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Abstract Eosinophilic esophagitis (EoE) is a chronic,
allergic inflammatory disease of the esophagus character-
ized by eosinophil accumulation and has a growing global
prevalence. EoE significantly impairs quality of life and
poses a substantial burden on healthcare resources. Cur-
rently, only two FDA-approved medications exist for EoE,
highlighting the need for broader research into its manage-
ment and prevention. Recent advancements in omics tech-
nologies, such as genomics, epigenetics, transcriptomics,
proteomics, and others, offer new insights into the genetic
and immunologic mechanisms underlying EoE. Genomic
studies have identified genetic loci and mutations associated
with EoE, revealing predispositions that vary by ancestry
and indicating EoE’s complex genetic basis. Epigenetic stud-
ies have uncovered changes in DNA methylation and chro-
matin structure that affect gene expression, influencing EoE
pathology. Transcriptomic analyses have revealed a distinct
gene expression profile in EoE, dominated by genes involved
in activated type 2 immunity and epithelial barrier func-
tion. Proteomic approaches have furthered the understanding
of EoE mechanisms, identifying potential new biomarkers
and therapeutic targets. However, challenges in integrating

Kazuhiro Matsuyama and Shingo Yamada are co-first authors.

P< Tetsuo Shoda
Tetsuo.Shoda@cchme.org

Division of Allergy and Immunology, Cincinnati Children’s
Hospital Medical Center, Department of Pediatrics,
University of Cincinnati College of Medicine, 3333 Burnet
Avenue, MLC 7028, Cincinnati, OH 45229, USA

Department of Computer Science, University of Cincinnati,
Cincinnati, USA

Department of Pediatrics, Graduate School of Medicine,
Chiba University, Chiba, Japan

19 September 2024

diverse omics data persist, largely due to their complexity
and the need for advanced computational methods. Machine
learning is emerging as a valuable tool for analyzing exten-
sive and intricate datasets, potentially revealing new aspects
of EoE pathogenesis. The integration of multi-omics data
through sophisticated computational approaches promises
significant advancements in our understanding of EoE,
improving diagnostics, and enhancing treatment effective-
ness. This review synthesizes current omics research and
explores future directions for comprehensively understand-
ing the disease mechanisms in EoE.
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Abbreviations

ATAC-seq Assay for transposase-accessible
chromatin using sequencing

BOS Budesonide oral suspension

BZH Basal zone hyperplasia

ChIP-seq Chromatin immunoprecipitation
sequencing

CpG Cytosine phosphate guanine

DIABLO Data integration analysis for
biomarker discovery using latent
components

ECP Eosinophil cationic protein

EDP Eosinophilic esophagitis
diagnostic panel

EoE Eosinophilic esophagitis

EoG Eosinophilic gastritis

eQTLs Expression quantitative trait loci

FDA United States of America Food
and Drug Administration

FMT Fecal microbiota transplantation
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GERD Gastroesophageal reflux disease

GO Gene ontology

GWAS Genome-wide association studies

HPLC-MS High-performance liquid
chromatography—mass
spectrometry

HSS Histology Scoring System

LC-MS/MS Liquid chromatography—tandem

mass spectrometry
Matrix-assisted laser desorption/
ionization time-of-flight tandem
mass spectrometry

MALDI-TOF MS/MS

MCM Minichromosome maintenance

MOFA Multi-omics factor analysis

MS/MS Tandem mass spectrometry

MuSiC Multi-subject single-cell
deconvolution

peTH2 Pathogenic effector T helper type
2

PLS-DA Supervised partial least square-
discriminant analysis

PPIs Proton pump inhibitors

PRS Polygenic risk score

RNAseq RNA sequencing

scRNAseq Single-cell RNA sequencing

SNPs Single-nucleotide polymorphisms

TaMMA Transcriptome and
metatranscriptome meta-analysis

Th2 T helper type 2

TLRs Toll-like receptors

WES Whole exome sequencing

Fig. 1 Overview of simplified
omics data. EoFE eosinophilic
esophagitis. Created with

&,

Introduction

Eosinophilic esophagitis (EoE) is an allergic condition
characterized by inflammation of the esophageal mucosa and
an accumulation of eosinophils [1, 2]. Though historically
considered rare, EoE prevalence is increasing worldwide [3,
4]. Patients with EoE endure considerable clinical burden—
the lowest quality of life compared with a series of other
chronic pediatric diseases [5], and EoE is a substantial
challenge to healthcare systems in both resource utilization
and associated costs [6]. EoE is a persistent disease from
childhood into adulthood, progressing to fibrostenotic
complications—esophageal scarring and narrowing—that
can be relatively refractory to therapy [7, 8]. Currently,
only two medications have FDA approval for treating EoE
(i.e., dupilumab [9] and budesonide oral suspension [BOS]
[10]), emphasizing the urgent need for expanding EoE
prevention and management research [11]. Understanding
the mechanism of EoE manifestation is crucial, including
delving into the molecular mechanisms at play and
identifying disease markers that could predict diagnosis
and outcomes.

The recent advancements in the field of “omics”—
including genomics, epigenetics, transcriptomics, pro-
teomics, and other comprehensive approaches to study
large sets of biological data—offer promising new oppor-
tunities for understanding diseases at a molecular level.
For EoE, omics technologies, leveraging high-throughput
sequencing, have begun to elucidate the intricate interplay
of genetic and immunologic factors that contribute to the
disease [12, 13] (Figs. 1, 2). These technologies enable
researchers to examine the complex genetic and immu-
nologic interactions that underlie EoE, providing a more
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Fig. 2 Schematic summary for the timing of relevant events in the
genetic and molecular progress in EoE. A chronological list of genes
and proteins found by Genomics, Epigenetics, Transcriptomics, Prot-
eomics, and other omics related to EoE. EoE eosinophilic esophagi-

comprehensive understanding of the disease than was pre-
viously possible. Despite the valuable insights from omics
studies, effectively integrating individual omics into
multi-omics is still in its early stages. Challenges include
the scarcity of comprehensive datasets and the need for
advanced computational tools to analyze and interpret
these complex data layers. Machine learning technolo-
gies [14] are one promising approach to overcome these
hurdles, as they can analyze large datasets quickly and
with high accuracy, potentially revealing new aspects of
EoE pathogenesis (Fig. 3).

