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diverse omics data persist, largely due to their complexity 
and the need for advanced computational methods. Machine 
learning is emerging as a valuable tool for analyzing exten-
sive and intricate datasets, potentially revealing new aspects 
of EoE pathogenesis. The integration of multi-omics data 
through sophisticated computational approaches promises 
significant advancements in our understanding of EoE, 
improving diagnostics, and enhancing treatment effective-
ness. This review synthesizes current omics research and 
explores future directions for comprehensively understand-
ing the disease mechanisms in EoE.
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Abstract  Eosinophilic esophagitis (EoE) is a chronic, 
allergic inflammatory disease of the esophagus character-
ized by eosinophil accumulation and has a growing global 
prevalence. EoE significantly impairs quality of life and 
poses a substantial burden on healthcare resources. Cur-
rently, only two FDA-approved medications exist for EoE, 
highlighting the need for broader research into its manage-
ment and prevention. Recent advancements in omics tech-
nologies, such as genomics, epigenetics, transcriptomics, 
proteomics, and others, offer new insights into the genetic 
and immunologic mechanisms underlying EoE. Genomic 
studies have identified genetic loci and mutations associated 
with EoE, revealing predispositions that vary by ancestry 
and indicating EoE’s complex genetic basis. Epigenetic stud-
ies have uncovered changes in DNA methylation and chro-
matin structure that affect gene expression, influencing EoE 
pathology. Transcriptomic analyses have revealed a distinct 
gene expression profile in EoE, dominated by genes involved 
in activated type 2 immunity and epithelial barrier func-
tion. Proteomic approaches have furthered the understanding 
of EoE mechanisms, identifying potential new biomarkers 
and therapeutic targets. However, challenges in integrating 
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GERD	� Gastroesophageal reflux disease
GO	� Gene ontology
GWAS	� Genome-wide association studies
HPLC–MS	� High-performance liquid 

chromatography‒mass 
spectrometry

HSS	� Histology Scoring System
LC–MS/MS	� Liquid chromatography‒tandem 

mass spectrometry
MALDI–TOF MS/MS	� Matrix-assisted laser desorption/

ionization time-of-flight tandem 
mass spectrometry
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MOFA	� Multi-omics factor analysis
MS/MS	� Tandem mass spectrometry
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peTH2	� Pathogenic effector T helper type 

2
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discriminant analysis
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PRS	� Polygenic risk score
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Introduction

Eosinophilic esophagitis (EoE) is an allergic condition 
characterized by inflammation of the esophageal mucosa and 
an accumulation of eosinophils [1, 2]. Though historically 
considered rare, EoE prevalence is increasing worldwide [3, 
4]. Patients with EoE endure considerable clinical burden—
the lowest quality of life compared with a series of other 
chronic pediatric diseases [5], and EoE is a substantial 
challenge to healthcare systems in both resource utilization 
and associated costs [6]. EoE is a persistent disease from 
childhood into adulthood, progressing to fibrostenotic 
complications—esophageal scarring and narrowing—that 
can be relatively refractory to therapy [7, 8]. Currently, 
only two medications have FDA approval for treating EoE 
(i.e., dupilumab [9] and budesonide oral suspension [BOS] 
[10]), emphasizing the urgent need for expanding EoE 
prevention and management research [11]. Understanding 
the mechanism of EoE manifestation is crucial, including 
delving into the molecular mechanisms at play and 
identifying disease markers that could predict diagnosis 
and outcomes.

The recent advancements in the field of “omics”—
including genomics, epigenetics, transcriptomics, pro-
teomics, and other comprehensive approaches to study 
large sets of biological data—offer promising new oppor-
tunities for understanding diseases at a molecular level. 
For EoE, omics technologies, leveraging high-throughput 
sequencing, have begun to elucidate the intricate interplay 
of genetic and immunologic factors that contribute to the 
disease [12, 13] (Figs. 1, 2). These technologies enable 
researchers to examine the complex genetic and immu-
nologic interactions that underlie EoE, providing a more 

Fig. 1   Overview of simplified 
omics data. EoE eosinophilic 
esophagitis. Created with 
Biorender.com



965J Gastroenterol (2024) 59:963–978	

comprehensive understanding of the disease than was pre-
viously possible. Despite the valuable insights from omics 
studies, effectively integrating individual omics into 
multi-omics is still in its early stages. Challenges include 
the scarcity of comprehensive datasets and the need for 
advanced computational tools to analyze and interpret 
these complex data layers. Machine learning technolo-
gies [14] are one promising approach to overcome these 
hurdles, as they can analyze large datasets quickly and 
with high accuracy, potentially revealing new aspects of 
EoE pathogenesis (Fig. 3).

In this review, we consolidate current knowledge from 
various omics studies related to EoE and discuss the 
advantages and challenges of integrating individual omics 
into multi-omics approaches using machine learning 
technologies to explore future directions in understanding 
the mechanisms underlying EoE.

EoE genomics

Genomics, the science of studying genomes, began 
with DNA sequencing and has rapidly expanded to 
include exploring gene and protein expression profiles 
and their functional roles [15]. These advances have 
significantly improved our understanding of various 
diseases, including EoE. Recent studies highlight the 
complex genetic influences on EoE, revealing higher 
prevalence rates among males, Caucasians, and younger 
individuals [12, 16]. Notably, EoE frequently occurs 
within families, particularly among siblings, and follows 
a non-Mendelian inheritance pattern, indicating a complex 
genetic foundation [13]. This section specifically discusses 
the insights into EoE genomics provided by genome-wide 
association studies (GWAS) and whole exome sequencing 
(WES) (Fig. 2, Genomics).

Fig. 2   Schematic summary for the timing of relevant events in the 
genetic and molecular progress in EoE. A chronological list of genes 
and proteins found by Genomics, Epigenetics, Transcriptomics, Prot-
eomics, and other omics related to EoE. EoE eosinophilic esophagi-

tis, GWAS  genome-wide association studies, WES  whole exome 
sequencing, RNAseq  RNA sequencing, scRNAseq  single-cell RNA 
sequencing. Created with Biorender.com
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EoE GWAS

GWAS typically report blocks of correlated single-
nucleotide polymorphisms (SNPs), known as genomic 
risk loci, that are statistically associated with the trait of 
interest [17]. A major strength of GWAS is their ability 
to systematically and unbiasedly search for novel disease-
associated variants.

