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Simple Summary: Closing the life cycle of the European eel in captivity is urgently needed to gain
perspective for the commercial production of juvenile glass eels. Larvae are produced weekly at our
facilities, but large variations in larval mortality are observed during the first week after hatching.
Although much effort has been devoted to investigating ways to prevent early larval mortality, it
remains unclear what the causes are. The aim of this study was to perform a transcriptomic study
on European eel larvae in order to identify genes and physiological pathways that are differentially
regulated in the comparison of larvae from batches that did not survive for longer than three days
vs. larvae from batches that survived for at least a week up to 22 days after hatching (non-viable
vs. viable larvae). In contrast to earlier published studies on European eel, we conclude that larvae
exhibit immune competency. Non-viable larvae initiated an inflammatory and host protection
immune response and tried to maintain osmoregulatory homeostasis. As a perspective, microbial
control and salinity reduction might benefit eel larvae in terms of lower mortality and improved
development by lowering the costs of immune functioning and osmoregulation.

Abstract: In eels, large variations in larval mortality exist, which would impede the viable production
of juvenile glass eels in captivity. The transcriptome of European eel larvae was investigated to
identify physiological pathways and genes that show differential regulation between non-viable
vs. viable larvae. Expression of genes involved in inflammation and host protection was higher,
suggesting that non-viable larvae suffered from microbial infection. Expression of genes involved in
osmoregulation was also higher, implying that non-viable larvae tried to maintain homeostasis by
strong osmoregulatory adaptation. Expression of genes involved in myogenesis, neural, and sensory
development was reduced in the non-viable larvae. Expression of the major histocompatibility
complex class-I (mhc1) gene, M-protein (myom2), the dopamine 2B receptor (d2br), the melatonin
receptor (mtr1), and heat-shock protein beta-1 (hspb1) showed strong differential regulation and
was therefore studied in 1, 8, and 15 days post-hatch (dph) larvae by RT-PCR to comprehend the
roles of these genes during ontogeny. Expression patterning of these genes indicated the start of
active swimming (8 dph) and feed searching behavior (15 dph) and confirmed immunocompetence
immediately after hatching. This study revealed useful insights for improving larval survival by
microbial control and salinity reduction.

Keywords: European eel Anguilla anguilla; aquaculture; immune system; osmoregulation; morpho-
genesis; RNA-Seq
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1. Introduction

European eel cannot be propagated. Eel farms depend on wild-caught glass eels that
are grown to marketable size. Closing the production cycle of this species is urgently
needed to ensure the supply of young juvenile glass eels. European male eels were first
matured by injection of urine from pregnant women ([1]; containing human chorionic
gonadotropin–hCG), females by hypophysation (i.e., weekly injection of pituitary extracts)
in the 1960s [2], and eggs were first fertilized in 1980 [3], after which the first larvae were
produced in the early 1980s [4]. Although several groups can now produce larvae of
European eel on a regular basis [5–8], massive mortality often occurs [9,10], particularly
during the first week after hatching. Survival rates during the first week vary widely from
0 to 90% in European eels [10]. The life cycle for the Japanese eel has been closed [11], but
still, first week survival ranges from 15 to 92% [12]

For most marine fish species in aquaculture, the high and unpredictable mortality in
larvae remains a challenging problem that needs to be solved [13]. Although egg quality
and larval nutrition have been considered as the main causes of larval mortality, these fac-
tors cannot explain the considerable variation in mortality between full sibling groups that
are treated equally [13,14]. Accumulating evidence suggests that detrimental fish–microbe
interaction is the main cause of larval mortality in marine species like turbot, halibut, plaice,
and sea bass [14]. In teleost fish, early larvae mostly rely on a complex network of innate
defense mechanisms (physical barriers, cellular defenses, and inflammatory cytokines) to
orchestrate a rapid immune response against the hostile environment (reviewed by [13]).
For European eels, it has been recently hypothesized that early larvae are immunocom-
promised and highly sensitive to pathogens [15]. Besides defense against antigens, early
larvae need to cope with seawater salinities and thus face ion invasion and dehydration.
In teleost fish, early larvae are already able to osmoregulate at hatching and this ability
increases with age, as reviewed by [16]. Early larvae of the Japanese eel A. japonica possess
numerous ionocytes with multicellular complexes that are essential for salt secretion [17]
and they drink as early as hatching to compensate for water loss [18].

Besides coping with the external environment, early fish larvae need to grow, develop,
and survive. During the first 12 to 20 dph, depending on the temperature, European eel
larvae feed on yolk reserves (depleted around 14 dph at 20 ◦C; [6]). Quantity and quality
of the yolk and oil droplet might affect larvae survival in marine fish [19]. In European
eels, the rate of yolk consumption was the same between larval batches, but larvae with
more yolk reserves had a survival advantage over those having smaller ones [6]. In teleost
fish, yolk resorption coincides with the development of the digestive system indicating
that most yolk is used for organogenesis [6,20–22]. In teleost fish, the predominant changes
in gene expression during early larval development are related to neural development,
sensory system, muscular development, ossification, digestive function and the regulation
of metabolic pathways reviewed by [23].