In this review, we consolidate current knowledge from
various omics studies related to EoE and discuss the
advantages and challenges of integrating individual omics
into multi-omics approaches using machine learning
technologies to explore future directions in understanding
the mechanisms underlying EoE.

Lipid content Streptococcus/Prevotella

tis, GWAS genome-wide association studies, WES whole exome
sequencing, RNAseq RNA sequencing, scRNAseq single-cell RNA
sequencing. Created with Biorender.com

EoE genomics

Genomics, the science of studying genomes, began
with DNA sequencing and has rapidly expanded to
include exploring gene and protein expression profiles
and their functional roles [15]. These advances have
significantly improved our understanding of various
diseases, including EoE. Recent studies highlight the
complex genetic influences on EoE, revealing higher
prevalence rates among males, Caucasians, and younger
individuals [12, 16]. Notably, EoE frequently occurs
within families, particularly among siblings, and follows
a non-Mendelian inheritance pattern, indicating a complex
genetic foundation [13]. This section specifically discusses
the insights into EoE genomics provided by genome-wide
association studies (GWAS) and whole exome sequencing
(WES) (Fig. 2, Genomics).
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Fig. 3 Integrative schema of multi-omics studies of EoE. Data-
integration framework in EoE characterized by the combination of
heterogeneous information, including multi-omic datasets. Data of
each omics data reintegrated and analyzed by two methods. A Sta-
tistical Methods: unsupervised learning is performed by determining
explanatory variables from the analysis of each omics data and incor-

EoE GWAS

GWAS typically report blocks of correlated single-
nucleotide polymorphisms (SNPs), known as genomic
risk loci, that are statistically associated with the trait of
interest [17]. A major strength of GWAS is their ability
to systematically and unbiasedly search for novel disease-
associated variants.

Loci associated with EoE pathogenesis have been
identified by GWAS and are presented in chronological
order. A pioneering EOE GWAS of 181 children with
EoE and 170 normal controls, all of European ancestry,
found an important genetic association with chromosome
522 [18]. This region encompasses TSLP/WDR36.
TSLP encodes thymic stromal lymphopoietin, a cytokine
promoting allergic inflammation. 7SLP was found to be
highly expressed in EoE, underscoring the pivotal role of
TSLP in EoE pathogenesis and potential therapeutic targets.
Subsequently, a larger GWAS was performed from> 1.5
million genetic markers in EoE [19], greatly expanding the
number of EoE cases and controls compared to the previous
study. The genetic association of 5922 (TSLP/WDR36) was
confirmed, and a new association with 2p23 (CAPNI4)
was identified. CAPNI4 encodes calpain 14, a calcium-
activated cysteine protease, and is highly tissue specific; it
is expressed in esophageal epithelium with little expression
in the epithelium of other organs. CAPN14 is activated by
IL-13 and contributes to maintaining and repairing epithelial
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tissue [19]. Notably, CAPN14 was also confirmed by another
GWAS [20]. In addition to CAPNI4, 11q13 (cllorf30/
LRR(C32) and 12ql13 (STAT6), previously reported as
associated with atopy and autoimmune diseases, and 19q13
(ANKRD?Z27), which regulates the transport of melanogenic
enzymes to epidermal melanocytes, were newly identified
[20]. The risk locus 16p13 (CLEC16A/DEXI/CIITA), which
is expressed in both immune cells and esophageal epithelial
cells, also was identified, further expanding the EoE genetic
landscape [21].

Meta-analyses have broadened our understanding of
GWAS studies, especially in overcoming the limitations
posed by small sample sizes in rare diseases such as EoE. At
present, four GWAS and two meta-analysis of GWAS identi-
fied 41 tag variants corresponding to nine genome-wide sig-
nificant loci and 27 suggestive loci [18-23]. The first GWAS
meta-analysis identified replicated association at 6 loci from
627 EoE and 365 controls having European ancestry: 2p23
(2 independent genetic effects), 5922, 10p14, 11q13, and
16p13 [22]. Another seven loci were identified with sugges-
tive significance at 1q31, 5q23, 6ql5, 6q21, 8p21, 17q12,
and 22q13, leading to identifying 13 protein-coding EoE risk
gene candidates. To assess the genetic risk of individual loci,
the Polygenic Risk Score (PRS) was created, and the genetic
burden of GWAS-identified EoE risk loci were assessed.
Those with the highest genetic burden had a 12-fold greater
risk of developing EoE than those with the lowest genetic
burden [22]. Another meta-analysis, including 1,930 affected
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European subjects and 13,634 ancestry-matched controls,
identified 15 genome-wide significant EoE risk loci, 11 of
which were novel; three loci, 5q31.1 (RAD50), 15q22.2
(RORA), and 15923 (SMAD3), may have a pivotal role in
EoE development [23]. Though these two meta-analyses
were conducted on European ancestry, there are also reports
with 137 Black and African-American cases of EoE and
1,465 healthy controls [24]. The proportion of African
ancestry was found to be significantly lower in EoE than
in controls, and three significant EoE-associated loci were
identified (9p13.3 [ARHGEF39], 12q24.22-23 [FBXWS/
VSIG10], 15q11.2), of which 12q24.22-23 and 9p13.3 were
recapitulated in the case—control analysis and found to be
associated with African ancestry.

EoE WES

Although GWAS has identified multiple common EoE-
associated SNPs, a challenge for GWAS, especially for
rare conditions like EoE, is that rare variants (allele
frequencies < 1%) are excluded due to power concerns [25].
In contrast, WES comprehensively targets all exonic regions
of genes to uncover critical mutations, proving especially
valuable for rare genetic diseases such as EoE [13]. Though
GWAS primarily identifies mutations in non-coding regions,
WES has revealed several rare protein-coding mutations,
enhancing our understanding of EoE genetic underpinnings.