Loci associated with EoE pathogenesis have been 
identified by GWAS and are presented in chronological 
order. A pioneering EoE GWAS of 181 children with 
EoE and 170 normal controls, all of European ancestry, 
found an important genetic association with chromosome 
5q22 [18]. This region encompasses TSLP/WDR36. 
TSLP encodes thymic stromal lymphopoietin, a cytokine 
promoting allergic inflammation. TSLP was found to be 
highly expressed in EoE, underscoring the pivotal role of 
TSLP in EoE pathogenesis and potential therapeutic targets. 
Subsequently, a larger GWAS was performed from > 1.5 
million genetic markers in EoE [19], greatly expanding the 
number of EoE cases and controls compared to the previous 
study. The genetic association of 5q22 (TSLP/WDR36) was 
confirmed, and a new association with 2p23 (CAPN14) 
was identified. CAPN14 encodes calpain 14, a calcium-
activated cysteine protease, and is highly tissue specific; it 
is expressed in esophageal epithelium with little expression 
in the epithelium of other organs. CAPN14 is activated by 
IL-13 and contributes to maintaining and repairing epithelial 

tissue [19]. Notably, CAPN14 was also confirmed by another 
GWAS [20]. In addition to CAPN14, 11q13 (c11orf30/
LRRC32) and 12q13 (STAT6), previously reported as 
associated with atopy and autoimmune diseases, and 19q13 
(ANKRD27), which regulates the transport of melanogenic 
enzymes to epidermal melanocytes, were newly identified 
[20]. The risk locus 16p13 (CLEC16A/DEXI/CIITA), which 
is expressed in both immune cells and esophageal epithelial 
cells, also was identified, further expanding the EoE genetic 
landscape [21].

Meta-analyses have broadened our understanding of 
GWAS studies, especially in overcoming the limitations 
posed by small sample sizes in rare diseases such as EoE. At 
present, four GWAS and two meta-analysis of GWAS identi-
fied 41 tag variants corresponding to nine genome-wide sig-
nificant loci and 27 suggestive loci [18–23]. The first GWAS 
meta-analysis identified replicated association at 6 loci from 
627 EoE and 365 controls having European ancestry: 2p23 
(2 independent genetic effects), 5q22, 10p14, 11q13, and 
16p13 [22]. Another seven loci were identified with sugges-
tive significance at 1q31, 5q23, 6q15, 6q21, 8p21, 17q12, 
and 22q13, leading to identifying 13 protein-coding EoE risk 
gene candidates. To assess the genetic risk of individual loci, 
the Polygenic Risk Score (PRS) was created, and the genetic 
burden of GWAS-identified EoE risk loci were assessed. 
Those with the highest genetic burden had a 12-fold greater 
risk of developing EoE than those with the lowest genetic 
burden [22]. Another meta-analysis, including 1,930 affected 

Fig. 3   Integrative schema of multi-omics studies of EoE. Data-
integration framework in EoE characterized by the combination of 
heterogeneous information, including multi-omic datasets. Data of 
each omics data reintegrated and analyzed by two methods. A Sta-
tistical Methods: unsupervised learning is performed by determining 
explanatory variables from the analysis of each omics data and incor-

porating them in the model. B Deep Learning: disease-specific factors 
are found by extracting features from each omics data. Data integra-
tion can also be done after feature extraction through a deep learning 
model. EoE eosinophilic esophagitis. Created with Biorender.com
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European subjects and 13,634 ancestry-matched controls, 
identified 15 genome-wide significant EoE risk loci, 11 of 
which were novel; three loci, 5q31.1 (RAD50), 15q22.2 
(RORA), and 15q23 (SMAD3), may have a pivotal role in 
EoE development [23]. Though these two meta-analyses 
were conducted on European ancestry, there are also reports 
with 137 Black and African-American cases of EoE and 
1,465 healthy controls [24]. The proportion of African 
ancestry was found to be significantly lower in EoE than 
in controls, and three significant EoE-associated loci were 
identified (9p13.3 [ARHGEF39], 12q24.22–23 [FBXW8/
VSIG10], 15q11.2), of which 12q24.22–23 and 9p13.3 were 
recapitulated in the case–control analysis and found to be 
associated with African ancestry.

EoE WES

Although GWAS has identified multiple common EoE-
associated SNPs, a challenge for GWAS, especially for 
rare conditions like EoE, is that rare variants (allele 
frequencies < 1%) are excluded due to power concerns [25]. 
In contrast, WES comprehensively targets all exonic regions 
of genes to uncover critical mutations, proving especially 
valuable for rare genetic diseases such as EoE [13]. Though 
GWAS primarily identifies mutations in non-coding regions, 
WES has revealed several rare protein-coding mutations, 
enhancing our understanding of EoE genetic underpinnings.

In particular, previous studies have identified protein-cod-
ing mutations within EoE. For instance, a study involving 
33 unrelated patients with EoE revealed 39 rare mutations 
across 18 esophagus-specific genes, including SERPINB3, 
SPINK5, CAPN14, and KRT6B, with notable mutations 
also found in GABRP in four individuals [26]. Functional 
analyses of these mutations indicated a strong involvement 
in biological processes like epidermal cell differentiation 
and serine-type endopeptidase inhibitor activity, suggest-
ing a critical role for these esophagus-specific genes in EoE 
pathogenesis. Another WES study utilized family-based trio 
analysis for 37 unrelated families, including 63 patients with 
EoE and 60 unaffected family members [27]. Dehydrogenase 
E1 and transketolase domain-containing 1 (DHTKD1) and 
oxoglutarate dehydrogenase L (OGDHL) were identified 
as EoE-involved genes, highlighting their potential patho-
genic role in EoE mitochondrial dysfunction. Furthermore, 
a recent WES of an extended multi-generational family 
identified rare heterozygous missense mutations in genes 
encoding the desmosome-associated proteins DSP and PPL 
[28]. These mutations, found in 21% of polygenic families, 
primarily affected the esophageal squamous epithelium and 
were implicated in altering barrier integrity, cellular motil-
ity, and Rho GTPase activity. These findings enhance our 

understanding of the tissue-specific mechanisms that may 
underlie EoE allergic reactions.