In European eels, neural development starts as early as embryogenesis since brain rudi-
ments are already observed at 22 h post fertilization at 20 ◦C [6]. Although eye rudiments
are observed in embryos, the visual system becomes functional until eye pigmentation
at 8 dph in European eels at 20 ◦C [6] and in Japanese eels at 19 ◦C [24]. Therefore, the
most prominent sensory system in new hatchlings might be that of mechanoreception
since New-Zealand eel larvae respond to movements of the beakers that they are in [25].
Like most fish species reviewed by [26], the digestive system of eel larvae is still largely
underdeveloped at hatching [6,27]. In new hatchlings, the digestive tract is close to the oil
droplet and develops into a straight and narrow tube at 6 dph at 20 ◦C [28]. The mouth is
observed at 3 dph, undergoes profound changes at 5 dph, develops lower and upper jaws at
8 dph [6] and starts moving when the musculoskeletal anatomy has sufficiently developed
at 12 dph at 20 ◦C [29]. A recent study in Japanese eel showed that dentary and maxillary
ossification at the jaw starts at 10 dph between 23–26 ◦C [30]. Expression of appetite (ghrelin
and cholecystokinin) and digestion (amylase, trypsin and lipase) enzymes was all detected at
hatching and increased through endogenous feeding to reach increased values prior to or
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at the onset of exogeneous feeding at 14 dph in European eels at 18–20 ◦C [28,31,32]. In fish
larvae, but also in other vertebrates, the metabolic rate influences the amount of energy
available and therefore larvae survival. Eel larvae have a unique body composed mainly of
glycosaminoglycans that are non-metabolizing compounds [33]. In sharp contrast with
other species, eel larvae can grow to large size with minimal metabolic activity [33,34].

Although much effort has been devoted to understanding larval mortality (European
eels: [6,15,35,36]; Japanese eels: [37–41]), it remains unclear what goes wrong during early
ontogeny of artificially reproduced eels. With recent advances in sequencing technology,
transcriptomic approaches have been widely used to understand marine fish larvae devel-
opment [23]. In Japanese eels, deep RNA sequencing has been recently applied for studying
processes of digestion and absorption in early life stages [42] and maternal transcripts in
good and poor quality eggs [43]. In European eels, there is still a lack of transcriptomic
data covering the early ontogeny of European eels and filling this gap would be essential
to identify pathways and genes marking important critical events during early ontogeny.

The aim of this study was to perform a transcriptomic study on European eel larvae to
identify genes and physiological pathways that show differential regulation in non-viable
vs. viable larvae. Larvae collected at 1 dph from batches that survived for at least a week
were classified as viable larvae, while those from batches that survived less than 3 dph
were classified as non-viable larvae. From the RNA-seq data, differentially expressed
genes (DEGs) were analyzed between non-viable vs. viable larvae to understand what
goes wrong during early ontogeny in the first week following hatching. Furthermore, we
investigated the expression patterns of several highly differentially expressed genes (mhc1,
myom2, d2br, mt1r and hspb1) by RT-PCR in 1, 8, 15 dph larvae to further comprehend the
changes in molecular regulation of processes they are involved in.

2. Materials and Methods
2.1. Broodstock

Female broodstock eels were transferred as elvers from Palingkwekerij Koolen BV
(Bergeijk, The Netherlands) to the animal experimental facilities of Wageningen University
& Research (CARUS, Wageningen, The Netherlands). Elvers were feminized by feeding
them with 17β-estradiol (E2) coated pellets over a 6 month-period [44]. After an additional
6 months of feeding them with a custom-made broodstock diet, eels of ~400 g were selected,
transferred to seawater (Tropic Marine, 36 ppt) and fed no longer. For 2 months, eels were
then subjected to simulated migration: constant swimming in the dark at daily alternating
temperatures between 10 and 15 ◦C to make them silver [45]. Also wild silver females
(250–800 g) and males (100–200 g; Van Harinxma Canal, The Netherlands) were used
as broodstock.

2.2. Induction of Gametogenesis

For induction of gametogenesis, females were transferred to 373 L-tanks (16 ◦C, 36 ppt)
and treated with a steroid implant for an additional 2 months [46,47]. Females were then
weekly injected with carp pituitary extracts (CPE) at a dose of 20 mg·kg−1 over a period
of 7–15 weeks to induce vitellogenesis and oocyte maturation, and injected with 17α,20β
-dihydroxy-4-pregnen-3-one (DHP) at a dose of 2 mg·kg−1 to induce ovulation following
previously described procedures [48,49]. Females were then placed in a tank in which the
temperature was gradually increased from 18 to 20 ◦C and when females were ready to
spawn after 11–15 h after DHP injection, eggs were stripped by applying gentle pressure
along the abdomen.

Male eels were matured by a single hCG injection [50]. Twenty-four hours before
use, males were checked for spermiation by applying gentle pressure along the abdomen.
Spermiating males (n = 3–6) received another hCG injection to enhance high quality sperm
production [51]. Before stripping the eggs, sperm was collected by stripping these males
and used for fertilization.
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2.3. Fertilization and Egg Rearing

Eggs were collected in dry bowls and gametes were gently mixed. Artificial seawater
(Tropic Marine, 36 ppt, 18 ◦C) prepared by using reverse osmosis filtration was added
to the bowls for gamete activation and fertilization for 5 min. Eggs were then incubated
under dark conditions in 3L-beakers (n = ~1000 eggs per liter) filled with the previously
described artificial seawater. Every 12 h, dead material was removed and half volume of
the water was refreshed. After hatching (~60 hpf), larvae were stocked in plankton nets
hanging in conic tanks connected to a 338 L recirculating system with artificial seawater
(36 ppt, 18 ◦C) at an exchange rate of 5%/d. Larval longevity (i.e., the number of dph that
larvae survived) was monitored for each batch.

2.4. Larvae Collection

Larvae (n = 10) were randomly collected and pipetted in RNAlater (ThermoFisher,
Waltham, MA, USA) at 1 dph for later RNA-Seq analysis. Larvae that survived less than
3 dph were classified as coming from a non-viable batch, while those that survived for at
least a week were classified as viable. Larvae that were used for RNA-Seq analysis are
listed in Table 1. For gene expression analysis, larvae (n = 10) were collected at 1 dph,
8 dph, and 15 dph (Figure 1) and pipetted in RNAlater. In general, 1 dph larvae did not
show malformations in our study, which is in sharp contrast with the 8 and 15 dph larvae.
Therefore, only larvae that did not show aberrant malformations (e.g., broken jaw, curved
tail) were selected at 8 dph and 15 dph.