In particular, previous studies have identified protein-cod-
ing mutations within EoE. For instance, a study involving
33 unrelated patients with EoE revealed 39 rare mutations
across 18 esophagus-specific genes, including SERPINB3,
SPINKS5, CAPNI14, and KRT6B, with notable mutations
also found in GABRP in four individuals [26]. Functional
analyses of these mutations indicated a strong involvement
in biological processes like epidermal cell differentiation
and serine-type endopeptidase inhibitor activity, suggest-
ing a critical role for these esophagus-specific genes in EoE
pathogenesis. Another WES study utilized family-based trio
analysis for 37 unrelated families, including 63 patients with
EoE and 60 unaffected family members [27]. Dehydrogenase
El and transketolase domain-containing 1 (DHTKDI) and
oxoglutarate dehydrogenase L (OGDHL) were identified
as EoE-involved genes, highlighting their potential patho-
genic role in EoE mitochondrial dysfunction. Furthermore,
a recent WES of an extended multi-generational family
identified rare heterozygous missense mutations in genes
encoding the desmosome-associated proteins DSP and PPL
[28]. These mutations, found in 21% of polygenic families,
primarily affected the esophageal squamous epithelium and
were implicated in altering barrier integrity, cellular motil-
ity, and Rho GTPase activity. These findings enhance our

understanding of the tissue-specific mechanisms that may
underlie EoE allergic reactions.

Overall, WES has illuminated the significant impact
of rare genetic variants in EoE, underscoring EoE’s
multifactorial nature and the substantial effect sizes that
these rare variants may have. This insight not only advances
our understanding of EoE pathogenesis, but also aids in the
potential development of targeted therapies.

Limitations and future potential

Despite the reduced sequencing costs and advances in
bioinformatics enhancing the identification of EoE-
associated genetic variants, genomics still faces notable
challenges. Although there have been some reports
of gene—environment interactions [29], these remain
insufficient for a comprehensive understanding of complex
diseases like EoE. Additionally, the PRS shows great
promise in clinical applications [22]; however, it has yet
to reach practical utility in clinical settings. As GWAS
sample sizes increase and PRS accuracy improves, these
tools are expected to significantly influence research and
personalized medicine. Moreover, the predominance of
GWAS conducted in populations of European descent limits
the broader applicability of the findings across diverse ethnic
groups. Enhancing GWAS cohort diversity and leveraging
advances in bioinformatics and machine learning will be
key to enabling more personalized EoE management and
treatment, ensuring that findings are applicable globally.

EoE epigenetics

Epigenetics is an emerging field in genomic research,
primarily examining how alterations in chromatin structure
can either enhance or suppress DNA transcription [30]. The
aim is to identify methylation sites, promoters, or enhancers
that affect DNA transcription and to elucidate disease
mechanisms. DNA-Methylation [31], ChIP-seq [32], and
ATAC-seq [33] have advanced our understanding of genome-
wide epigenetic marks and transcription factor binding
sites [34]. Methylation analysis examines the expression
status of specific genes by identifying methylation sites in
DNA. ATAC-seq employs a hyperactive Tn5 transposase
to cleave open chromatin for high-throughput sequencing,
requiring fewer cells than traditional methods [35]. ChIP-seq
uses antibodies to identify enriched DNA loci and analyze
histone modifications, categorizing genomic regions into
distinct chromatin states and examining motif sequences to
infer transcription factor bindings [36], either by discovering
new motifs or scanning existing ones [37]. ChIP-seq also
analyzes functional enrichment to associate nearby genes
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with potential biological pathways. We summarize these
approaches for EoE as follows (Fig. 2, Epigenetics).

Predicting responses of EoE to topical corticosteroid
treatment identified molecular markers for specific CpG
sites [38]. Logistic regression analysis on biopsy samples
and DNA methylation data from 88 patients pinpointed
significant CpG sites associated with treatment outcomes.
After adjusting for covariates, results showed that specific
CpG sites (cg26152017 in UNC5B, cg01044293 in ITGAG,
and cg13962589 in LRRCSA) were significantly associated.

Genome-wide DNA methylation of 20 children aged
4-16 years with and without EoE identified the 25
methylated CpG loci as potential biomarkers to distinguish
between patients with EoE and healthy controls [39].
Furthermore, principal component analysis discovered
differences in methylation profiles that correlated with
diagnosis, eosinophil count, and age. These loci not only
facilitated EoE diagnosis, but also maintained distinct
profiles from healthy controls, even after eosinophil counts
decreased. This finding highlights their potential utility in
monitoring disease progression and diagnosis.

Quantitative analysis, such as Chip-PCR [40], found
association of EoE with T helper type 2 (Th2) allergic
reactions [41]. In EoE, IL-13 significantly upregulated 15
genes, with 10 of these genes displaying active epigenetic
marks on their promoters, including NTRKI and CCL26.
The SYNPO gene, coding for an actin-related protein, was
notably influenced by IL-13, showing increased isoform
expression. This isoform upregulation impacts cell
motility, barrier integrity, and differentiation in esophageal
epithelial cells, underscoring a crucial role of SYNPO in
EoE pathology driven by IL-13-mediated transcriptional
and epigenetic changes.

ATAC-seq analysis of EoE biopsy tissue identified
798 loci with altered chromatin structures, indicating
significant epigenetic modifications [42]. Th2 cells, which
differentiate from T cells and secrete type 2 cytokines, are
essential for sustaining allergic responses [43]. TSLP was
an early cytokine expressed in the activated epithelium after
mucosal barrier disruption [44]. TSLP induced Th2 cell
differentiation and robust intracellular cytokine production
and proliferation [42]. This TSLP action contributes to
EoE pathology, with the increased percentage of CD4+ T
cells responding to TSLP in the blood serving as an EoE
diagnostic tool.