Overall, WES has illuminated the significant impact 
of rare genetic variants in EoE, underscoring EoE’s 
multifactorial nature and the substantial effect sizes that 
these rare variants may have. This insight not only advances 
our understanding of EoE pathogenesis, but also aids in the 
potential development of targeted therapies.

Limitations and future potential

Despite the reduced sequencing costs and advances in 
bioinformatics enhancing the identification of EoE-
associated genetic variants, genomics still faces notable 
challenges. Although there have been some reports 
of gene–environment interactions [29], these remain 
insufficient for a comprehensive understanding of complex 
diseases like EoE. Additionally, the PRS shows great 
promise in clinical applications [22]; however, it has yet 
to reach practical utility in clinical settings. As GWAS 
sample sizes increase and PRS accuracy improves, these 
tools are expected to significantly influence research and 
personalized medicine. Moreover, the predominance of 
GWAS conducted in populations of European descent limits 
the broader applicability of the findings across diverse ethnic 
groups. Enhancing GWAS cohort diversity and leveraging 
advances in bioinformatics and machine learning will be 
key to enabling more personalized EoE management and 
treatment, ensuring that findings are applicable globally.

EoE epigenetics

Epigenetics is an emerging field in genomic research, 
primarily examining how alterations in chromatin structure 
can either enhance or suppress DNA transcription [30]. The 
aim is to identify methylation sites, promoters, or enhancers 
that affect DNA transcription and to elucidate disease 
mechanisms. DNA-Methylation [31], ChIP-seq [32], and 
ATAC-seq [33] have advanced our understanding of genome-
wide epigenetic marks and transcription factor binding 
sites [34]. Methylation analysis examines the expression 
status of specific genes by identifying methylation sites in 
DNA. ATAC-seq employs a hyperactive Tn5 transposase 
to cleave open chromatin for high-throughput sequencing, 
requiring fewer cells than traditional methods [35]. ChIP-seq 
uses antibodies to identify enriched DNA loci and analyze 
histone modifications, categorizing genomic regions into 
distinct chromatin states and examining motif sequences to 
infer transcription factor bindings [36], either by discovering 
new motifs or scanning existing ones [37]. ChIP-seq also 
analyzes functional enrichment to associate nearby genes 
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with potential biological pathways. We summarize these 
approaches for EoE as follows (Fig. 2, Epigenetics).

Predicting responses of EoE to topical corticosteroid 
treatment identified molecular markers for specific CpG 
sites [38]. Logistic regression analysis on biopsy samples 
and DNA methylation data from 88 patients pinpointed 
significant CpG sites associated with treatment outcomes. 
After adjusting for covariates, results showed that specific 
CpG sites (cg26152017 in UNC5B, cg01044293 in ITGA6, 
and cg13962589 in LRRC8A) were significantly associated.

Genome-wide DNA methylation of 20 children aged 
4–16  years with and without EoE identified the 25 
methylated CpG loci as potential biomarkers to distinguish 
between patients with EoE and healthy controls [39]. 
Furthermore, principal component analysis discovered 
differences in methylation profiles that correlated with 
diagnosis, eosinophil count, and age. These loci not only 
facilitated EoE diagnosis, but also maintained distinct 
profiles from healthy controls, even after eosinophil counts 
decreased. This finding highlights their potential utility in 
monitoring disease progression and diagnosis.

Quantitative analysis, such as Chip-PCR [40], found 
association of EoE with T helper type 2 (Th2) allergic 
reactions [41]. In EoE, IL-13 significantly upregulated 15 
genes, with 10 of these genes displaying active epigenetic 
marks on their promoters, including NTRK1 and CCL26. 
The SYNPO gene, coding for an actin-related protein, was 
notably influenced by IL-13, showing increased isoform 
expression. This isoform upregulation impacts cell 
motility, barrier integrity, and differentiation in esophageal 
epithelial cells, underscoring a crucial role of SYNPO in 
EoE pathology driven by IL-13–mediated transcriptional 
and epigenetic changes.

ATAC-seq analysis of EoE biopsy tissue identified 
798 loci with altered chromatin structures, indicating 
significant epigenetic modifications [42]. Th2 cells, which 
differentiate from T cells and secrete type 2 cytokines, are 
essential for sustaining allergic responses [43]. TSLP was 
an early cytokine expressed in the activated epithelium after 
mucosal barrier disruption [44]. TSLP induced Th2 cell 
differentiation and robust intracellular cytokine production 
and proliferation [42]. This TSLP action contributes to 
EoE pathology, with the increased percentage of CD4 + T 
cells responding to TSLP in the blood serving as an EoE 
diagnostic tool.

A recent study [45] evaluated 41 EoE gene risk variants 
from independent EoE disease risk loci obtained in 
preceding studies [18–21, 25, 46]. From these risk variants, 
30 allele enhancer variants for 3 cell types were identified. 
Using expression quantitative trait loci (eQTLs) [47] of 
cell-cultured tissue sections with the EoE allele enhancer 
variants revealed 219 genes presumed to be regulated by 
these enhancers [45]. These analyses yielded 6 EoE risk 

loci as important alleles. In addition, rs2289277, an eQTL 
associated with genotype-dependent TSLP expression, was 
an allelic enhancer variant in IL-13–stimulated TE-7 cells. 
This finding suggests a mechanistic basis for the previously 
reported elevated TSLP expression.