Table 1. Non-viable and viable larvae used for RNA-Seq analysis. Hatching time was expressed in
hours post fertilization (hpf). Larvae viability was estimated by larvae longevity in days post-hatch
(dph) to classify non-viable and viable larvae used for RNA-Seq.

Female ID Hatch (hpf) Longevity (dph) Larvae Viability

847C 51 1 Non-viable
B43C 51 3 Non-viable
F8E1 72 1 Non-viable
044B 52 16 Viable
D785 60 22 Viable
AB79 59 7 Viable

2.5. RNA-Sequencing

RNA-Seq was performed on the RNA of non-viable larvae (n = 3 samples) and viable
larvae (n = 3 samples). RNA from larvae was isolated using a miRNeasy Kit (Qiagen). RNA
concentrations measured with the Bio-Analyzer ranged between 38.7 and 137 ng µL−1 and
RIN values were generally 7.5 to 9.4. All RNA-Seq libraries were sequenced on an Illumina
NovaSeq6000 sequencer as Illumina Paired-end 2 × 150 nt run (10 Mreads; 3 Gb), according
to the manufacturer’s protocol. Illumina multiplexed RNA-Seq libraries were prepared
from 0.5 µg total RNA using the Illumina TruSeq Stranded mRNA Library Prep according
to the manufacturer’s instructions (Illumina Inc., San Diego, CA, USA). Image analysis and
base calling were done by the Illumina pipeline. A total of 16 up to 32 million raw read
counts were derived per sample. Quantitative analysis of the RNA-Seq datasets was per-
formed by alignment of reads against the European eel Anguilla anguilla reference genome
(https://www.ncbi.nlm.nih.gov/genome/10841?genome_assembly_id=59496 accessed on
20 May 2014) using TopHat (version 2.0.13; [52] Center for Computational Biology at Johns
Hopkins University, Baltimore, MD, USA; options: tophat -o “file_address” -i 50 -p 10 –
library-type fr-unstranded –b2-very-sensitive –no-coverage-search –GTF Ref_genome.gff
Ref_genome R1.fastq R2.fastq) and 9.8–16.7 million (53–62%) of the RNA-Seq reads could
be mapped. Reference alignment was done, and the resulting files were filtered using
SAMtools (Wellcome Genome Campus, Hinxton, Cambridgeshire, UK; version 1.2 us-
ing htslib 1.2.1; [53], secondary alignments were removed using the command: sam-

https://www.ncbi.nlm.nih.gov/genome/10841?genome_assembly_id=59496
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tools view -h -o file.sam -F 0x0100 file.bam) to exclude secondary alignment of reads
(~5.3%). For statistical comparison of gene expression levels between groups, aligned
fragments per predicted gene were counted from SAM alignment files using the Python
package HTSeq (https://readthedocs.org/projects/htseq/; version 0.6.1p1) [54]. In or-
der to make comparisons across samples possible, these fragment counts were corrected
for the total amount of sequencing performed for each sample. As a correction scal-
ing factor, we employed library size estimates determined using the R/Bioconductor
(https://bioconductor.riken.jp/packages/3.4/bioc/html/DESeq.html; release 3.3.2) pack-
age DESeq [55]. Read counts were normalized by dividing the raw counts obtained from
HTSeq by its scale factor. Aligned reads were processed using DESeq whereby treatment
groups were each compared with the control group. Raw RNA-Seq data (reads) have been
submitted to NCBI’s SRA database with reference PRJNA735388
(http://www.ncbi.nlm.nih.gov/bioproject/735388; SAMN19580333-SAMN19580338; Tem-
porary Submission ID: SUB9805749; Release date: 6 June 2021). The comparison non-
viable vs. viable larvae at 1 dph was analyzed to assess differential gene expression
and their functional clustering during early ontogeny by GO analysis using UniProt (
https://www.uniprot.org/).
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Figure 1. Larvae of European eel Anguilla anguilla at (A) one day post hatch (dph); (B) 8 dph, and (C) 15 dph. At 1 dph, new
hatchlings hang in the water column with large yolk-reserves. At 8 dph, larvae start swimming and develop upper and
lower jaws. Eyes become pigmented. At 15 dph, larvae swim actively. Yolk-reserves are almost depleted, the protruding
teeth are formed, and larvae should start exogenous feeding. Eyes are completely pigmented.

2.6. Gene Expression
2.6.1. Gene Description and Primer Designs

From the RNA-Seq data, differentially expressed genes marking important functional
processes were selected and further examined by RT-PCR in the 1, 8, and 15 dph larvae.
These genes were the major histocompatibility complex class I (mhc1), M-protein (myom2),
the dopamine 2B receptor (d2br), the melatonin receptor (mtr1), and heat-shock protein beta-
1 (hspb1). Primers were designed on the basis of the cDNA contig sequences of the Illumina
assembly of European eel. Primers previously developed for d2br [56] were aligned with
the cDNA contigs to check whether the primers shared 100% sequence identity between
the cDNA contigs and oligonucleotide sequence. Primers previously developed for the

https://readthedocs.org/projects/htseq/
https://bioconductor.riken.jp/packages/3.4/bioc/html/DESeq.html
http://www.ncbi.nlm.nih.gov/bioproject/735388
https://www.uniprot.org/
https://www.uniprot.org/
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housekeeping gene 60s ribosomal protein l36 (l36) was used [56,57]. Primers used for qPCR
analysis and designed using Primer3 v.0.4.0 [58,59] are listed in Table 2.

Table 2. Primers used for each target gene with Abv: abbreviation; G: sequence obtained from the A. anguilla genome [60,61];
T◦: annealing temperature and bp: base pair.

