
JACOB: An Enterprise Framework for Computational
Chemistry

Mark P. Waller,* Thomas Dresselhaus, and Jack Yang

Here, we present just a collection of beans (JACOB): an integrated

batch-based framework designed for the rapid development of

computational chemistry applications. The framework expedites

developer productivity by handling the generic infrastructure tier,

and can be easily extended by user-specific scientific code.

Paradigms from enterprise software engineering were rigorously

applied to create a scalable, testable, secure, and robust

framework. A centralized web application is used to configure

and control the operation of the framework. The application-

programming interface provides a set of generic tools for

processing large-scale noninteractive jobs (e.g., systematic

studies), or for coordinating systems integration (e.g., complex

workflows). The code for the JACOB framework is open sourced

and is available at: www.wallerlab.org/jacob. VC 2013 Wiley

Periodicals, Inc.

DOI: 10.1002/jcc.23272

Introduction

Modern scientific computing has advanced over recent years,

with computational chemists having access to immense com-

puting facilities.[1] There are two common strategies for

addressing scalability issues in computing: vertical scaling

which increases the resources (and hence performance) for a

given node, or horizontal scaling where additional nodes are

added to the system to increase the systems overall perform-

ance. Although vertical scaling obeys the well-known Moore’s

law,[2]* horizontal scaling appears to be directing the future of

scientific computing. Distributed computing, which couples a

cluster of computers coupled via a network, comes with its

own set of challenges: for example, complicated programming

models are required to solve issues such as throughput (vol-

ume of data transferred across the network) and latency (the

time taken for a packet of data to be transferred between two

points) that occur with horizontal scaling. Academic projects

have been ported to a number of distributed computing envi-

ronments such as grid computing[3–5] open science grid

(OSG),[6] volunteer computing[7,8] Berkeley Open Infrastructure

for Network Computing (BOINC),[9] infrastructure as a serv-

ice,[10] and, most recently, to cloud computing. Scientific com-

puting in these environments poses significant challenges

when increasing the size of datasets (scale) or when coupling

between different software components (systems integration).

To meet these challenges, scientists have created generic

workflow packages. A workflow can be used as a general tool

to orchestrate a complex task into a series of more simple

reusable tasks. The workflow can also be used to manage re-

petitive tasks that are required for processing large-scale data-

sets. These general-purpose scientific workflows handle the

generic infrastructure requirements and typically offer a wide

range of common prewritten tasks. Importantly, these work-

flow solutions are extensible, meaning that users are able to

extend the functionality of the workflow when required for

instance by creating a new task. Generic workflow packages

such as Kepler,[11] Knime,[12,13] and Taverna,[14] whereas Chem-

shell[15] (Tcl[16]) and the more recent PyADF[17] (Python[18]) are

more suited to systems integration in the area of quantum

chemistry. The WebMo[19] web server couples a user-friendly

web flow (workflow concept adapted to a web context) to a

range of computational chemistry packages via interfaces,

whereas Gabedit[20] is a more recent graphical user interface

for computational chemistry. Overall, all these solutions are

able to dramatically increase the productivity of a scientist

once they are familiar with a particular software package.

Enterprise is a term that describes organizations such as cor-

porations and government institutions. Such organizations

have special requirements for software regarding scalability,

robustness, and security. The robustness requirement comes

from the critical nature of these applications, where downtime,

for example, may cause significant revenue loss in the financial

sector. Security is also a concern based on the sensitive nature

of financial transactions, or the data protection needed for

government institutions. Therefore, software engineering pro-

fessionals have met these requirements by constructing so-

called ‘‘enterprise software’’ solutions. These applications tend

to be data-centric, and design patterns have emerged as being

particularly useful guidelines. In enterprise environments, the

requirements for integration between uncoupled software
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*The lesser known Wirth’s law that states ‘‘software is getting slower more rap-

idly than hardware becomes faster.’’
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components across multiple networks and repositories present