Accumulating epigenetic analyses have uncovered a 
relationship between EoE and STAT motifs [48]. STAT3 
strongly correlated with IL-13-induced esophageal 
epithelial proliferation and expression of EoE proliferation 
genes. Tissue-cultured EoE biopsies and IL-13-stimulated 
esophageal epithelial cells expressed 82 differential genes, 
with about half exhibiting STAT motifs. The relationship 
between STAT1, STAT3, STAT4, STAT5a, and STAT6 and 
transcription factors was analyzed using ChIP-X Enrichment 
Analysis [49]; 32 of the genes targeted STAT3, establishing 
STAT3 involvement. Nine genes associated with STAT6, 
suggesting that STAT6 was not relevant to esophageal 
epithelial growth [48]. However, STAT6 signaling by IL-13 
regulates the inflammatory response of the esophagus. 
Gene Ontology (GO) analysis [50] identified SFRP1 as an 
important regulator of IL-13-induced and STAT3-dependent 
esophageal proliferation and basal zone hyperplasia (BZH) 
in EoE [48].

Previous discovery of transcription factors stored in the 
public databases have highlighted BZH involvement in 
EoE [51]. A single-cell transcriptome of EoE biopsy tissue 
and enrichment analyses utilizing either the ChEA3 2022 
ChIPSeq database [52] or the enrichR-provided libraries 
[53–55] captured dysfunctional, non-proliferating basal 
clusters of esophageal epithelial cells. Examining those 
cells’ differentiation process found SOX2, TP63, and 
KLF5 as differentially expressed genes in the constructed 
esophageal epithelial differentiation cluster for enrichment 
and upstream regulators of stem cell self-renewal. As KLF5 
was recently identified as a SOX2 binding partner [56], the 
SOX2 and KLF5 interaction was further investigated [51]. 
Pseudo-temporal analysis indicated that SOX2 and KLF5 
expression increased over time and distinct characteristics 
of EoE epithelial cells, particularly in superficial esophageal 
layers.

Limitations and future potential

With the growing interest in disease-relevant epigenetic 
changes, many innovative analytical methods have been 
developed. When using multi-omics data, appropriate 
handling of data acquired by different methods is key [14]. 
Because of the different acquisition methods, these data 
cannot be treated equivalently, and interpretations may 
need to be treated independently. For example, integrating 
separate CpG methylation data and microRNA data requires 
that both data be acquired from the same sample. Another 
way to address this challenge is to use known biological 
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pathways or publicly available datasets to obtain estimates. 
Although this approach can complement missing data, its 
accuracy needs to be validated.

EoE transcriptomics

The transcriptome encompasses all RNA in a cell or group 
of cells, reflecting dynamic changes across developmental 
stages or in response to specific conditions [57]. Since the 
1990s, the technologies for transcriptomics have progressed 
from microarray technology to bulk RNA sequencing 
(RNAseq) and more recently to single-cell RNA sequencing 
(scRNAseq), each offering more detailed and unbiased 
views of gene expression under various conditions. Indeed, 
these advances have revealed a unique EoE transcriptional 
signature, aiding in the understanding of EoE’s complex gene 
regulation and functions. This section discusses how these 
transcriptomic insights have advanced our understanding of 
EoE pathogenesis (Fig. 2, Transcriptomics).

Identifying distinct transcript signatures

A significant advancement in understanding EoE occurred 
when gene expression analysis of esophageal biopsies 
identified a unique transcript signature that differentiates 
patients with EoE from healthy controls and those with 
chronic esophagitis. Since the first microarray-based 
transcriptome analysis in 2006 [46], several studies utilizing 
microarray and RNAseq have been conducted across 
different cohorts [58–63]. These studies have consistently 
identified a certain set of differentially expressed genes 
that constitute the EoE transcriptome. Remarkably, this 
transcriptome maintains a high degree of consistency across 
variations in patient sex, age, and atopic history, and it shows 
a strong correlation with esophageal eosinophil levels [46].

Among the EoE transcriptome, the most highly 
upregulated gene is the eosinophil chemoattractant eotaxin-3 
(CCL26) [64]. As a crucial member of the CC chemokine 
family, CCL26 interacts with its receptor, CCR3, to activate 
G protein signaling pathways, significantly enhancing 
eosinophil chemotaxis and activation. Unlike other eotaxins, 
CCL26 is uniquely upregulated in EoE, establishing a clear 
association with eosinophil levels in esophageal biopsies 
[46]. CCL26 increase can be found in eosinophilic gastritis 
(EoG) and duodenitis but not eosinophilic colitis [2, 65–67].

Beyond eosinophil-related genes, the EoE transcriptome 
also exhibits differential expression of various immune cell-
specific genes, including those associated with mast cells 
[58]. Among them, CPA3 and TPSAB1 are highly expressed 
in the EoE esophagus, underscoring the significant 
involvement of mast cells in the inflammatory response. The 
esophageal transcriptome specific to mast cells only partially 

overlaps with that defined by eosinophil levels, suggesting 
that mast cells and eosinophils contribute independently 
to EoE pathology. This distinction is supported by recent 
clinical trials in which EoE symptoms persisted despite 
eosinophil-depleting therapies [68, 69], indicating the need 
for further research to explore the distinct roles of these 
immune cells in EoE.

A significant portion of the transcriptional changes occur 
within the esophageal epithelium, affecting inflammatory 
cell recruitment, tissue remodeling, and hyperproliferation 
[70]. The non-keratinized, stratified squamous epithelium of 
the esophagus displays significant histopathologic changes 
in EoE, such as dilated intercellular spaces and an expanded 
BZH. These alterations are significantly driven by IL-13, 
which modulates gene expression and can replicate the 
EoE transcriptome in ex vivo studies [59]. The epidermal 
differentiation complex on chromosome 1q21, crucial for 
epithelial differentiation and barrier function, also features 
prominently in the EoE transcriptome. This includes genes 
like filaggrin (FLG) and involucrin (IVL), which exhibit 
unique expression patterns in the esophageal epithelium 
[59]. Additionally, the transcriptome is enriched in genes 
related to proteases and the IL-1 family, underscoring innate 
immunity involvement [26]. Notably, decreased expression 
of the serine protease inhibitor SPINK7 exacerbates 
proteolytic activity and inflammation, providing key insights 
into EoE pathogenesis [71].