Target Genes Abv. Accession Number Primer Sequences T◦ Product Size (bp) Efficiency (%)

60s ribosomal
protein l36 L36 G

FW: CCTGACCAAGCAGACCAAGT
62 160 91RV: TCTCTTTGCACGGATGTGAG

Dopamine
receptor-2B D2br DQ789977 FW: CACGCTACAGCTCCAAAAGAA

60 186 92RV: TGAAGGGGACATAGAAGGACAC

Melatonin receptor MT1R Contig sequence FW: CGACAAGAACTCCCTGTGCTA
62 175 92RV: CAGGATGAAGTGGAAGAAGACC

M-protein Myom2 Contig sequence FW: GATGCAAAGATCACTCAGTCCA
62 160 106RV: CGTATTTGCCTTTGTCCTTCTC

MHC-I MHCI Contig sequence FW: CATGTGACCGGATTCTACCC
64 200 91RV: TGTTTCAGGCTCTTGTGCTGT

Hspb1 Hspb1 Contig sequence FW: GGGGCATATCCGAGATCAA
62 104 93RV: GACTCCATCCCTGGTCTTCAC

2.6.2. RNA Isolation

Total RNA was isolated from larvae (n = 10) collected at 1, 8, and 15 dph larvae with
Trizol Reagent as described by the manufacturer (Invitrogen, California, USA). RNA con-
centration measured with the nanodrop was 1333 ± 832, 407 ± 2225, and 185 ± 80 ng µL−1

at 1, 8, and 15 dph, respectively. Possible traces of DNA were digested with the ISOLATE
II RNA Mini Kit (Bioline, London, UK). Complementary DNA (125 ng µL−1) was gener-
ated from RNA using dNTPs and random primers with Superscript III (ThermoFisher,
Waltham, MA, USA). RNA purity was assessed by spectrophotometry; the 260:280 ratios
were 2.1 ± 0.1 and the 260:230 ratios were 1.5 ± 0.4. RNA integrity was checked on an
Agilent bioanalyzer 2100 (Agilent technologies, CA, USA) and no RNA breakdown was
observed on the gel.

2.6.3. Quantitative RT-PCR

Quantitative real-time PCR was performed with SensiFAST™ SYBR® Lo-ROX Ki (Bio-
line, London, UK) on a QuantStudioTM-5 Real-Time PCR system (ThermoFisher, Waltham,
MA, USA). Reactions were heated for 2 min at 95 ◦C followed by 40 cycles of denaturation
at 95 ◦C for 5 s and annealing temperature at 60–64 ◦C for 20 s. Melting curves from
60 ◦C to 95 ◦C holding during 20 s and 1 s, respectively, were generated to check for
primer-dimer artifacts and reaction specificity. Primer efficiencies were determined by
generating standards for the housekeeping gene 60s ribosomal protein l36 (l36) and selected
target genes (d2br, mtr1, hspb1, mhc1, myom2). Standard curves were generated by diluting
cDNA at 1:5 for l36 (Ct5

−1: 21.9; Ct5
−2: 24.2; Ct5

−3: 26.6; Ct5
−4: 29.1; Ct5

−5: 31.8), mhc1
(Ct5

−1: 22.9; Ct5
−2: 25.3; Ct5

−3: 27.7; Ct5
−4: 30.2; Ct5

−5: 32.9), myom2 (Ct5
−1: 25.8; Ct5

−2:
27.9; Ct5

−3: 30.2; Ct5
−4: 32.8; Ct5

−5: 35.2; Ct5
−6: 36.6) and at 1:2 for mtr1 (Ct2

−1: 28.8;
Ct2

−2: 30.1; Ct2
−3: 31.2; Ct2

−4: 32.0; Ct2
−5: 33.2), d2br (Ct2

−1: 28.5; Ct2
−2: 29.3; Ct2

−3: 30.3;
Ct2

−4: 31.7; Ct2
−5: 32.1; Ct2

−6: 33.7; Ct2
−7: 34.9) and hspb1 (Ct2

−1: 25.9; Ct2
−2: 26.8; Ct2

−3:
27.9; Ct2

−4: 28.7; Ct2
−5: 29.6; Ct2

−6: 31.4). R2 values and efficiency for all standard curves
were >0.98 and 90–110%, respectively (c.f., MIQE guidelines in [62]). Data were expressed
as fold change by using the 2T−∆∆C method [63]. Transcript levels of each target gene were
normalized over l36 since expression levels were not significantly different between groups
(p > 0.96).

2.6.4. Statistical Analysis

Means of normalized copy numbers of each target gene were compared between 1, 8,
and 15 dph larvae using the Kruskal–Wallis test followed by a pairwise Wilcoxon-test for
multiple comparisons among groups. Data are expressed as mean ± standard deviation
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and differences were considered significant at p < 0.05. Statistical analysis was performed
in R (version 3.2.4; R foundation for statistical computing, Vienna, Austria).

3. Results
3.1. Eel Larvae Transcriptomics

The comparison of non-viable vs. viable larvae yielded 36,160 transcripts that were
associated with NCBI A. anguilla genes. The comparison non-viable vs. viable showed
that 35,802 transcripts were not differentially expressed (Table S1). Of these transcripts,
several genes were highly abundant (based on the mean number of reads). Many genes
involved in innate immunity (e.g., toll-like receptor 7, Toll-interacting protein, complement C3)
were highly abundant in 1 dph larvae. In addition, several transcripts associated with
osmoregulation (e.g., claudin-23, claudin-5, claudin-1, claudin-7), muscular development
(e.g., myosin heavy chain, troponin C, troponin T, collagen alpha), neural development (e.g.,
neurabin-1-like, neurabin-2), sensory development (e.g., melanopsin-A-like, beta-crystallin B3,
ketimine reductase mu-crystallin), and in Wnt signaling (e.g., Wnt-bd domain containing protein,
WNT1-inducible-signaling pathway protein 1-like, protein Wnt-11) were highly abundant. Ad-
ditionally, several genes encoding digestive enzymes relating to lipid hydrolysis showed
high abundancy (e.g., lipoprotein lipase, monoglyceride lipase, endothelial lipase, group XIIA
secretory phospholipase A2, cytosolic phospholipase A2) in 1 dph larvae. One transcript related
to protein hydrolysis (cationic trypsin-like) was highly abundant in 1 dph larvae, while sev-
eral transcripts related to carbohydrate hydrolysis were moderately present (e.g., pancreatic
alpha amylase-like, alpha amylase). Furthermore, several transcripts associated with hyaluro-
nan metabolism (inter-alpha-trypsin inhibitor heavy chain H3-like, inter-alpha-trypsin inhibitor
heavy chain H2, inter-alpha-trypsin inhibitor heavy chain H5-like) were highly abundant in
1 dph larvae.