a significant set of challenges. Enterprise software engineers

have developed central administration interfaces and rely

heavily on the messaging design pattern to meet these chal-

lenges.[21] Another feature of enterprise software is their reli-

ance on frameworks. A framework is an abstraction where the

software provides generic functionality that can be changed

by user code, thus providing application specific software. A

framework is therefore a universal and reusable software plat-

form for the efficient development of applications. Different

framework infrastructures are available for enterprise software

development. Recently, frameworks that use the ‘‘inversion of

control’’ (IoC) principle† have gained increasing popularity. The

inversions of control concept means that not all the depend-

encies need to be known at compile time but may be resolved

at runtime. The flow of a particular application is dictated by

the framework itself, thus making the software highly configu-

rable and extendable. Such extensibility can be achieved by

overriding particular methods, or via a plug-in-based approach.

In this case, the source code of the framework is not supposed

to be modified by end-users.

Here, we aim to combine the domains of science and enter-

prise to create a platform for performing computational chem-

istry in modern computing environments. To do so, we have

developed JACOB by applying rigorous software engineering

techniques to make extensible and testable code. A framework

is abstract by the fact that it provides only a partial solution;

in the case of JACOB, one still needs to add the scientific

code, only then does the framework loose its abstract nature

and become part of a complete functioning application. This

abstraction gap enables the framework’s design to be generi-

cally applicable, and because the framework was not con-

structed for any particular specific problem, no specific imple-

mentations are presented here. The reader is actively

encouraged to envisage his or her own possible use case sce-

narios. Applications that have already been built on the JACOB

framework are reported elsewhere for the interested

reader.[23,24]

Implementation

Object orientated programming (OOP) was developed in the

1960s to improve the modularity and scalability of a code

base. In OOP, the class takes center stage, where real-world

objects from a particular problem domain are mapped on to a

set of classes that contain data fields (variables) and methods

(procedures). Object orientation helps to create flexible and

more manageable code that is built from many relatively

uncoupled classes. The classes in the JACOB framework adhere

to the enterprise bean convention[25] and are either plain old

java[26] objects or their dynamic descendant, plain old

groovy[27] objects (POGOs). Spring[28] is an application devel-

opment framework for enterprise Java. The Spring framework

is responsible for the creation of the ‘‘Spring beans’’ inside the

IoC container. The process of defining these relationships

between the Spring beans (such as dependencies) is known as

wiring. The wiring in JACOB is configured using a number of

different technologies. The infrastructure layer is wired using

the traditional Exstensible Markup Language (XML)-based con-

figuration. An annotation-based configuration is used for sim-

ple beans. Finally, complicated relationships between beans

are programmatically configured inside a series of configura-

tion classes. The dependent elements (such as objects or val-

ues) are injected into the destination classes automatically

according to the wiring specified at run-time. The design pat-

tern is also known as dependency injection and has the added

advantage that it makes code more amenable to unit testing.

JACOB adopts the concept of coding to interfaces throughout

to facilitate extensibility. The components used to create a single

execution of the JACOB framework are therefore highly inter-

changeable. Implementations for future application code should

be written against the interfaces provided by JACOB’s applica-

tion programming interface (API), when possible. We note that

modern integrated development environments (e.g., Spring Tool

Suite (STS),[29] Eclipse,[30] NetBeans,[31] IntelliJ IDEA[32]) make this

extremely easy as stubs for all required methods are automati-

cally created for the developer when implementing a particular

interface. The JACOB framework can also be extended via plu-

gins when a suitable interface does not already exist. Abstract

classes are also used wherever possible to reduce the size of the

code base, while increasing the productivity of development

efforts.‡ Clean and transparent coding practices were applied

throughout JACOB for clarity of future developers.[33] Documen-

tation that describes the dependencies of classes and their

methods is automatically generated out of the source code

using Groovydoc.[34] In Java, it is trivial to create java interfaces

to other traditional compiled languages such as Fortran, C, or

Cþþ, for computationally intensive tasks.

In accord with the domain-driven design pattern, the JACOB

framework employs a strict separation of concerns, by employ-

ing a number of layers:

• Model: In the domain model pattern, objects that are

persisted are represented as a set of domain models. There-

fore, the model layer contains a set of objects that hold the

current state of an application, that is, the data.

