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Preclinical evaluation of [68Ga]NOTA-
pentixafor for PET imaging of CXCR4
expression in vivo — a comparison to
[68Ga]pentixafor
Andreas Poschenrieder1* , Margret Schottelius1, Markus Schwaiger2 and Hans-Jürgen Wester1

Abstract

Background: Due to its overexpression in a variety of tumor types, the chemokine receptor 4 (CXCR4) represents
a highly relevant diagnostic and therapeutic target in nuclear oncology. Recently, [68Ga]pentixafor has emerged as
an excellent imaging agent for positron emission tomography (PET) of CXCR4 expression in vivo. In this study, the
corresponding [68Ga]-1,4,7-triazacyclononane-triacetic acid (NOTA) analog was preclinically evaluated and compared
to the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) parent compound [68Ga]pentixafor.

Methods: NOTA-pentixafor was synthesized by combining solid and solution-phase peptide synthesis. The CXCR4
receptor affinities of [68Ga]pentixafor and [68Ga]NOTA-pentixafor were determined in competitive binding assays
using the leukemic CXCR4-expressing Jurkat T-cell line and [125I]FC131 as the radioligand. Internalization and cell
efflux assays were performed using CXCR4-transfected Chem-1 cells. Small-animal PET and biodistribution studies
were carried out using Daudi-tumor bearing SCID mice.

Results: [68Ga]NOTA-pentixafor showed a 1.4-fold improved affinity towards CXCR4 (IC50). However, internalization
efficiency into CXCR4+-Chem-1 cells was substantially decreased compared to [68Ga]pentixafor. Accordingly, small-animal
PET imaging and biodistribution studies revealed a 9.5-fold decreased uptake of [68Ga]NOTA-pentixafor in Daudi
lymphoma xenografts (1.7 ± 0.4 % vs 16.2 ± 3.8 % ID/g at 90 min p.i.) and higher levels of non-specific accumulation,
primarily in the excretory organs such as the liver, intestines, and kidneys (2.3 ± 0.9 % vs 2.0 ± 0.3 % ID/g, 1.9 ± 0.8 %
vs 0.7 ± 0.2 % ID/g, and 2.7 ± 1.1 % vs 1.7 ± 0.9 % ID/g, respectively).

Conclusions: Despite enhanced CXCR4-affinity in vitro, the [68Ga]NOTA-analog of pentixafor showed reduced CXCR4
targeting efficiency in vivo. In combination with enhanced background accumulation, this resulted in significantly
inferior PET imaging contrast, and thus, [68Ga]NOTA-pentixafor offers no advantages over [68Ga]pentixafor.
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Background
The chemokine receptor 4 (CXCR4) and its only known
natural ligand stromal cell derived factor-1 (SDF-1,
CXCL12) have gained considerable attention in oncol-
ogy, in particular its impact on tumor metastasis [1].
Furthermore, overexpression of CXCR4 has been re-
lated to poor prognosis and resistance to chemotherapy

[2, 3]. This has led to the development of tools for the
non-invasive in vivo quantification of CXCR4 expres-
sion in order to improve prognostication and personal-
ized therapy [4]. [68Ga]pentixafor, formerly termed
[68Ga]CPCR4.2 (Fig. 1), represents a milestone in the
development of CXCR4-targeted positron emission
tomography (PET) probes [5, 6], since its pharmacoki-
netic properties and favorable dosimetry [7] led to a
fast transition into first clinical studies, including in
vivo quantification of CXCR4 expression in various
types of cancers [8–13] and after myocardial infarction
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[14–16]. However, triaza-macrocycles like 1,4,7-triazacyclo-
nonane-triacetic acid (NOTA) have certain advantages
over 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic
acid (DOTA) with respect to chelation of the Ga3+ ion
[17], e.g. higher thermodynamic stability and kinetic in-
ertness [18–20]. Furthermore, [natGa]NOTA-pentixafor
had already shown improved affinity towards CXCR4 in
a previous study [21]. Therefore, [68Ga]NOTA-pentixa-
for was now evaluated preclinically and compared to
[68Ga]pentixafor (Fig. 1) with respect to its in vivo CXCR4
targeting ability and overall pharmacokinetic profile.

Methods
General procedures and syntheses of the peptides are
described in a recently reported protocol [21]. Determin-
ation of tracer lipophilicity [22] and serum stability [23]
as well as in vitro studies were performed as recently
published [23]. 68Ga-labeling of peptides was performed
as described using a fully automated system (Scintomics
GmbH) [23]; briefly, the 68Ge/68Ga generator eluate frac-
tions (1.25 mL) were reacted with 5 nmol of peptide. The
mixture was buffered with 0.6 mL HEPES (pH = 7.4) to a
final pH of 3–4 and heated to 95 °C for 5 min. After puri-
fication via one Sep-Pak C8 light cartridge, the ethanolic

product fraction was diluted with PBS and used as such
for the experiments.
All animal studies were conducted in accordance with

the German Animal Welfare Act (Deutsches Tierschutz-
gesetz, approval No. 55.2-1-54-2532-71-13). For metabolite
analysis, 50 MBq of [68Ga]NOTA-pentixafor in a total
volume of 200 μL of PBS was injected into the tail vein
of a CB17 SCID mouse; the animal was sacrificed at 1 h
p.i. and blood was collected. After sample preparation,
as described in [24], the plasma samples were analyzed
by reversed phase (RP)-HPLC and eluate fractions were
analyzed using a γ-counter.
For PET (n = 3) and biodistribution studies (n = 5), an