A recent study [45] evaluated 41 EoE gene risk variants
from independent EoE disease risk loci obtained in
preceding studies [18-21, 25, 46]. From these risk variants,
30 allele enhancer variants for 3 cell types were identified.
Using expression quantitative trait loci (eQTLs) [47] of
cell-cultured tissue sections with the EoE allele enhancer
variants revealed 219 genes presumed to be regulated by
these enhancers [45]. These analyses yielded 6 EoE risk
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loci as important alleles. In addition, rs2289277, an eQTL
associated with genotype-dependent TSLP expression, was
an allelic enhancer variant in IL-13—stimulated TE-7 cells.
This finding suggests a mechanistic basis for the previously
reported elevated TSLP expression.

Accumulating epigenetic analyses have uncovered a
relationship between EoE and STAT motifs [48]. STAT3
strongly correlated with IL-13-induced esophageal
epithelial proliferation and expression of EoE proliferation
genes. Tissue-cultured EoE biopsies and IL-13-stimulated
esophageal epithelial cells expressed 82 differential genes,
with about half exhibiting STAT motifs. The relationship
between STAT1, STAT3, STAT4, STAT5a, and STAT6 and
transcription factors was analyzed using ChIP-X Enrichment
Analysis [49]; 32 of the genes targeted STAT3, establishing
STATS3 involvement. Nine genes associated with STAT6,
suggesting that STAT6 was not relevant to esophageal
epithelial growth [48]. However, STAT6 signaling by IL-13
regulates the inflammatory response of the esophagus.
Gene Ontology (GO) analysis [50] identified SFRPI as an
important regulator of IL-13-induced and STAT3-dependent
esophageal proliferation and basal zone hyperplasia (BZH)
in EoE [48].

Previous discovery of transcription factors stored in the
public databases have highlighted BZH involvement in
EoE [51]. A single-cell transcriptome of EoE biopsy tissue
and enrichment analyses utilizing either the ChEA3 2022
ChIPSeq database [52] or the enrichR-provided libraries
[53-55] captured dysfunctional, non-proliferating basal
clusters of esophageal epithelial cells. Examining those
cells’ differentiation process found SOX2, TP63, and
KLF5 as differentially expressed genes in the constructed
esophageal epithelial differentiation cluster for enrichment
and upstream regulators of stem cell self-renewal. As KLF5
was recently identified as a SOX2 binding partner [56], the
SOX2 and KLF5 interaction was further investigated [51].
Pseudo-temporal analysis indicated that SOX2 and KLF5
expression increased over time and distinct characteristics
of EoE epithelial cells, particularly in superficial esophageal
layers.

Limitations and future potential

With the growing interest in disease-relevant epigenetic
changes, many innovative analytical methods have been
developed. When using multi-omics data, appropriate
handling of data acquired by different methods is key [14].
Because of the different acquisition methods, these data
cannot be treated equivalently, and interpretations may
need to be treated independently. For example, integrating
separate CpG methylation data and microRNA data requires
that both data be acquired from the same sample. Another
way to address this challenge is to use known biological
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pathways or publicly available datasets to obtain estimates.
Although this approach can complement missing data, its
accuracy needs to be validated.

EoE transcriptomics

The transcriptome encompasses all RNA in a cell or group
of cells, reflecting dynamic changes across developmental
stages or in response to specific conditions [57]. Since the
1990s, the technologies for transcriptomics have progressed
from microarray technology to bulk RNA sequencing
(RNAseq) and more recently to single-cell RNA sequencing
(scRNAseq), each offering more detailed and unbiased
views of gene expression under various conditions. Indeed,
these advances have revealed a unique EoE transcriptional
signature, aiding in the understanding of EoE’s complex gene
regulation and functions. This section discusses how these
transcriptomic insights have advanced our understanding of
EoE pathogenesis (Fig. 2, Transcriptomics).

Identifying distinct transcript signatures

A significant advancement in understanding EoE occurred
when gene expression analysis of esophageal biopsies
identified a unique transcript signature that differentiates
patients with EoE from healthy controls and those with
chronic esophagitis. Since the first microarray-based
transcriptome analysis in 2006 [46], several studies utilizing
microarray and RNAseq have been conducted across
different cohorts [58—63]. These studies have consistently
identified a certain set of differentially expressed genes
that constitute the EoE transcriptome. Remarkably, this
transcriptome maintains a high degree of consistency across
variations in patient sex, age, and atopic history, and it shows
a strong correlation with esophageal eosinophil levels [46].

Among the EoE transcriptome, the most highly
upregulated gene is the eosinophil chemoattractant eotaxin-3
(CCL26) [64]. As a crucial member of the CC chemokine
family, CCL26 interacts with its receptor, CCR3, to activate
G protein signaling pathways, significantly enhancing
eosinophil chemotaxis and activation. Unlike other eotaxins,
CCL26 is uniquely upregulated in EoE, establishing a clear
association with eosinophil levels in esophageal biopsies
[46]. CCL26 increase can be found in eosinophilic gastritis
(EoG) and duodenitis but not eosinophilic colitis [2, 65-67].

Beyond eosinophil-related genes, the EoE transcriptome
also exhibits differential expression of various immune cell-
specific genes, including those associated with mast cells
[58]. Among them, CPA3 and TPSABI are highly expressed
in the EoE esophagus, underscoring the significant
involvement of mast cells in the inflammatory response. The
esophageal transcriptome specific to mast cells only partially

overlaps with that defined by eosinophil levels, suggesting
that mast cells and eosinophils contribute independently
to EoE pathology. This distinction is supported by recent
clinical trials in which EoE symptoms persisted despite
eosinophil-depleting therapies [68, 69], indicating the need
for further research to explore the distinct roles of these
immune cells in EoE.