• Service: A service is simply a class (or set of classes) that

contains code that performs application specific logic. In a sci-

entific application, this would typically include algorithms.

Services can be used to change the state of the models, that

is, procedures.

• Data access object (DAO): Data access objects are specif-

ically used for persistence. This means that the persistence

layer can be decoupled from the service and data layers.

• AOP: Aspect-orientated programming handles the sec-

ondary functionality introduced by ‘‘cross-cutting’’ elements.

†The inversion of control is often described colloquially as the ‘‘Hollywood

principle’’ which has arisen from the ‘‘Don’t call us, we’ll call you’’ phrase. This is

a form of implicit invocation. ‡Adhering to the ‘‘Don’t Repeat Yourself’’ (DRY) principle of software design.
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Cross cutting elements make it difficult to adhere to the pure

object orientation paradigm. Aspects are methods that are called

before or after the execution of other methods.[35,36] Because

aspects are not located in the classes they work on, it is there-

fore possible to decouple their functionality from where it is

needed. Aspects can therefore be centralized, added, removed,

or changed without changing other parts of the framework.

An illustrative example of the mapping required from a

workflow (procedural) to a domain model (object orientated)

that is needed for the JACOB framework is shown in Figure 1.

The master–slave architecture was chosen for JACOB due to

the nature of computational chemistry where the processing

of jobs is typically the bottleneck, and spreading jobs across

multiple worker-nodes is often desirable. The master layer is

used primarily for user interaction, job setup, interacting with

the results, and so on. The slave layer is for computational in-

tensive tasks where the models and services are typically

needed to solve scientific problems. There is typically a one-

to-many relationship to the slave compute nodes. An overview

of the framework infrastructure is given in Figure 2.

Importantly, the ability to select each component, configur-

ing the location of each component, and configuring the com-

munication between the components, is an advantage of

using a modular and flexible framework. These options are left

to the application developer based on their particular require-

ments. For instance, if scalability is not an issue, then the slave

and master layers of JACOB do not need to be on separate

computers. The location of the database holding the results

also does not need to be on the master node. The location of

the middleware is also configurable.

The configuration of the master and slave layers can be

changed using profiles. A profile is a set of user definable con-

figuration options. These profiles can be set depending on the

current environment; this efficiently enables multiple ‘‘default’’

configurations of the framework. An environment is an inten-

tionally abstract term that may include production, test, or de-

velopment. A production environment needs stability, speed,

and persistence. On the other hand, in a development environ-

ment, it is not convenient to connect to a production data-

base, for example, this may corrupt valuable data, or cause

Figure 1. a) an activity diagram and b) domain model diagram [Models (yellow), services (blue), DAOs (green), Aspect (grey), and the Main class (red)] for

an illustrative example on how one might map from a workflow to a domain model that is suitable for JACOB.
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significant delays in the developer time while waiting for the

production database to be bootstrapped. The test environ-

ment is typically a clone of the production environment, which

is useful to reduce the chances of bugs being introduced into

production. Only after code is thoroughly tested, for example,

performing scientific computation using integration tests,

should the production environment be used.

In distributed computing systems, there exists some core

systemic requirements namely consistency, availability, and

partition tolerance. Consistency meaning that the nodes see

the same data, availability means that the system is fully

operational, and partition tolerance means that a distributed

system can function even when internode communication is

severed. Brewer’s theorem[37] states that only two of these

requirements can be fully satisfied, and in distributed comput-

ing a compromise must be made. Because JACOB is a modular

framework, the application developers can make decisions on

where to compromise based on their own specific require-

ments for a given application or environment.

Master

The web tier of JACOB is developed on the Grails[38] dynamic

web framework that uses the model-view-controller design

pattern.

The three main components are:

a. Model: the model layer contains a set of objects that

hold the current state of an application. A given problem in

computational chemistry can be mapped onto an appropriate

set of domain models. For example, a job domain model may

contain input parameters (e.g., density functional and basis

set) and data parsed from input files (e.g., molecular structure).