Furthermore, certain transcriptomic changes persist 
despite EoE remission, particularly involving genes 
associated with fibrosis and tissue remodeling including 
genes like periostin (POSTN) [72, 73]. Periostin is a 
component of the extracellular matrix that interacts with 
IL-13, mainly produced by Th2 cells and mast cells, and 
TGF-β, mainly produced by eosinophils and mast cells 
[74]. These interactions result in a dramatic upregulation 
of POSTN expression in esophageal fibroblasts, which 
contributes to the persistent fibrosis observed in the EoE 
lamina propria [75]. The sustained high levels of periostin 
promote eosinophil adhesion, collagen synthesis, and fibrotic 
responses, reinforcing a feedback loop that exacerbates 
tissue remodeling [73]. These dynamics highlight the 
complexity of managing fibrosis in EoE and underscore 
the need for targeted therapeutic strategies addressing these 
specific molecular mechanisms.

Regarding the application of transcriptomics, the 
development of the Eosinophilic Esophagitis Diagnostic 
Panel (EDP) significantly advanced the clinical use of 
transcriptome analysis [76]. This 96-gene qPCR array not 
only excels at distinguishing patients with EoE controls, but 
also facilitates RNA analysis from formalin-fixed or paraffin-
embedded tissues, thereby reducing the need for repeated 
biopsies. The EDP enabled predicting inflammation and 
detecting relapses from a single biopsy [77], understanding 
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disease heterogeneity [78], identifying connections between 
pain and mast cells [79], deciphering the mechanisms of 
fibrostenosis [80], characterizing a similar molecular 
signature between EoE and esophageal involvement 
[81], and profiling remission markers [72]. The EDP has 
substantially improved the diagnosis and understanding 
of EoE pathophysiology, and future efforts will focus 
on exploring genes not currently included in the EDP to 
enhance its accuracy and clinical utility.

Collectively, transcriptome analysis technologies have 
established EoE as a distinct disease with unique molecular 
profiles and provided valuable insights into key molecules 
that contribute to various changes observed in EoE.

scRNAseq

scRNAseq has provided profound insights into EoE 
pathogenesis, revealing complex interactions among various 
cell types at the cellular level, which bulk RNAseq cannot 
delineate due to its analysis of mixed cell populations [82].

The first scRNAseq study in EoE involved 17 patients 
with active EoE and 6 normal controls, focusing on specific 
T cells [83]. This study highlighted a significant enrichment 
of CD4 + regulatory T cells (FOXP3 +) and Th2 cells 
(GATA3 +) within tissue-residing CD3 + T cells, localizing 
type 2 cytokine production to these effector populations 
and suggesting a role for FFAR3 in amplifying local Th2 
responses in EoE. Further scRNAseq analyses have shown 
an increase in pathogenic effector Th2 (peTH2) cells, 
enriched in the NF-κB signaling pathway, that associates 
with esophageal eosinophil levels in patients with active 
disease [84].

Analysis of esophageal epithelial cells revealed six 
major cell lineages, with specific markers identifying 
subpopulations such as epithelial cells, lymphocytes, 
myeloid cells, mast cells, endothelial cells, and fibroblasts 
[85]. Notably, esophageal epithelial cells and fibroblasts 
demonstrated upregulation of genes critical in EoE 
pathogenesis, such as CDH26, POSTN, ANO1, and CCL26, 
whereas downregulated genes were primarily expressed in 
the epithelial components.

A recent study on fibroblasts identified cell type–specific 
expressions of EoE risk genes like NOVA1 in the esophageal 
fibroblasts and ATP10A in the PRDM16 + dendritic cells 
enriched during active disease [86]. BZH, characterized 
by abnormal increases in SOX2 and KLF5 expression, was 
observed in EoE but not in reflux esophagitis, indicating that 
reflux does not simply cause BZH [51].

Overall, advances in scRNAseq are unveiling detailed 
and accurate transcriptomic data at the single-cell level, 
providing deeper insights into the immune mechanisms, 
epithelial barrier functions, and remodeling processes 
in EoE. This technology is paving the way for a better 

understanding of the disease’s cellular and molecular 
mechanisms.

Limitations and future potential

Traditional transcriptome analysis has provided valuable 
insights into EoE, identifying key molecular signatures and 
differentially expressed genes. However, this method often 
loses critical spatial information once RNA is extracted, 
obscuring how cells interact within their environments. 
Spatial transcriptomics offers a solution by mapping 
gene expression directly within tissue sections, capturing 
subtle cellular interactions and variations [87]. Integrating 
this method into EoE research could revolutionize our 
understanding by identifying precise biomarkers for 
diagnosis, predicting therapeutic responses, and monitoring 
disease progression. Combining spatial transcriptomics with 
scRNAseq could unveil detailed molecular and cellular 
interactions, potentially leading to targeted treatment 
strategies tailored to individual EoE profiles.

EoE proteomics

Proteomics involves the large-scale study of proteins to 
understand their structures and functions [88]. Bottom-up 
proteomics based on mass spectrometry has emerged as 
a critical research technique for comprehensive protein 
analysis. This method has seen rapid advances in both 
device technology and data analysis, making it increasingly 
accessible for a wide range of diseases (e.g., cancer, immune 
diseases) [89–92]. To uncover novel biomarkers for disease 
severity, differentiate between diseases, and provide deeper 
mechanistic insights, proteomics is now being applied to 
EoE; however, studies are still relatively scarce. This section 
explores the types of proteomics and techniques recently 
used in EoE research, highlighting significant findings 
in pathologic analysis and biomarker discovery (Fig. 2, 
Proteomics).

