85)

Unenhanced CT 1 0.88(0.79-
0.93)

0.95(0.72-
0.99)

17.50(2.59-
118.41)

0.13(0.02-
0.89)

133.00(16.16-
1094.59)

CT Feature Type

With second-order or higher-order features 7 0.81(0.69-
0.89)

0.77(0.70-
0.83)

3.21(2.55-4.04) 0.23(0.11-
0.47)

16.97(7.56-38.12)

Only first-order 2 0.72(0.25-
0.95)

0.86(0.51-
0.97)

4.77(0.56-40.72) 0.39(0.08-
1.86)

16.91(0.38-761.14)

Machine Learing

Not use machine learing 6 0.78(0.60-
0.89)

0.79(0.69-
0.87)

3.20(2.12-4.82) 0.26(0.09-
0.76)

18.80(5.37-65.75)

Use machine learing 3 0.79(0.71-
0.85)

0.77(0.71-
0.83)

3.41(2.59-4.50) 0.28(0.21-
0.37)

12.54(7.28-21.59)

Reference

Histopathology 3 0.83(0.46-
0.97)

0.72(0.65-
0.78)

2.83(2.28-3.52) 0.21(0.05-
0.81)

12.93(3.08-54.26)

Histopathology or follow-up imaging 4 0.82(0.76-
0.86)

0.91(0.72-
0.98)

9.33(2.60-33.52) 0.28(0.21-
0.38)

59.05(9.39-371.52)

Previously described imaging thresholds or follow-up
imaging

1 0.48(0.33-
0.63)

0.75(0.59-
0.86)

1.90(0.99-3.65) 0.70(0.36-
1.35)

2.71(1.02-7.21)

Overall 9 0.80(0.68-
0.88)

0.83(0.73-
0.90)

4.70(2.80-8.00) 0.25(0.15-
0.41)

19.06(7.87-46.19)
PLR, positive likelihood ratio; NLR, negative likelihood ratio; DOR, diagnostic odds ratio; The 95% confidence intervals are shown in parentheses.
FIGURE 5

Deeks funnel plot reveals the possibility of publication bias is low
with a p value of 0.77. ESS, effective sample size.
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number of studies (n=3) is insufficient to represent the true

impact of machine learning. We recommend that further studies

be conducted to determine whether machine learning is

beneficial to the diagnosis of adrenal tumors using radiomics.

Some studies included in this meta-analysis enrolled patients

without histopathology results and regarded follow-up imaging

as the diagnostic reference (29, 32, 36, 37, 44). On the one hand,

these studies may lower selection bias, as potential bias will be

generated if studies only include patients who underwent

surgeries (those with high suspicion of malignancy are more

likely to be operated on). On the other hand, the diagnostic

accuracy of this method based on follow-up images remains to

be determined. The 2017 American College of Radiology white

paper (63) suggests that stability for 1 year or more indicates that

uncertain adrenal nodules are benign, whereas enlarged nodules

are suspected to be malignant. However, benign tumors can also

grow, and the threshold growth rate to consider malignancy

remains unknown. Studies that regarded histopathology or

follow-up imaging as the reference had higher diagnostic

specificity than studies using histopathology only. The reason

may be that the true negative ratio was overestimated since some

follow-up imaging failed to detect potential malignancies.

Additionally, the possibility that heterogeneity was caused by

other factors that have not been considered cannot be ruled out.

To the best of our knowledge, there are two previous reviews

related to similar topics. One study systematically reviewed the

diagnostic accuracy of CT texture analysis in adrenal tumors

(64). In another review, Stanzione et al. summarized the

application of radiomics in adrenal cross-sectional imaging

and assessed the methodological quality by RQS (65).

Generally, more comprehensive and in-depth analyses of

diagnostic performance of radiomics in adrenal masses were

done in our study. First of all, we focused on diagnostic

performance of radiomics in various radiological imaging of

adrenal tumors. Secondly, RQS and QUADAS-2 of the included

studies were independently evaluated by two reviewers. Besides,

inter-rater agreement for RQS and QUADAS-2 were also

assessed, which can reflect the true quality of the included

studies better. In addition to a systematic review of the

included studies, we also conducted a meta-analysis

investigating the role of CT-based radiomics in differentiating

malignant from benign adrenal tumors. Although the

heterogeneity was significant, it reflected the diagnostic value

of radiomics in differentiating benign and malignant adrenal

masses to some extent.

There are several limitations of this review that warrant

consideration. To begin, grey literature was not included in this

review since it was limited to special circulation channels, which

might have led to publication bias. Secondly, the overall quality

of the included studies was not optimal (mean RQS 14.2%),

which may have partly influenced the quality of the subsequent

analysis. Thirdly, it is worthwhile mentioning the heterogeneity

of studies included in the quantitative synthesis. Except for CT
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type, CT feature type, machine learning, and diagnostic

reference, the heterogeneity may be pertinent to diversity in

pathological types, methods of image segmentation and

reconstruction, and feature extraction and modeling

algorithms. However, because the subgroup distribution was

scattered, we were unable to analyze these detailed features.

Hence, the results of the quantitative analysis should be

interpreted with caution. Fourthly, the diagnostic performance

of radiomics between specific adrenal histologic types could not

be assessed because of a lack of studies for the same objective.

Lastly, given that only a few studies compared the diagnostic

performance with a radiologist, the added value of radiomics in

comparison to the accuracy of human assessment could not

be explored.
Conclusion

In conclusion, we systematically reviewed studies investigating

the diagnostic performance of radiomics in adrenal masses and

conducted a meta-analysis. Collectively, the results of quantitative

synthesis outline the potential benefits of CT-based radiomics in

differentiating malignant from benign adrenal tumors. However,

the existing limitations of relevant studies, including the lack of

validation and prospective tests, the lack of comparison with a

radiologist, and the absence of a standardized radiomics

process, hinder the further development of radiomics. We

postulate that the translational gap between radiomics research

and clinical applications in the field of adrenal tumors

diagnosis will be overcome in the future by addressing the

aforementioned shortcomings.
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