A relational database schema is set up based on the set of do-

main models. After the job has been processed, the results

may be stored in a domain model (e.g., energy and optimized

structure) and may be persisted into a database.

b. Controller: the controller conveys the message between

the model and view. In particular, it converts a map of param-

eters from user inputs into the model. The controller is also re-

sponsible for retrieving data from the model and returns it to

the user, for example, as html, XML, or JSON. More computa-

tionally demanding tasks can be implemented as services.

Services can then be injected into the controllers for post

processing, for purposes such as data-mining.

c. View: users interact with the framework through the

view layer. The view renders a webpage. The webpage can

contain a mixture of static html and dynamic content that is

Figure 2. The architecture of the JACOB framework is multilayered and is connected using middleware. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 3. The JACOB framework can render a dynamic graph (Google visu-

alization API) for post processing of job results.
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retrieved from the model by the controller. Information relat-

ing to the current state of the framework can be queried by

using search capabilities for selected domain models.

Separating the concerns of the web-application layer

reduces the amount of code and its complexity. Typically, an

application developer creates the domain models and the

services, as these are both domain-specific problems and

therefore cannot be handled by a generic framework. The

Grails framework then automatically scaffolds a lot of the ‘‘boil-

erplate’’ code needed for the view and controller layers.

Job factory web flow

The dynamic web framework automatically handles various re-

petitive tasks that are prone to errors from manual handling.

For example, transferring jobs across multiple nodes, job queu-

ing, job execution, as well as post job data collation. A calcula-

tion performed with JACOB will be carried out as following:

• STEP 1: A user may select a specific algorithm for his/her

problem from the view page.

• STEP 2: The user can then give the appropriate job pa-

rameters for the corresponding algorithm. These parameters

will then be persisted into the model layer.

• STEP 3: A HTML5 drag and drop file handler is provided

for uploading the input files used for the calculation. A job

can only be validated and started if an input file has been

uploaded to the application, if appropriate.

• STEP 4: Once a complete job is defined, a message is

sent to a message-based middleware broker. A slave job lis-

tener (see below) is installed on the compute cluster (node),

and is used to receive jobs from the queue. A cluster node

will accept, and start a new job in queue (if any), once it

becomes free.

Job post processor

When the calculation is finished, the results will be sent back

to the web application and persisted into the database for

subsequent analysis or dissemination. A data visualization con-

troller has been implemented for post processing the results

of the calculation. The data visualization controller is responsi-

ble for retrieving results from the database, performing statisti-

cal analysis services, and redirects the analyzed results to the

corresponding view page.

The user can interact with the calculation results in different

ways:

1. Browse lists of completed jobs.

2. Perform a query against the completed jobs.

3. Download a log file for the job for further analysis, with

the HTML5 file handler.

4. Visualize molecular structure with a Jmol applet.[39]

5. Job results can be visualized using the API from Google’s

visualization library. An example of such graph is shown in

Figure 3.

Web services

A RESTful web API is used in the JACOB framework to enable

data exchange between remote systems. Web services are

designed for intermachine communication. REST stands for

representational state transfer, and it is an architectural style

whereby a client requests a resource from a server using a

predefined method. The methods include: GET (retrieves a

resource), POST (creates a resource), PUT (updates a resource),

and DELETE (deletes the resource). The resource is described

by its unified resource identifier. The master layer of JACOB

acts as the server and exposes the web services, remote cli-

ents then submit a request, and the response is returned from

the JACOB server, see Figure 4.

Spring-security[40]-based permissions are used in JACOB to

provide a simple mechanism for configuring accessibility to

the data repositories. Allowing any user to make a DELETE

method call on your scientific results is obviously undesirable.

The RESTful web services are language interoperable, and the

return format of the message can requested to be in XML,

JSON, plain text, and so on.

A user interface is provided via a dynamic web application

(Web 2.0), this enables a user to be directed through the

application to a specific point via the URL mappings. The end

of the URL contains two pieces of information: (a) the domain

model from which requested data can be retrieved from or

stored into, and (b) a controller action, which specifies the

user’s intentions with the requested data.