M o s t  p r o t e o m i c s  s t u d i e s  u t i l i z e  m a s s 
spectrometry–based techniques, such as high-performance 
liquid chromatography-mass spectrometry (HPLC–MS), 
tandem mass spectrometry (MS/MS), and matrix-assisted 
laser desorption/ionization time-of-f light MS/MS 
(MALDI–TOF MS/MS) to analyze proteome composition 
[93, 94]. These methods involve purifying and digesting 
proteins from biological samples, identifying them by 
analyzing spectral data from ionized peptides with a mass 
spectrometer, and matching these data to known databases 
[95].

EoE proteomic analyses have emerged to advance our 
understanding of disease mechanisms, histologic changes 
such as BZH, epithelial barrier, and fibrosis. For instance, 
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the minichromosome maintenance (MCM) complex, 
associated with proliferative epithelial cells, was found to be 
significantly expressed in inflamed esophageal tissues, with 
inhibition experiments (ciprofloxacin) highlighting MCM 
as a potential therapeutic target [96]. Another proteomic 
research study, by combining transcriptomic and functional 
analyses, uncovered elevated levels of IL-20 subfamily 
cytokines in active EoE, suggesting these cytokines as 
novel therapeutic targets due to their role in downregulating 
barrier-protective genes like filaggrin [97]. Furthermore, 
using proteomics analyses of diseased and normal 
esophageal fibroblasts cultured on autologous or opposing 
derivative extracellular matrixes, thrombospondin-1 was 
discovered and validated as a pathogenic mediator of EoE 
fibrosis [98].

Comparative proteomic analyses have attempted to 
identify potential biomarkers for EoE. Research has 
revealed heightened expression of S-nitrosylated galectin-3 
in the esophageal mucosa of patients with eosinophilia, 
suggesting its potential as a biomarker [99]. Additionally, 
liquid chromatography-tandem mass spectrometry (LC–MS/
MS) comparisons of esophageal biopsies from pediatric 
EoE, gastroesophageal reflux disease (GERD), and healthy 
controls identified eosinophil cationic protein (ECP) as 
significantly upregulated in EoE [100]. Furthermore, a 
study detected 363 differentially accumulated proteins 
in patients with EoE compared to healthy subjects, 
including eosinophil-associated proteins (e.g., RNASE2, 
RNASE3, SERPINC1, EPX, and PRG3) that correlated 
with eosinophil counts and disease severity, proposing 
new, minimally invasive biomarkers [101]. Another study 
focused on the deposition of IgG4 and food proteins in the 
esophageal mucosa of patients with EoE, identifying specific 
eosinophil-derived proteins (e.g., PRG2, PRG3, EPX, and 
RNASE3) and calpain-14 in IgG4-enriched regions using the 
AutoSTOMP technique [102]. This research also confirmed 
the IgG4 binding to various food allergens, advancing 
our understanding of EoE’s immunologic responses and 
informing potential targeted treatment strategies. Taken 
together, these proteomic findings are instrumental in 
advancing EoE diagnosis and treatment.

Limitations and future potential

Proteomics serves as a crucial tool for stratifying patients, 
identifying therapeutic targets, and discovering biomarkers. 
However, it faces several limitations that affect its utility. One 
major challenge is the variability in protein expression due 
to the severity of the disease and individual patient factors, 
especially noticeable in studies with small sample sizes, 
complicating data standardization. Additionally, the dynamic 
range of protein quantification in mass spectrometry-based 
proteomics is limited, which can restrict the detection of 

low-abundance proteins. Looking to the future, advanced 
proteomics techniques offer detailed protein information 
that may be undetectable at the mRNA level, bridging 
gaps left by transcriptome analysis. Recent technological 
advancements now permit the detection of protein numbers 
comparable to those identified in transcriptomic studies 
[103]. Furthermore, innovative methods like multiplex 
antibody assays, which utilize microliters of liquid samples 
to target specific proteins without mass spectrometry, are 
expanding the scope of detectable proteins [104]. These 
developments necessitate careful methods and sample size 
selection based on specific research goals. Moreover, the 
potential for proteomics to facilitate less invasive diagnostic 
approaches, such as liquid biopsies, is particularly promising 
in pediatrics where traditional endoscopic assessments for 
conditions like EoE are more invasive [89]. Liquid biopsy 
could revolutionize the way pathologies are studied and 
biomarkers are discovered, offering a minimally invasive 
option to collect vital diagnostic information. This approach 
holds great promise for enhancing phenotypic and pathologic 
analyses across various diseases.

EoE other omics

Metabolomics and microbiomics

The recent increasing incidence of EoE suggests that 
environmental factors may be influencing their development 
[29]. Metabolomics, which directly measure metabolites 
produced during cellular activities, can track pathologic 
changes and aid in managing diseases [105]. This approach 
is useful in food elimination therapy, where identifying 
causative foods is challenging; measuring metabolites can 
help assess treatment response and reduce patient burden. 
Microbiomics reveal how alterations due to modern lifestyles 
impact disease [106]. Factors such as drug use, breastfeeding 
status, and environmental exposures contribute to microbial 
imbalances that are closely linked to inflammation and 
disease progression. This section covers these two omics 
approaches separately (Fig. 2, Other Omics).

Metabolomics

Metabolomics analysis is categorized into non-targeted 
and targeted methods. Non-targeted metabolomics 
aims to analyze a broad spectrum of metabolites from 
biological samples, utilizing techniques such as nuclear 
magnetic resonance and mass spectrometry. LC–MS/MS is 
widely used for its capability to detect a diverse range of 
metabolites, making it ideal for comprehensive metabolic 
profiling [107–110]. Targeted metabolomics focuses on 
specific biochemical pathways, employing methods such 
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as spectroscopy and flame ionization to provide detailed 
characterization of specific metabolites. For example, 
Raman spectroscopy [111] is a nondestructive analysis of 
the chemical structure and interactions of materials. This 
approach offers deep insights into specific biochemical 
pathways, enhancing our understanding of metabolic 
functions.