The comparison non-viable vs. viable larvae showed significant differential expression
of 358 genes at p < 0.05 (Table S2). Of these 358 differentially expressed genes (DEGs),
expression of 123 genes showed high fold change expression (e.g., upregulated expression)
and expression of 235 genes had low fold change (e.g., down-regulated expression). Among
these DEGs were several genes involved in the immune response (Table S3) and associated
with GO terms such as pathogen recognition-destruction (mhc1, complement component
C7, pentraxin), inflammation (interleukin 17-C, nlrp12) and host protection (complement
factor H, arginase-2, leukocyte elastase inhibitor, complement decay-accelerating factor) on the
biological process level. From these DEGs, seven out of nine showed high fold change
expression in non-viable vs. viable larvae, as shown in Table 3. Additionally represented
were several DEGs involved in osmoregulation (Table 4). From these DEGs, five out of six
showed high fold change expression in non-viable vs. viable larvae. These DEGs were
associated with osmosensing and Ca2+ homeostasis (extracellular calcium-sensing receptor-
like), gill tissue reshaping (claudin-4), hyperosmolarity compensation (sodium/myo-inositol
cotransporter-like), water/salt absorption (guanylin precursor), and salt secretion (claudin-10).
Furthermore, additional important DEGs were involved in morphogenesis (Table 5) and
associated with GO terms such as muscle development (hspb1, cGMP, troponin I, myom2),
neural development (Pro-neuregulin-1, CUB and sushi domain-containing protein 3, homeobox
protein Lhx2, homeobox protein otx2, homeobox protein pnx, disintegrin and metalloproteinase
domain-containing protein 22, mt1r, Protocadherin-16, d2br), sensory system (vertebrate ancient
opsin-like, LIM/homeobox protein Lhx2, norrin, putative transmembrane channel-like protein 1),
Wnt signaling (norrin-like, receptor-type tyrosine-protein phosphatase O, CXXC-type zinc
finger protein 4), and in various aspects of morphogenesis (T-box transcription factor TBX1,
homeobox protein DLX-6, homeobox protein DLX-2).
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Table 3. Genes associated with the immune response that are differentially expressed in non-viable
larvae in comparison with viable larvae in European eel Anguilla anguilla. Both groups represent
larvae samples taken 1 dph after which non-viable larvae survived less than 3 dph while viable
larvae survived for at least a week up to 22 dph.

Description Fold Change

Interleukin-17C 29.0
Complement decay-accelerating factor isoform X1 5.2

Pentraxin fusion protein-like 2.9
Nlrp 12 (NACHT, LRR and PYD domains-containing protein 12-like) 2.8

Leukocyte elastase inhibitor 2.6
Arginase-2, mitochondrial 2.3
Complement factor H-like 2.3

Complement component C7 −7.6
MHC1 (Class I histocompatibility antigen, F10 alpha chain-like) −17.7

Table 4. Genes associated with osmoregulation that are differentially expressed in non-viable larvae
in comparison with viable larvae in European eel Anguilla anguilla. Both groups represent larvae
samples taken 1 dph, after which non-viable larvae survived less than 3 dph while viable larvae
survived for at least a week up to 22 dph.

Description Fold Change

Extracellular calcium-sensing receptor-like 39.4
Claudin-4 7.1

Sodium/myo-inositol cotransporter-like 3.9
Guanylin precursor 2.9

Claudin-10-like isoform X2 2.8
Claudin-16-like isoform X1 −7.9

3.2. Eel Larvae Temporal Expression

Expression of mhc-I was high throughout larval development with low Ct values
in 1, 8, and 15 dph larvae (1 dph: 24.2 ± 0.65; 8 dph: 24.6 ± 0.98; 15 dph: 24.0 ± 0.66).
Expression of mhc-I did not change with larval development (Figure 2A, p > 0.2295). In
contrast, myom2 expression decreased during early ontogeny (Figure 2B, p < 0.0019) and
was downregulated in 8 dph (p < 0.0102) and 15 dph (p < 0.0052) larvae. Transcript
levels of d2br increased during early ontogeny (Figure 2C, p < 6.12 × 10−5). Expression of
d2br was approximately 6-fold and 13-fold higher in 8 dph and 15 dph, respectively, when
compared with 1 dph larvae. Like d2br, mrt-1 expression increased with larval development
(Figure 2D, p < 8.74 × 10−5). Expression of mrt-1 was approximately 11-fold and 13-fold
higher in 8 dph and 15 dph, respectively, when compared with 1 dph larvae. Transcript
levels of hspb1 significantly increased during early ontogeny (Figure 2E, p < 6.12 × 10−5)
and fold change peaked in 15 dph larvae with over 43-fold.

Table 5. Genes associated with morphogenesis that are differentially expressed in non-viable larvae
in comparison with viable larvae in European eel Anguilla anguilla. Both groups represent larvae
samples taken 1 dph, after which non-viable larvae survived less than 3 dph while viable larvae
survived for at least a week up to 22 dph.

Description Fold Change

Muscle development
Heat-shock protein beta-1 like 5.9

cGMP-dependent protein kinase 1-like −4.0
Troponin I slow skeletal muscle-like −4.8

Myom2 (M-protein, striated muscle-like isoform X1) −10.5
Neural development
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Table 5. Cont.