For example:

http://../job/create/

This directs the user to the page where a user can create

(controller action) a new job. The corresponding job parame-

ters that the user has entered will be stored in the job domain

model, which can be subsequently viewed:

http://../job/show/1

This URL returns a show (controller action) page for job

with ID 1 that contains information stored in the run domain

model for the corresponding ID.

http://../datavisualization/motionchart?job¼2

This directs to a view page that calls the action of plotting a

motion chart from the data visualization controller. The data

to be plotted should be retrieved from job ID 2.

Therefore, by understanding the URL mappings, and having

some knowledge of the data structure, a remote user can

interact with the contents of the database via the URLs. How-

ever, the view layer can include appropriate hyperlinking,

which makes this interaction simpler for the users who do not

have interment knowledge of URL mappings or the data

structure.

Message-orientated middleware

The implementation of message-oriented middleware (MOM)

such as the apache active MQ[41] enables loose coupling

between the master and slave layers. The master and slave

layers therefore do not directly communicate, instead mes-

sages are given to a message broker. The messages are stored

on the broker until a request is made to process the message.
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This enables the layers of the systems to communicate asyn-

chronously. Using this paradigm, a form of load balancing is

trivially introduced. If the master fails, the responses from the

slave nodes will be queued, and only consumed by the master

when it is made available again. On the other hand, if the

slave(s) fails, the messages will be queued until a slave is again

ready to consume the queued requests. The final advantage of

this approach is that delivery is guaranteed by using transac-

tions, which increases the robustness of our solution stack.§

The MOM handles the master–slave nature of the client/server

mechanism, leaving the more interesting service layer for the

future application developers. Of note, a direct connection can

be made between the slave nodes and the master if required,

for example, via SQL connections.

Slave

The operational flow of the slave layer is given in Figure 5. A

jobRequest object is received from the MOM, and then the

applicationContext is built. Only the beans needed for a given

job are created in the Spring container. The framework uses a

batch-based approach to process a set of models for a specific

configuration of the application. We have implemented a se-

quential (nonthread safe) simple batch service, while for a

more robust and efficient implementation, a scalable batch

service from Spring batch[42] partitions the work into ‘‘chunks.’’

The logical flow for a specific computational chemistry job is

driven by a computeEngine. More specifically, before a job is

run, the engine performs preprocessing tasks and calls the

batch creator class to generate a set of models. The batch of

domain models are then processed on the slave. For example,

a set of molecules may be represented by a set of molecule

domain models each containing an energy field. The process-

ing of this set includes computing single-point energies and

populating the domain models with the parsed energies from

the external quantum chemical code wrappers. The compu-

teEngine is also capable of post processing the models at the

slave level, and then the results are sent back to the central-

ized master and collated as jobResults.

The slave component is also separated into layers: this ena-

bles a convenient and practical separation of concerns. Some

key components are given in Figure 6. More specifically:

a. Model layer is used to store the state of objects that are

needed for processing a particular job. These set of objects,

and their relationships, are defined in POGOs, which are

mapped onto a corresponding relational database schema, in

the same fashion as on the master layer. For example, a molec-

ularSystem is a domain model that stores all of the information

that defines the system under investigation, including initial

coordinates, atomic labels, and number of molecules.

Figure 4. A schematic of the REST web service architecture.

§A ‘‘solution stack’’ refers to the complete set of software components that are

used to fulfill the requirements of the system.