Raman spectroscopy analysis has revealed metabolite-
specific spectra associated with EoE in children [111]. 
The profile of the biochemical composition of esophageal 
samples from 24 children with and without EoE pinpointed 
spectral markers specific for EoE. Notably, Raman peaks 
related to glycogen content were lower in children with EoE 
than those without EoE. Additionally, the glycogen content 
correlated inversely to lipid content and to the severity of 
histopathology assessed by EoE HSS. These metabolites 
might serve as spectral markers indicative of EoE activity 
and the degree of pathology [112]. The study investigators 
proposed that this inverse correlation is primarily driven by 
the degree of eosinophilic inflammation, potentially linked 
to peri-epithelial cells and BZH [111].

Microbiomics

M i c r o b i o m i c s  c o m p r i s e s  m e t a g e n o m i c s , 
metatranscriptomics, and metabolite-based metabolomics 
[113]. Metagenomics involves sequencing the DNA of cells 
from biopsies and swab specimens and mapping the genes 
of the microbial community; it assesses microbial pathways 
and abundance, but activity and contribution in disease is 
difficult to assess [114]. Metatranscriptomics reveals activity 
in the environment by identifying expressed transcripts 
in the microbiome. Metabolomics evaluates changes in 
microbial metabolites, such as lipids, carbohydrates, and 
amino acids, and analyzes biochemical changes associated 
with disease phenotypes; however, it is not suitable for 
identifying microbial community types [105]. These 
complementary methods contribute to validating the efficacy 
of treatments, identifying environmental differences, and 
elucidating effects on pathways. This section mainly focuses 
on metagenomic analysis.

The disease activity in EoE influenced the composition 
of the esophageal microbiota [115]. When comparing 
microbiota of esophageal biopsies from 33 pediatric 
subjects with EoE and 35 non-EoE pediatric controls, 
a characteristic esophageal microbiome in EoE that is 
influenced by EoE disease activity was shown. Distinctive 
microbiota such as enrichment of Proteobacteria, including 
Neisseria and Corynebacterium, in the esophagus 
were reported in active EoE compared to non-EoE 
controls. Also, comparing the esophageal inflammation 
characteristic of EoE with inflammation due to other 

diseases revealed differences in bacterial communities 
in the esophageal mucosa [116]. The esophageal string 
tests of individuals who were healthy and those who 
had treated EoE disease showed the association of 
bacterial communities in the esophageal mucosa with 
treatments. Although an increase in bacterial abundance 
was observed in active EoE, the difference in bacterial 
community composition between treated and untreated 
EoE was limited, with active EoE having Haemophilus 
significantly increased in the esophagus. Unlike active 
EoE, GERD esophageal disease activity was not associated 
with increased bacterial load in the EoE.

Different treatment choices for EoE, including steroid 
therapy, proton pump inhibitors (PPIs), and dietary 
modifications, have been shown to affect esophageal 
microbial composition [117, 118]. Diversity analysis 
and clustering have revealed that patients with EoE in 
remission from these treatments exhibit distinct microbial 
patterns. For example, the steroid treatment group 
displayed a unique microbial composition. However, a 
comparison of the esophageal microbiomes of 49 adults 
with and without EoE found no significant correlations 
between the microbiome and endoscopic findings, such 
as exudates, ring changes, edema, grooves, stricture, 
or esophageal dilatation. These results imply that the 
esophageal microbiota, at the time of diagnosis in adults 
with EoE, may not influence the disease’s pathophysiology.

Examining a large cohort revealed certain prominent 
taxa in both the esophagus and stomach, ref lecting 
environmental biases [119]. "Streptococcus" and 
"Prevotella" were identified as dominant in the EoE and 
EoG samples, respectively. In addition, an increase in taxa 
with Gram-negative cell wall structure was observed in the 
EoE samples. This expansion of taxa with Gram-negative 
cell wall structures may influence the inflammatory 
process and suggests that this may be an important feature 
in EoE pathogenesis.

A mouse model of EoE has provided insights into 
how microbiota colonization inf luences esophageal 
morphology and gene expression, highlighting pathways 
particularly related to epithelial barrier function [120]. 
An abnormal microbiota, characterized by the absence of 
lactobacilli, associated with key changes involving genes 
such as POSTN, KLK5, and HIF1, indicating a disrupted 
esophageal microenvironment. After fecal microbiota 
transplantation (FMT), Streptococcaceae were not detected 
in the esophagus of any recipient mice. The absence is 
consistent with natural transient variations in colony 
formation. Moreover, it demonstrated how esophageal 
microbiota in germ-free mice recovered post FMT. These 
findings are helpful for advancing our understanding of 
esophageal health and pathology.
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Limitations and future potential

The field of metabolomics faces the future challenge of 
conducting large-scale quantitative analyses in EoE, which 
currently lacks such studies. Additionally, integrating 
microbiome data with other omics data presents specific 
challenges, including biases introduced by variable 
environmental factors, which can skew results across 
different datasets. The gut microbiome—a diverse 
community of microorganisms—plays a pivotal role in 
immune system development and metabolic activity, 
influencing the onset of digestive and atopic diseases. Factors 
like drug use, breastfeeding status, and environmental 
exposure contribute to microbial imbalances, which are 
closely linked to inflammation and disease progression. 
Some studies have explored the impact of PPI exposure on 
the local microbiome and the interaction between toll-like 
receptors (TLRs), such as TLR4, and lipopolysaccharides 
[121–123]. However, it is unclear whether changes in the 
microbiome initiate inflammation or result from pathology. 
Further analysis with metabolites produced by microbiome 
and integrating other omics will deepen new discoveries.

EoE treatment and omics

The results of the omics analysis in EoE contributed to 
the development of treatments and are used to validate 
their efficacy. PPIs and allergen elimination diet have been 
typical initial treatment. They have been evaluated for 
efficacy by omics analysis [124–126]. The elucidation of 
biological mechanisms through omics analysis is driving 
the development of new molecule-targeted drugs beyond 
these two therapies. For example, the anti-IL-5 antibodies 
mepolizumab, reslizumab [127, 128], the anti-IL-5Rα 
antibody benralizumab [69], the anti-IL-13 antibodies 
cendakimab [129] and dectrekumab [130], the anti-TSLP 
antibody tezepelumab [131], and the anti-SIGLEC-8 
antibody lirentelimab [132] are also in clinical trials.