Description Fold Change

Pro-neuregulin-1, membrane-bound isoform X1 6.7
Csmd3 (CUB and sushi domain-containing protein 3) 2.6

Homeobox protein OTX2 −2.3
Homeobox protein pnx-like isoform X1 −2.3

Adam22 (disintegrin and metalloproteinase domain-containing protein 22) −2.5
MT1R (MT1 melatonin receptor) −3.4

Protocadherin-16-like, partial −5.6
D2br (dopamine D2B receptor) −9.4

Sensory system
Vertebrate ancient opsin-like 3.2
LIM/homeobox protein Lhx2 −2.2

Norrin-like −2.5
Tmc1 (putative transmembrane channel-like protein 1) −3.0

Wnt signaling
Norrin-like −2.5

Ptpro (Receptor-type tyrosine-protein phosphatase O, partial) −4.3
CXXC-type zinc finger protein 4 −9.0

Various functions
T-box transcription factor TBX1 isoform X4 2.3

Homeobox protein DLX-6 −2.4
Homeobox protein DLX-2 −2.4
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4. Discussion

In European and Japanese eels, but also in other marine fish species such as Bluefin
Tuna Thunnus orientalis [64], an important bottleneck is the stable production of viable
larvae. In aquaculture fish, larval quality is influenced by many factors such as broodstock
nutrition, system conditions, and spawning induction [65]. Although much attention has
been paid to optimizing the rearing conditions in eel larviculture [37–43], rapid decrease in
larvae survival rates around 2–5 dph is often observed. In this transcriptomic study, clues
about larval mortality during the first week after hatching were obtained by comparing
non-viable vs. viable larvae at 1 dph. In addition, the temporal expression of highly
differentially expressed genes that mark the innate and adaptive immune response (mhc-
I), muscle growth (myom2), movement (d2br, mtr1), and stress (hspb1) was investigated
in 1, 8, and 15 dph larvae to better comprehend their role during early ontogeny of the
European eel.

4.1. Immune Response

In our study, numerous transcripts associated with the immune response were highly
abundant but not differentially expressed in non-viable vs. viable larvae at 1 dph. Tran-
scripts associated with innate immunity were more abundant than those involved in
adaptive immunity. These findings are consistent with another recent study on Euro-
pean eel [15] and the ontogeny of larval immunity in other teleost fish species reviewed
by [13]. GO analysis of DEGs showed that immune-related terms were abundant in non-
viable vs. viable larvae. Most of these genes had increased expression following immune
challenge experiments in fish (mhc1: [66]; C7: [67–69]; complement factor H: [70,71]; arginase-
2: [72]; leukocyte elastase inhibitor: [73]; nrlp12: [74]; complement decay-accelerating factor: [75];
interleukin-17C: [76–78]), suggesting an important role in the immune response. Bacterial
infections are recognized as one of the most frequent causes affecting larvae survival in
fish [13,14]. In eel larviculture, the use of antibiotics and disinfection treatments has been
shown to increase larvae survival in eels [9].

In our study, two genes related to pathogen recognition and destruction showed
very low (negative) fold changes at 1 dph in non-viable vs. viable larvae. Among them,
mhc1 showed the lowest fold change expression in non-viable larvae (−18-fold). Mhc-I is
essential for presenting peptides from intracellular pathogens to cytotoxic CD8+ T-cells
in innate and adaptive immunity [79]. Complement component C7 also showed low fold
change expression in non-viable vs. viable larvae (−8-fold). C7 is an essential member of
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the membrane attack complex that forms transmembrane channels to induce pathogen
cytolysis [80]. Pentraxin showed a slightly higher expression in non-viable vs. viable larvae
(3-fold). Pentraxin is a classic pattern recognition molecule used to defend against bacterial
infection in innate immunity in tongue sole [81]. The low fold changes of genes related
to pathogen recognition-destruction suggest that eel larvae exhibit immune competency,
which is reduced in non-viable larvae at 1 dph.

Two genes in our study that were related to inflammation showed high fold changes
in non-viable vs. viable larvae at 1 dph. Expression of interleukin-17C, which showed the
highest fold change (29-fold), is essential for regulating the inflammatory response and
host defense via the NF-kB pathway in large yellow croaker [78]. Nlrp12 regulates the
inflammatory response by operating within inflammasomes [82]. Although inflammatory
responses are essential for protecting early larvae from pathogens [13], excessive inflamma-
tion can cause severe damage. Therefore, inflammation needs to be finely tuned to maintain
a balance between host protection and inflammatory diseases. Several genes related to host
protection showed high fold change expression in non-viable vs. viable larvae. Non-viable
larvae may attempt to limit pathogen invasion as indicated by: (i) genes that code for regula-
tory proteins that protect self-cells from autologous attacks such as complement factor-H and
complement decay-accelerating factor [83]; (ii) leukocyte elastase inhibitor that limits host damage
during inflammation, apoptosis, and pathogen destruction [84]; and (iii) arginase-2 that is
associated with the presence of ‘healing’ macrophages in carp [72,85]. In conclusion, the
high fold change expression of genes related to inflammation and host protection suggests
that non-viable larvae had initiated immune responses toward invading pathogens.

When considering that numerous transcripts associated with the immune response
(e.g., complement component, toll receptors) were highly abundant at 1 dph but not
differentially expressed between non-viable vs. viable larvae in our RNA-Seq data, we
can conclude that the (innate) immune system plays an important role in early larval
development, already just after hatching. In our study, mhc1 was highly expressed in 1,
8, and 15 dph larvae, but did not change its expression through larval development. In
accordance with our results, mhc1 showed an early and high expression in rainbow trout
larvae [86] and was already detected at 1 dph in common carps [87]. The high abundance of
many genes related to the immune response and the high expression of mhc1 during early
ontogeny of eel larvae in our study provides supporting evidence against the hypothesized
immunocompromised eel larvae of Miest et al. [15]. These authors suggested that eel larvae
were immunocompromised since the expression of key genes involved in the immune
system showed low expression between hatching (0 dph) and teeth formation (8 dph). In
our study, eel larvae exhibited immune competency but non-viable larvae seem to be more
sensitive to microbial infections. As suggested by Sørensen et al. [9], microbial controls
through disinfection treatments in combination with microbial management would be
essential to improve larvae survival in eels.