A significant portion of the transcriptional changes occur
within the esophageal epithelium, affecting inflammatory
cell recruitment, tissue remodeling, and hyperproliferation
[70]. The non-keratinized, stratified squamous epithelium of
the esophagus displays significant histopathologic changes
in EoE, such as dilated intercellular spaces and an expanded
BZH. These alterations are significantly driven by IL-13,
which modulates gene expression and can replicate the
EoE transcriptome in ex vivo studies [59]. The epidermal
differentiation complex on chromosome 1q21, crucial for
epithelial differentiation and barrier function, also features
prominently in the EoE transcriptome. This includes genes
like filaggrin (FLG) and involucrin (/VL), which exhibit
unique expression patterns in the esophageal epithelium
[59]. Additionally, the transcriptome is enriched in genes
related to proteases and the IL-1 family, underscoring innate
immunity involvement [26]. Notably, decreased expression
of the serine protease inhibitor SPINK7 exacerbates
proteolytic activity and inflammation, providing key insights
into EoE pathogenesis [71].

Furthermore, certain transcriptomic changes persist
despite EoE remission, particularly involving genes
associated with fibrosis and tissue remodeling including
genes like periostin (POSTN) [72, 73]. Periostin is a
component of the extracellular matrix that interacts with
IL-13, mainly produced by Th2 cells and mast cells, and
TGF-f, mainly produced by eosinophils and mast cells
[74]. These interactions result in a dramatic upregulation
of POSTN expression in esophageal fibroblasts, which
contributes to the persistent fibrosis observed in the EoE
lamina propria [75]. The sustained high levels of periostin
promote eosinophil adhesion, collagen synthesis, and fibrotic
responses, reinforcing a feedback loop that exacerbates
tissue remodeling [73]. These dynamics highlight the
complexity of managing fibrosis in EoE and underscore
the need for targeted therapeutic strategies addressing these
specific molecular mechanisms.

Regarding the application of transcriptomics, the
development of the Eosinophilic Esophagitis Diagnostic
Panel (EDP) significantly advanced the clinical use of
transcriptome analysis [76]. This 96-gene qPCR array not
only excels at distinguishing patients with EoE controls, but
also facilitates RNA analysis from formalin-fixed or paraffin-
embedded tissues, thereby reducing the need for repeated
biopsies. The EDP enabled predicting inflammation and
detecting relapses from a single biopsy [77], understanding
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disease heterogeneity [78], identifying connections between
pain and mast cells [79], deciphering the mechanisms of
fibrostenosis [80], characterizing a similar molecular
signature between EoE and esophageal involvement
[81], and profiling remission markers [72]. The EDP has
substantially improved the diagnosis and understanding
of EoE pathophysiology, and future efforts will focus
on exploring genes not currently included in the EDP to
enhance its accuracy and clinical utility.

Collectively, transcriptome analysis technologies have
established EoE as a distinct disease with unique molecular
profiles and provided valuable insights into key molecules
that contribute to various changes observed in EoE.

scRNAseq

scRNAseq has provided profound insights into EoE
pathogenesis, revealing complex interactions among various
cell types at the cellular level, which bulk RNAseq cannot
delineate due to its analysis of mixed cell populations [82].

The first scRNAseq study in EoE involved 17 patients
with active EoE and 6 normal controls, focusing on specific
T cells [83]. This study highlighted a significant enrichment
of CD4 +regulatory T cells (FOXP3 +) and Th2 cells
(GATA3 +) within tissue-residing CD3 + T cells, localizing
type 2 cytokine production to these effector populations
and suggesting a role for FFAR3 in amplifying local Th2
responses in EoE. Further scRNAseq analyses have shown
an increase in pathogenic effector Th2 (peTH2) cells,
enriched in the NF-«xB signaling pathway, that associates
with esophageal eosinophil levels in patients with active
disease [84].

Analysis of esophageal epithelial cells revealed six
major cell lineages, with specific markers identifying
subpopulations such as epithelial cells, lymphocytes,
myeloid cells, mast cells, endothelial cells, and fibroblasts
[85]. Notably, esophageal epithelial cells and fibroblasts
demonstrated upregulation of genes critical in EoE
pathogenesis, such as CDH26, POSTN, ANO1, and CCL26,
whereas downregulated genes were primarily expressed in
the epithelial components.

A recent study on fibroblasts identified cell type—specific
expressions of EoE risk genes like NOVAI in the esophageal
fibroblasts and ATP10A in the PRDM16 + dendritic cells
enriched during active disease [86]. BZH, characterized
by abnormal increases in SOX2 and KLF5 expression, was
observed in EoE but not in reflux esophagitis, indicating that
reflux does not simply cause BZH [51].

Overall, advances in scRNAseq are unveiling detailed
and accurate transcriptomic data at the single-cell level,
providing deeper insights into the immune mechanisms,
epithelial barrier functions, and remodeling processes
in EoE. This technology is paving the way for a better
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understanding of the disease’s cellular and molecular
mechanisms.

Limitations and future potential

Traditional transcriptome analysis has provided valuable
insights into EoE, identifying key molecular signatures and
differentially expressed genes. However, this method often
loses critical spatial information once RNA is extracted,
obscuring how cells interact within their environments.
Spatial transcriptomics offers a solution by mapping
gene expression directly within tissue sections, capturing
subtle cellular interactions and variations [87]. Integrating
this method into EoE research could revolutionize our
understanding by identifying precise biomarkers for
diagnosis, predicting therapeutic responses, and monitoring
disease progression. Combining spatial transcriptomics with
scRNAseq could unveil detailed molecular and cellular
interactions, potentially leading to targeted treatment
strategies tailored to individual EoE profiles.