Since 2022, the FDA has approved two drugs for EoE: 
dupilumab in May 2022 [9, 133] and BOS in February 2024 
[10] (Fig. 2, FDA approved). It is remarkable that dupilumab, 
a monoclonal antibody against IL-4Rα, improved 
dysphagia, change in peak eosinophil count, endoscopic 
severity, histologic severity, and esophageal distensibility 
compared to placebo and that the EoE transcriptome was 
reversed [133]. There is no omics evaluation for BOS, but 
it has been reported that daily administration of high-dose 
fluticasone propionate resulted in histologic remission 
in 65–77% of patients with EoE after 3 months and that 
the gene expression pattern was similar to that of patients 
without EoE [134]. In the future, omics analysis will further 
elucidate the molecular pathophysiology of EoE, which will 

in turn facilitate the development of new drugs. Integration 
of clinical manifestations, histologic responses, and omics 
data will be essential in the evaluation of new drugs.

Integrating omics in EoE (multi‑omics)

Large-scale quantitative analysis using next-generation 
sequencers has enhanced the integrated analysis of omics 
data. The integration has been achieved through statistical 
analysis, utilizing classifications such as genome-first, 
phenotype-first, and environment-first to identify statistically 
significant pathways [135]. In recent success of machine 
learning, multi-omics integration has evolved to include 
deep learning models, which offer broad interpretability. 
These models typically employ one of two approaches 
based on the sequence of omics data integration and training, 
addressing challenges posed by incomplete datasets and 
missing values. This advancement is crucial, helping to 
understand complex biological interactions. This section 
explores the multi-omics integration strategies employed in 
EoE studies, highlighting their potential to uncover novel 
insights into the disease.

Multi‑omics analysis

The development of the EoE TaMMA [136], derived from 
the Multi-Omics Factor Analysis (MOFA) framework 
[137] has elucidated a predominance of microbiota 
abnormalities in EoE pathogenesis. Through the analysis 
of biological processes using transcriptomics and meta-
transcriptomics profiling, specific microbial signatures that 
distinguish EoE from GERD and controls were identified. 
Advanced deconvolution techniques, such as MuSiC [138] 
and CIBERSORTx [139], were utilized to further refine 
the datasets. Importantly, bacterial species distinctively 
abundant in EoE were identified, with 9 candidates emerging 
as specific markers for EoE in the esophagus. Additionally, 
the analysis enabled the development of 4 multilayered 
molecular signatures that effectively differentiate EoE 
patients from controls. These findings point to microbial 
dysbiosis as a key factor in EoE pathogenesis. This 
framework proves highly applicable for integrating various 
omics datasets, providing a starting point for further multi-
omics studies in EoE.

Integrated analysis of transcriptomics and metabolomics 
has linked transcriptomic signatures to specific metabolites 
and immune components in French children with EoE 
[140]; utilizing liquid chromatography coupled with high-
resolution statistical analysis via the DIABLO model 
[141] identified 4 key plasma immune components and 
8 metabolites that significantly associated with EoEs. 
Furthermore, supervised partial least square-discriminant 
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analysis (PLS-DA) demonstrated high accuracy in predicting 
EoE status, providing a comprehensive view of both 
cellular and soluble immune components in esophageal 
biopsies from affected children and controls. The study 
also emphasized the potential benefits of translating these 
biopsy results into viable serologic tests that could assess 
the presence and/or severity of EoE, marking a prominent 
advance in diagnostic methodologies.

Limitations and future potential

Recent developments in data integration research have 
advanced data integration strategies that combine data 
from multiple omics analyses. For instance, a study 
examined esophageal dysbiosis by integrating omics data 
[136]. A multimodal learning model that integrated biopsy 
tissue images and omics data technique was important for 
elucidating EoE genetic mechanisms [142–146]. Future 
studies should incorporate new analysis methods, such as 
spatial omics analysis [147] and Cut&Run [148], while 
integrating them with the vast amount of existing omics 
data. These new techniques are poised to extract meaningful 
information and provide insight on processes involved in 
developing EoE.

Data integration of omics data and extracting significant 
information has been done in the past, but there are two 
challenges [149]. The first is the comprehensiveness of 
the dataset, and the second is having enough data points to 
approach the true probability distribution of the objective 
variable. Overfitting to achieve apparent high accuracy or 
underfitting due to insufficient data can lead to a misguided 
understanding of diseases with complex mechanisms. 
However, the nature of rare diseases makes it difficult to 
prepare large datasets. A framework for rare diseases with 
small data sizes is urgently needed to approach the true 
probability distribution. In addition, compensating for 
deficiencies by collecting and reanalyzing existing publicly 
available data and performing more accurate deconvolution 
will be required in the future. The analysis of omics data and 
its comparison with in vivo and in vitro observations will aid 
in the future understanding of diseases.

The long-term prognosis of current treatments is not 
clear. Among the approved therapies, Dupilumab can be 
administered to children over 1 year of age but requires 
weekly injection [9], which raises concerns about its use 
as a treatment for children. BOS has not been proven safe 
and effective in the treatment of EoE beyond 12 weeks [10]. 
Data on the long-term effects of continuous administration 
are lacking, and these continued doses may increase the 
economic burden on patients and healthcare systems.

To address these issues, further understanding EoE 
molecular mechanisms is urgently needed: applying machine 
learning to predict molecular mechanisms and analyzing 

patient characteristics will impact future research results. 
These approaches can accelerate research by highlighting 
notable candidates for existing experimental methods. 
These technological advances will help to elucidate further 
mechanisms of the disease and lead to the development of 
therapeutics that will offer a fundamental cure.

Conclusion

In this review, we discussed advances in omics data for EoE. 
Elucidating the disease mechanism by each omics analysis 
has resulted in FDA approval of two therapeutic drugs. In 
the future, further development is expected in delineating 
disease mechanisms through each omics analysis and multi-
omics analysis using tissue imaging data and other omics 
data.
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