4.2. Osmoregulation

In our study, numerous transcripts associated with osmoregulation (e.g., claudins)
were highly abundant, but not differentially expressed in non-viable vs. viable larvae
at 1 dph. Previous studies have shown that eel larvae are able to osmoregulate just
after hatching (for A. japonica [18] and also for other fish species reviewed by [16]). GO
analysis of DEGs showed that osmoregulation-related terms were abundant in non-viable
vs. viable larvae, which suggests a difference in maintaining ionic and osmotic balance in
100% SW. Lee et al. [88] showed that the tissue osmolality of Japanese eel larvae (360 to
540 mOsm/kg·H2O) was actively regulated to stay at lower osmolality than seawater
osmolality (about 1000 mOsm/kg·H2O). Early larvae osmoregulate by ingesting water
as early as hatching to prevent osmotic water loss [18] and possess chloride cells on their
yolk-sac membrane and integument to maintain their ionic balance [17]. It has been
shown that reducing salinity enhanced larval survival in anguilloid species (Japanese eel
in [89]; European eels in [90]). Even deformed larvae were able to survive in 50% SW [89].
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These findings show that eel larvae in seawater invest much of their available energy on
osmoregulation, which would become available for other vital processes when lowering
the salinity. Although salinity reduction improves larvae survival, an increased number
of larvae with pericardial oedema and notochord deformities have been observed under
these circumstances, both in European and Japanese eels [89–91].

Expression of the extracellular calcium-sensing receptor, which showed the greatest dif-
ference in non-viable vs. viable larvae in our RNA-Seq data (39-fold), has been suggested
to be essential for calcium homeostasis and osmosensing in fish [92]. The high fold change
of this gene in non-viable vs. viable larvae suggests that non-viable larvae suffer from
membrane damage and leakage and try to compensate the permeability by strong osmoreg-
ulatory adaptations, which is also indicated by the expression of several other genes: (i)
guanylin precursor that codes for a prohormone that is cleaved within the intestinal lumen
or kidney tubules into small peptides that regulate water and salt absorption in seawater
(SW) in eels [93–95]; (ii) claudin-10 isoforms that code for proteins that are associated with
salt secretion in SW in euryhaline species [96]; and (iii) sodium/myo-inositol cotransporter
that codes for a protein that allows for the accumulation of osmolytes within cell types to
compensate for hyperosmolarity in mammalian systems [97]. Claudin-4, another osmoregu-
latory gene, had high fold change expression in non-viable vs. viable larvae. Upregulated
claudin-4 expression was associated with freshwater acclimation in southern flounder Par-
alichthys lethostigma [98]. The high fold-change of claudin-4 might reflect a dysfunction
of the non-viable larvae to osmoregulate in SW since an increase of claudin-4 is essential
for the formation of deeper tight junctions to reduce ion permeability; a crucial facet of
freshwater osmoregulation [98]. Therefore, important osmoregulatory genes are differen-
tially expressed in non-viable vs. viable larvae, but it is worth noticing that differential
expression of these genes might be a symptom, rather than a cause, of dying.

4.3. Myogenesis, Neurogenesis, and Sensory Development

As could be expected for early larvae, numerous transcripts associated with mor-
phogenesis were highly abundant in both non-viable and viable larvae at 1 dph. Genes
related to myogenesis were highly abundant (based on the mean copy number) in both
non-viable and viable larvae at 1 dph. High abundancy of genes related to myogenesis in
non-viable larvae might be related to stratified hyperplasia that allows for the increase in
the number of muscle fibers during early ontogeny [23]. Only three genes related to muscle
development (cGMP, troponin-I, myom2) showed very low negative fold changes at 1 dph
in non-viable vs. viable larvae. While Myom2 is essential for the sarcomeric organization
of vertebrate striated muscle [99], Troponin-I, and cGMP are involved in muscle contrac-
tion [100,101]. The low fold changes of these genes in non-viable vs. viable larvae suggests
that muscle functionality might be affected in non-viable larvae. The temporal expression
of myom2 was studied in 1, 8, and 15 dph larvae and was found to decrease during early
ontogeny. Myom2, or M-protein, is expressed in cardiac and skeletal muscle but its exact
function in fish larvae is not known. We assume that myom2 is related to muscle growth
and development since its expression decreased toward 15 dph when yolk reserves were
largely depleted. Following exogenous feeding, expression of this gene may not decrease
and larval growth is maintained. Further studies are needed to confirm the role of myom2
in growth in European eel larvae.

In our study, most neural development-terms (d2br, protocadherin-16, mt1r, adam22,
pnx, otx2) had low fold change expression in non-viable vs. viable larvae. Among them,
d2br showed the lowest fold-change in non-viable vs. viable larvae (−9.4 fold) as well as
to reduce motor behaviour in zebrafish larvae [102]. In addition, treating early zebrafish
larvae with domperidone, a D2 receptor antagonist, increases larval activity [103]. The low
fold changes of d2br in non-viable vs. viable larvae, but also the lack of mtr1 that is essential
for reducing locomotor behavior in zebrafish larvae [102–104], suggest that non-viable
larvae differ in movement and active behavior from the viable larvae. For the other neural
development-terms, studies have shown that pnx promotes neurogenesis in zebrafish [105]
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and otx2 is essential for head speciation in pufferfish [106]. The low fold change of genes
related to neural development in non-viable vs. viable larvae suggests that the non-viable
larvae might have neural impairment, which is also indicated by the high fold change
expression of neurogulin-1 (6-fold) that is essential for peripheral nerve development
and nerve repair in mice [107]. Little is known about the factors influencing early brain
development during the yolk-sac stage in fish. To our knowledge, only the importance of
exercise on neurogenic brain growth has been illustrated in larval zebrafish [108]. Further
studies should investigate potential factors (e.g., inflammation) that could influence early
brain development in European eels for improving eel larviculture.