EoE proteomics

Proteomics involves the large-scale study of proteins to
understand their structures and functions [88]. Bottom-up
proteomics based on mass spectrometry has emerged as
a critical research technique for comprehensive protein
analysis. This method has seen rapid advances in both
device technology and data analysis, making it increasingly
accessible for a wide range of diseases (e.g., cancer, immune
diseases) [89-92]. To uncover novel biomarkers for disease
severity, differentiate between diseases, and provide deeper
mechanistic insights, proteomics is now being applied to
EoE; however, studies are still relatively scarce. This section
explores the types of proteomics and techniques recently
used in EoE research, highlighting significant findings
in pathologic analysis and biomarker discovery (Fig. 2,
Proteomics).

Most proteomics studies wutilize mass
spectrometry—based techniques, such as high-performance
liquid chromatography-mass spectrometry (HPLC-MS),
tandem mass spectrometry (MS/MS), and matrix-assisted
laser desorption/ionization time-of-flight MS/MS
(MALDI-TOF MS/MS) to analyze proteome composition
[93, 94]. These methods involve purifying and digesting
proteins from biological samples, identifying them by
analyzing spectral data from ionized peptides with a mass
spectrometer, and matching these data to known databases
[95].

EoE proteomic analyses have emerged to advance our
understanding of disease mechanisms, histologic changes
such as BZH, epithelial barrier, and fibrosis. For instance,
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the minichromosome maintenance (MCM) complex,
associated with proliferative epithelial cells, was found to be
significantly expressed in inflamed esophageal tissues, with
inhibition experiments (ciprofloxacin) highlighting MCM
as a potential therapeutic target [96]. Another proteomic
research study, by combining transcriptomic and functional
analyses, uncovered elevated levels of IL-20 subfamily
cytokines in active EoE, suggesting these cytokines as
novel therapeutic targets due to their role in downregulating
barrier-protective genes like filaggrin [97]. Furthermore,
using proteomics analyses of diseased and normal
esophageal fibroblasts cultured on autologous or opposing
derivative extracellular matrixes, thrombospondin-1 was
discovered and validated as a pathogenic mediator of EoE
fibrosis [98].

Comparative proteomic analyses have attempted to
identify potential biomarkers for EoE. Research has
revealed heightened expression of S-nitrosylated galectin-3
in the esophageal mucosa of patients with eosinophilia,
suggesting its potential as a biomarker [99]. Additionally,
liquid chromatography-tandem mass spectrometry (LC-MS/
MS) comparisons of esophageal biopsies from pediatric
EoE, gastroesophageal reflux disease (GERD), and healthy
controls identified eosinophil cationic protein (ECP) as
significantly upregulated in EoE [100]. Furthermore, a
study detected 363 differentially accumulated proteins
in patients with EoE compared to healthy subjects,
including eosinophil-associated proteins (e.g., RNASE2,
RNASE3, SERPINCI1, EPX, and PRG3) that correlated
with eosinophil counts and disease severity, proposing
new, minimally invasive biomarkers [101]. Another study
focused on the deposition of IgG4 and food proteins in the
esophageal mucosa of patients with EoE, identifying specific
eosinophil-derived proteins (e.g., PRG2, PRG3, EPX, and
RNASES3) and calpain-14 in IgG4-enriched regions using the
AutoSTOMP technique [102]. This research also confirmed
the IgG4 binding to various food allergens, advancing
our understanding of EoE’s immunologic responses and
informing potential targeted treatment strategies. Taken
together, these proteomic findings are instrumental in
advancing EoE diagnosis and treatment.

Limitations and future potential

Proteomics serves as a crucial tool for stratifying patients,
identifying therapeutic targets, and discovering biomarkers.
However, it faces several limitations that affect its utility. One
major challenge is the variability in protein expression due
to the severity of the disease and individual patient factors,
especially noticeable in studies with small sample sizes,
complicating data standardization. Additionally, the dynamic
range of protein quantification in mass spectrometry-based
proteomics is limited, which can restrict the detection of

low-abundance proteins. Looking to the future, advanced
proteomics techniques offer detailed protein information
that may be undetectable at the mRNA level, bridging
gaps left by transcriptome analysis. Recent technological
advancements now permit the detection of protein numbers
comparable to those identified in transcriptomic studies
[103]. Furthermore, innovative methods like multiplex
antibody assays, which utilize microliters of liquid samples
to target specific proteins without mass spectrometry, are
expanding the scope of detectable proteins [104]. These
developments necessitate careful methods and sample size
selection based on specific research goals. Moreover, the
potential for proteomics to facilitate less invasive diagnostic
approaches, such as liquid biopsies, is particularly promising
in pediatrics where traditional endoscopic assessments for
conditions like EoE are more invasive [89]. Liquid biopsy
could revolutionize the way pathologies are studied and
biomarkers are discovered, offering a minimally invasive
option to collect vital diagnostic information. This approach
holds great promise for enhancing phenotypic and pathologic
analyses across various diseases.

EoE other omics
Metabolomics and microbiomics

The recent increasing incidence of EoE suggests that
environmental factors may be influencing their development
[29]. Metabolomics, which directly measure metabolites
produced during cellular activities, can track pathologic
changes and aid in managing diseases [105]. This approach
is useful in food elimination therapy, where identifying
causative foods is challenging; measuring metabolites can
help assess treatment response and reduce patient burden.
Microbiomics reveal how alterations due to modern lifestyles
impact disease [106]. Factors such as drug use, breastfeeding
status, and environmental exposures contribute to microbial
imbalances that are closely linked to inflammation and
disease progression. This section covers these two omics
approaches separately (Fig. 2, Other Omics).

Metabolomics

Metabolomics analysis is categorized into non-targeted
and targeted methods. Non-targeted metabolomics
aims to analyze a broad spectrum of metabolites from
biological samples, utilizing techniques such as nuclear
magnetic resonance and mass spectrometry. LC-MS/MS is
widely used for its capability to detect a diverse range of
metabolites, making it ideal for comprehensive metabolic
profiling [107-110]. Targeted metabolomics focuses on
specific biochemical pathways, employing methods such
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as spectroscopy and flame ionization to provide detailed
characterization of specific metabolites. For example,
Raman spectroscopy [111] is a nondestructive analysis of
the chemical structure and interactions of materials. This
approach offers deep insights into specific biochemical
pathways, enhancing our understanding of metabolic
functions.