Figure 5. Sequence diagram for the slave tier of the JACOB framework. Interfaces are shown as gray boxes, method calls are on filled arrows, and objects

are returned on dotted lines.
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b. Data layer is for persistence within the framework and a

diverse range of DAO are available (Fig. 6). An object relational

mapping between the domain models and the database is

carried out using Gorm[43] (Hibernate[44]). A traditional struc-

ture query language (Sql) DAO is also available for simple cre-

ate, read, update, and delete operations. Chemical markup

language-based XML files can be parsed by the XmlCoordina-

teReader to populate a molecular system. A standard key value

pair properties file can be used locally to configure the appli-

cation, which enables the framework to configure an applica-

tion in a flexible manner and requires no changes to the code.

c. Services constitute the largest component of the frame-

work. A range of generic tools such as conformationFactories for

creating conformations and a set of generic structure analysis

tools are included in JACOB. Wrappers for a number of quantum

chemical programs (e.g., Mopac,[45] Orca,[46] Gaussian,[47] Turbo-

mole[48]) are available and further wrappers are easy to imple-

ment. A custom citation annotation is provided for tagging

classes that implement algorithms from the scientific literature.

A second custom annotation is implemented for tagging classes

that wrap external software that details their licensing require-

ments. Overall, this allows all relevant citations and licenses to

be printed out automatically, if, and only if, a particular class had

been used in the current configuration of the application.

Monitoring

The AOP of JACOB handles tasks such as logging[49] and secu-

rity,[50] and monitoring which are examples of secondary func-

tionality that are needed in many different places of an appli-

cation. Java management extensions (JMX) enables one to

modify code (such as adjusting parameters) that is currently

running. This is an additional feature that is not normally avail-

able for traditional computational chemistry languages such as

Fortran or C, where recompilation is required. To make remote

modifications to the code, JMX has the ability to monitor the

code on-the-fly. This allows data collected from the running

application to be used to make informed operational deci-

sions. Due to the nature of batch programming, large datasets

can be distributed among many slaves and therefore a moni-

toring tool is highly desirable.

Validation

A suite of unit and integration tests have been written to

cover a large percentage of the code base using the Spock

testing and specification framework.[51,52] Unit tests cover only

one particular class, while integration tests are aimed at test-

ing whether multiple classes function together correctly. The

test code coverage of the JACOB framework was monitored

using the Clover tool.[53] The Gradle[54] build automation tool

was used to compile, package, manage dependencies, and cre-

ate the documentation. The set of third party dependencies

were automatically synchronized with the Maven central re-

pository.[55] The Jenkins[56] continuous integration server to

ensure code integrity during development. Continuous inte-

gration means the source code was automatically built and

the suite of tests were run and logged whenever any code

was checked in to the source code repository.[57,58] Perform-

ance was monitored using Spring Insight[59] stress testing

framework in a VMware vFabric Tomcat server.[60] The Code-

Narc[61] framework was used to monitor differences in coding

practices among the members of the development team.

Conclusions

Here, we have developed an integrated framework based on

enterprise architecture to create a platform for performing

computational chemistry within modern computing

environments.

The following design goals were successfully implemented:

• Extensibility: Modern programming concepts were rigor-

ously applied to create an easily extensible framework, leaving

future developers more time to solve science-specific problems

in a versatile manner.

• Scalability: A master–slave relationship allows dynamic

scaling by allocating as many slaves as required for a given

job. A centralized master makes monitoring trivial.

• Testability: Continuous integration with a unit and inte-

gration test suite ensures code integrity in a team-based de-

velopment environment.

• Accessibility: User- and role-based authentication and

access-control is implemented across the master layer.

• Robustness: The framework is built on top of well-estab-

lished open source enterprise grade software components.

JACOB is a centralized user-friendly framework for job crea-

tion, processing, and analysis that is capable of handling large

and complex datasets. Data repositories can be accessed using

Web 2.0 technologies or RESTful web services. Therefore, the

integrated enterprise framework can be used as an effective

collaborative tool for alleviating organizational complexity

(e.g., in widespread collaborative research, virtual laboratories,

and chemical or pharmaceutical industries). Possible

Figure 6. An overview of the important components of the slave tier within

the JACOB framework. The application context defines the runtime of the JA-

COB framework. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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applications of JACOB include systematic studies and/or com-

plicated workflows, for example, in benchmarking, parameter

searching, conformational searching, multiscale modelling,

docking, or high throughput virtual screening.

Keywords: computational chemistry � batch � enterprise � fra-

mework � workflow
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