Three genes (lhx2, norrin, tmc1) and one gene (vertebrate ancient opsin) related to
sensory development showed low and moderate fold change in non-viable vs. viable
larvae, respectively. Little is known about the functional role of lhx2, norrin, and tmc1 in
fish and thus further studies are needed to comprehend their role during early ontogeny.
The physiological function of the vertebrate ancient opsin that has been described in several
teleost fish [109–112] still remains to be elucidated but it might include irradiance detection
tasks [112]. These four DEGs related to the sensory system were already expressed in
1 dph larvae, which is in agreement with the study of Sarropoulou et al. [113], who showed
that many genes associated with the visual system were upregulated just after hatching
in gilthead seabream. In European eels, the eyes are visible in 32 hpf embryos, start to
pigment at 8 dph and become well-developed at 10 dph at 20 ◦C [6]. Unlike vision, the
mechanosensory system is probably already functional at hatching since neuromasts were
present on the head of 1 dph eel larvae between 18–23 ◦C in shortfinned eels [25]. In fish
larvae, the development of sense organs will be essential for exogeneous feeding [114,115].

When considering that several differentially expressed genes related to myogenesis,
neurogenesis, and sensory development had low fold change (lower than −4 fold) in non-
viable vs. viable larvae, we can conclude that these processes are reduced in non-viable
larvae. It appears that the non-viable larvae invested large amounts of their available
energy in fighting against infection and maintaining homeostasis at the cost of normal
development.

4.4. Digestive Function and Hyaluronan Metabolism

Numerous transcripts associated with digestive function, metabolism, and growth
were highly abundant in 1 dph larvae, but were not differentially expressed in non-viable
vs. viable larvae, suggesting that these biological processes are not impaired in non-viable
larvae at 1 dph. Although the digestive system is still largely undifferentiated in new
hatchings [6,27], expression of digestive enzymes is already detected just after hatching
in European eels [32]. In our study, expression of lipid and protein digestion enzymes
was higher than of carbohydrate digestion enzymes at 1 dph, indicating that larvae have a
predisposition for proteins and lipids just after hatching. Literature about the nutritional
predisposition of eel larvae shows discrepancy [27,31,32] and thus should be clarified
by studying the digestive function during early ontogeny via transcriptomics to get a
better overview. We also found that numerous genes involved in hyaluronan metabolism
showed very high expression in 1 dph larvae. These findings are in accordance with
the study of Okamura et al. [116] in which hyaluronan was detected soon after hatching
in A. japonica larvae. Hyaluronan in the bodies of eel larvae is essential for growth and
metamorphosis [116] and might regulate buoyancy due to its water-holding capacity [117].
When considering that expression of genes related to growth and metabolism did not differ
between non-viable vs. viable larvae, we can conclude that these processes did not majorly
contribute to the larval viability at this stage.

4.5. Activity: Movement and Stress

The temporal expression profiles observed here for d2br, which steadily increased
during early ontogeny, agree with a previous study on zebrafish larvae [103]. Little is
known about the role of D2br in eel larvae, but studies on zebrafish larvae suggest an
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important role of D2br in modulating the motor behavior [102,103]. In European eels,
swimming activity increases from 8 dph onwards [6,118]. Furthermore, older larvae (13, 15,
and 17 dph) swim actively by undulations of the caudal region and increase their attacks to
food particles in the presence of various diets [118]. The upregulation of the d2br through
early ontogeny is probably related to swimming activity that might be essential for active
exogeneous feeding around 12–14 dph.

Like d2br, the temporal expression of mtr1 steadily increased through early ontogeny.
In vertebrates, melatonin is secreted primarily by the pineal gland during the dark period
of the circadian cycle and is involved in many biological processes such as blood pressure
regulation and circadian entrainment, as reviewed by [119]. Like d2br, melatonin regulates
motor behavior in zebrafish larvae [102–104]. Melatonin possibly even influences the d2br
transcript levels since high day/low night variation of d2br have been observed in adult
eels [120]. The daily variations of the dopaminergic and melatonergic systems in eel larvae
were beyond the scope of our study, but should be further investigated.

The temporal expression of hspb1 also increased through early ontogeny in our study.
Expression peaked at 15 dph, which corresponded to the start of exogeneous feeding in
European eels [118]. In fish, hspb1 is highly induced in response to stress as induced by
temperature, pollution, and UV-B radiation, as reviewed by [121].

When considering the temporal expression of d2br and mtr1 that significantly increase
during early ontogeny and their role in modulating motor behavior in zebrafish fish larvae,
we can assume that both genes reflect locomotion in European eel larvae. Since hspb1 peaks
at 15 dph when yolk-reserves are depleted, this gene might be induced in response to stress
as induced by food deprivation. Heat-shock proteins are induced by food deprivation in
other fish species [122,123]. The increase of these genes during early ontogeny might reflect
the overall increase in activity at the start of active swimming (8 dph) and feed searching
behavior (15 dph).

5. Conclusions

In European eel, larvae exhibit immune competency, which is in sharp contrast with
the hypothesized immunocompromised period of Miest et al. [13]. Non-viable larvae
initiated an immune response as they probably suffered from microbial infection. Non-
viable larvae tried to maintain ionic and water homeostasis by strong osmoregulatory
adaptations. Microbial control and salinity reduction might benefit eel larvae in terms of
lower mortality and improved development by lowering the energetic costs of immune
response and osmoregulation. The temporal expression patterns of d2br, mtr1, and hspb1 in
1, 8, and 15 dph larvae reflect the increase in overall activity at the start of active swimming
(8 dph) and feed searching behavior (15 dph).
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