Raman spectroscopy analysis has revealed metabolite-
specific spectra associated with EoE in children [111].
The profile of the biochemical composition of esophageal
samples from 24 children with and without EoE pinpointed
spectral markers specific for EoE. Notably, Raman peaks
related to glycogen content were lower in children with EoE
than those without EoE. Additionally, the glycogen content
correlated inversely to lipid content and to the severity of
histopathology assessed by EoE HSS. These metabolites
might serve as spectral markers indicative of EoE activity
and the degree of pathology [112]. The study investigators
proposed that this inverse correlation is primarily driven by
the degree of eosinophilic inflammation, potentially linked
to peri-epithelial cells and BZH [111].

Microbiomics

Microbiomics comprises metagenomics,
metatranscriptomics, and metabolite-based metabolomics
[113]. Metagenomics involves sequencing the DNA of cells
from biopsies and swab specimens and mapping the genes
of the microbial community; it assesses microbial pathways
and abundance, but activity and contribution in disease is
difficult to assess [114]. Metatranscriptomics reveals activity
in the environment by identifying expressed transcripts
in the microbiome. Metabolomics evaluates changes in
microbial metabolites, such as lipids, carbohydrates, and
amino acids, and analyzes biochemical changes associated
with disease phenotypes; however, it is not suitable for
identifying microbial community types [105]. These
complementary methods contribute to validating the efficacy
of treatments, identifying environmental differences, and
elucidating effects on pathways. This section mainly focuses
on metagenomic analysis.

The disease activity in EoE influenced the composition
of the esophageal microbiota [115]. When comparing
microbiota of esophageal biopsies from 33 pediatric
subjects with EoE and 35 non-EoE pediatric controls,
a characteristic esophageal microbiome in EoE that is
influenced by EoE disease activity was shown. Distinctive
microbiota such as enrichment of Proteobacteria, including
Neisseria and Corynebacterium, in the esophagus
were reported in active EoE compared to non-EoE
controls. Also, comparing the esophageal inflammation
characteristic of EoE with inflammation due to other
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diseases revealed differences in bacterial communities
in the esophageal mucosa [116]. The esophageal string
tests of individuals who were healthy and those who
had treated EoE disease showed the association of
bacterial communities in the esophageal mucosa with
treatments. Although an increase in bacterial abundance
was observed in active EoE, the difference in bacterial
community composition between treated and untreated
EoE was limited, with active EoE having Haemophilus
significantly increased in the esophagus. Unlike active
EoE, GERD esophageal disease activity was not associated
with increased bacterial load in the EoE.

Different treatment choices for EoE, including steroid
therapy, proton pump inhibitors (PPIs), and dietary
modifications, have been shown to affect esophageal
microbial composition [117, 118]. Diversity analysis
and clustering have revealed that patients with EoE in
remission from these treatments exhibit distinct microbial
patterns. For example, the steroid treatment group
displayed a unique microbial composition. However, a
comparison of the esophageal microbiomes of 49 adults
with and without EoE found no significant correlations
between the microbiome and endoscopic findings, such
as exudates, ring changes, edema, grooves, stricture,
or esophageal dilatation. These results imply that the
esophageal microbiota, at the time of diagnosis in adults
with EoE, may not influence the disease’s pathophysiology.

Examining a large cohort revealed certain prominent
taxa in both the esophagus and stomach, reflecting
environmental biases [119]. "Streptococcus" and
"Prevotella" were identified as dominant in the EoE and
EoG samples, respectively. In addition, an increase in taxa
with Gram-negative cell wall structure was observed in the
EoE samples. This expansion of taxa with Gram-negative
cell wall structures may influence the inflammatory
process and suggests that this may be an important feature
in EoE pathogenesis.

A mouse model of EoE has provided insights into
how microbiota colonization influences esophageal
morphology and gene expression, highlighting pathways
particularly related to epithelial barrier function [120].
An abnormal microbiota, characterized by the absence of
lactobacilli, associated with key changes involving genes
such as POSTN, KLK5, and HIF 1, indicating a disrupted
esophageal microenvironment. After fecal microbiota
transplantation (FMT), Streptococcaceae were not detected
in the esophagus of any recipient mice. The absence is
consistent with natural transient variations in colony
formation. Moreover, it demonstrated how esophageal
microbiota in germ-free mice recovered post FMT. These
findings are helpful for advancing our understanding of
esophageal health and pathology.
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Limitations and future potential

The field of metabolomics faces the future challenge of
conducting large-scale quantitative analyses in EoE, which
currently lacks such studies. Additionally, integrating
microbiome data with other omics data presents specific
challenges, including biases introduced by variable
environmental factors, which can skew results across
different datasets. The gut microbiome—a diverse
community of microorganisms—plays a pivotal role in
immune system development and metabolic activity,
influencing the onset of digestive and atopic diseases. Factors
like drug use, breastfeeding status, and environmental
exposure contribute to microbial imbalances, which are
closely linked to inflammation and disease progression.
Some studies have explored the impact of PPI exposure on
the local microbiome and the interaction between toll-like
receptors (TLRs), such as TLR4, and lipopolysaccharides
[121-123]. However, it is unclear whether changes in the
microbiome initiate inflammation or result from pathology.
Further analysis with metabolites produced by microbiome
and integrating other omics will deepen new discoveries.

EoE treatment and omics

The results of the omics analysis in EoE contributed to
the development of treatments and are used to validate
their efficacy. PPIs and allergen elimination diet have been
typical initial treatment. They have been evaluated for
efficacy by omics analysis [124—126]. The elucidation of
biological mechanisms through omics analysis is driving
the development of new molecule-targeted drugs beyond
these two therapies. For example, the anti-IL-5 antibodies
mepolizumab, reslizumab [127, 128], the anti-IL-5Ra
antibody benralizumab [69], the anti-IL-13 antibodies
cendakimab [129] and dectrekumab [130], the anti-TSLP
antibody tezepelumab [131], and the anti-SIGLEC-8
antibody lirentelimab [132] are also in clinical trials.

Since 2022, the FDA has approved two drugs for EoE:
dupilumab in May 2022 [9, 133] and BOS in February 2024
[10] (Fig. 2, FDA approved). It is remarkable that dupilumab,
a monoclonal antibody against IL-4Ra, improved
dysphagia, change in peak eosinophil count, endoscopic
severity, histologic severity, and esophageal distensibility
compared to placebo and that the EoE transcriptome was
reversed [133]. There is no omics evaluation for BOS, but
it has been reported that daily administration of high-dose
fluticasone propionate resulted in histologic remission
in 65-77% of patients with EoE after 3 months and that
the gene expression pattern was similar to that of patients
without EoE [134]. In the future, omics analysis will further
elucidate the molecular pathophysiology of EoE, which will

in turn facilitate the development of new drugs. Integration
of clinical manifestations, histologic responses, and omics
data will be essential in the evaluation of new drugs.

Integrating omics in EoE (multi-omics)

Large-scale quantitative analysis using next-generation
sequencers has enhanced the integrated analysis of omics
data. The integration has been achieved through statistical
analysis, utilizing classifications such as genome-first,
phenotype-first, and environment-first to identify statistically
significant pathways [135]. In recent success of machine
learning, multi-omics integration has evolved to include
deep learning models, which offer broad interpretability.
These models typically employ one of two approaches
based on the sequence of omics data integration and training,
addressing challenges posed by incomplete datasets and
missing values. This advancement is crucial, helping to
understand complex biological interactions. This section
explores the multi-omics integration strategies employed in
EoE studies, highlighting their potential to uncover novel
insights into the disease.

Multi-omics analysis

The development of the EOE TaMMA [136], derived from
the Multi-Omics Factor Analysis (MOFA) framework
[137] has elucidated a predominance of microbiota
abnormalities in EoE pathogenesis. Through the analysis
of biological processes using transcriptomics and meta-
transcriptomics profiling, specific microbial signatures that
distinguish EoE from GERD and controls were identified.
Advanced deconvolution techniques, such as MuSiC [138]
and CIBERSORTX [139], were utilized to further refine
the datasets. Importantly, bacterial species distinctively
abundant in EoE were identified, with 9 candidates emerging
as specific markers for EoE in the esophagus. Additionally,
the analysis enabled the development of 4 multilayered
molecular signatures that effectively differentiate EoE
patients from controls. These findings point to microbial
dysbiosis as a key factor in EoE pathogenesis. This
framework proves highly applicable for integrating various
omics datasets, providing a starting point for further multi-
omics studies in EoE.

Integrated analysis of transcriptomics and metabolomics
has linked transcriptomic signatures to specific metabolites
and immune components in French children with EoE
[140]; utilizing liquid chromatography coupled with high-
resolution statistical analysis via the DIABLO model
[141] identified 4 key plasma immune components and
8 metabolites that significantly associated with EoEs.
Furthermore, supervised partial least square-discriminant
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analysis (PLS-DA) demonstrated high accuracy in predicting
EoE status, providing a comprehensive view of both
cellular and soluble immune components in esophageal
biopsies from affected children and controls. The study
also emphasized the potential benefits of translating these
biopsy results into viable serologic tests that could assess
the presence and/or severity of EoE, marking a prominent
advance in diagnostic methodologies.

Limitations and future potential

Recent developments in data integration research have
advanced data integration strategies that combine data
from multiple omics analyses. For instance, a study
examined esophageal dysbiosis by integrating omics data
[136]. A multimodal learning model that integrated biopsy
tissue images and omics data technique was important for
elucidating EoE genetic mechanisms [142-146]. Future
studies should incorporate new analysis methods, such as
spatial omics analysis [147] and Cut&Run [148], while
integrating them with the vast amount of existing omics
data. These new techniques are poised to extract meaningful
information and provide insight on processes involved in
developing EoE.

Data integration of omics data and extracting significant
information has been done in the past, but there are two
challenges [149]. The first is the comprehensiveness of
the dataset, and the second is having enough data points to
approach the true probability distribution of the objective
variable. Overfitting to achieve apparent high accuracy or
underfitting due to insufficient data can lead to a misguided
understanding of diseases with complex mechanisms.
However, the nature of rare diseases makes it difficult to
prepare large datasets. A framework for rare diseases with
small data sizes is urgently needed to approach the true
probability distribution. In addition, compensating for
deficiencies by collecting and reanalyzing existing publicly
available data and performing more accurate deconvolution
will be required in the future. The analysis of omics data and
its comparison with in vivo and in vitro observations will aid
in the future understanding of diseases.

The long-term prognosis of current treatments is not
clear. Among the approved therapies, Dupilumab can be
administered to children over 1 year of age but requires
weekly injection [9], which raises concerns about its use
as a treatment for children. BOS has not been proven safe
and effective in the treatment of EoE beyond 12 weeks [10].
Data on the long-term effects of continuous administration
are lacking, and these continued doses may increase the
economic burden on patients and healthcare systems.

To address these issues, further understanding EoE
molecular mechanisms is urgently needed: applying machine
learning to predict molecular mechanisms and analyzing
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patient characteristics will impact future research results.
These approaches can accelerate research by highlighting
notable candidates for existing experimental methods.
These technological advances will help to elucidate further
mechanisms of the disease and lead to the development of
therapeutics that will offer a fundamental cure.

Conclusion

In this review, we discussed advances in omics data for EoE.
Elucidating the disease mechanism by each omics analysis
has resulted in FDA approval of two therapeutic drugs. In
the future, further development is expected in delineating
disease mechanisms through each omics analysis and multi-
omics analysis using tissue imaging data and other omics
data.
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