average of 15.2 MBq [68Ga]NOTA-pentixafor (100 μL in
PBS, 145 pmol, 171 ng) with a specific activity (AS) of
104 GBq/μmol was injected intravenously into the tail
vein of isofluorane anesthesized female Daudi lymphoma-
bearing SCID mice. CXCR4 specificity of tumor accu-
mulation was demonstrated by co-injection of 2 mg/kg
AMD3100 (n = 3). After static PET imaging for 15 min
(Inveon Siemens μPET scanner), the mice were sacri-
ficed (90 min p.i.), and tissues and organs of interest
were dissected, weighed, and counted for radioactivity
in a γ-counter. The percentage of injected dose per
gram of tissue (% ID/g) was calculated; data are shown
as mean ± SD.

Results
[68Ga]NOTA-pentixafor was obtained with radiochem-
ical yields of 86.6 ± 3.1 % and a maximal specific activity
of 128 GBq/μmol. Radiochemical purities were >99 % as
confirmed by radio-TLC. As summarized in Table 1,
[68Ga]NOTA-pentixafor shows a logP value of −2.4 and
is therefore less hydrophilic than its DOTA analog
[68Ga]pentixafor (logP = −2.9). CXCR4-affinities of the
natGa-complexed peptides and their metal-free precur-
sors had already been determined previously [21] and
are also shown in Table 1. Both peptides show an in-
creased affinity to CXCR4 when metal-labeled, and the
natGa-NOTA peptide shows slightly improved CXCR4
affinity compared to the natGa-DOTA parent compound.
Compared to [68Ga]pentixafor, total cellular uptake and
internalization efficiency of [68Ga]NOTA-pentixafor in
CXCR4+ Chem-1 cells are 2.6- and 7.9-fold decreased, re-
spectively. While 53.3 % of the total cellular activity was
found to be internalized for [68Ga]pentixafor, only 17.5 %
of the total cellular activity was internalized in the case
of [68Ga]NOTA-pentixafor. Cell efflux studies using
[68Ga]NOTA-pentixafor revealed intracellular retention
of 44.4 ± 0.04 % and 22.7 ± 0.04 % of the initial cellular
activity after 0.5 and 1 h, respectively, indicating limited
cellular retention of the tracer.
As already observed for [68Ga]pentixafor (at 30 min p.i.)

[5], metabolite analysis of mouse plasma at 60 min p.i. of

Fig. 1 Structures of NOTA-pentixafor (left) and pentixafor (right)
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[68Ga]NOTA-pentixafor revealed the complete absence of
radiometabolites and thus demonstrates the metabolic
stability of the tracer within the observation period.
Comparative biodistribution data for [68Ga]NOTA-

pentixafor (n = 5) and [68Ga]pentixafor (n = 6) in Daudi
xenograft bearing CB-17 SCID mice (1.5 h p.i.) are
summarized in Table 2. Both tracers show rapid clearance
from the circulation and predominantly renal excretion.
While retention of [68Ga]pentixafor in the kidneys is
low, [68Ga]NOTA-pentixafor shows a 64 % higher
kidney uptake. Furthermore, intestinal accumulation

of [68Ga]NOTA-pentixafor is also 2.8-fold increased
compared to the parent compound, most probably due
to the increased lipophilicity of the tracer and thus a
slightly enhanced hepatobiliary clearance. While the
tumor accumulation of [68Ga]pentixafor is higher
than activity uptake in all other organs, leading to
excellent tumor/background ratios (Table 2), uptake
of [68Ga]NOTA-pentixafor in the Daudi xenografts is
surprisingly low, albeit CXCR4 specific. This is illustrated
by the competition experiment, where co-injection of
50 μg AMD3100 reduced tumor uptake by 70 %. Due to
the low absolute tumor uptake of [68Ga]NOTA-pentixafor,
however, tumor/organ ratios are <1 for the major excre-
tory organs, suggesting poor imaging contrast.
This was confirmed by small-animal PET imaging

studies. Representative PET images of both tracers are
shown in Fig. 2. As expected from the biodistribution
data, [68Ga]NOTA-pentixafor uptake in the Daudi xeno-
graft was CXCR4 specific (Fig. 2b), and despite low total
activity accumulation, tumors were clearly delineated
1.5 h p.i. In contrast to [68Ga]pentixafor, however, which
shows virtually no background accumulation except in
kidneys [12], [68Ga]NOTA-pentixafor also shows consid-
erable activity accumulation in the gall bladder, intestines,
and kidneys.

Discussion
We recently reported the influence of different metal-
chelate conjugates of pentixafor on the CXCR4 affinity [21]
and found that the NOTA conjugate NOTA-pentixafor
(Fig. 1) displayed the highest CXCR4 affinity among
various tracers. Because NOTA offers a better suited
coordination cavity for Ga3+ incorporation and higher
thermodynamic stability and kinetic inertness compared
to DOTA [18–20], [68Ga]NOTA-pentixafor was now
evaluated preclinically and compared to [68Ga]pentixafor
(Fig. 1), which is currently entering clinical studies for
PET-based quantification of CXCR4 expression in vivo
[5, 6, 12]. Surprisingly, despite improving CXCR4 affin-
ity of the ligand, the exchange of DOTA by NOTA had
deleterious effects on overall pharmacokinetics, both
with respect to CXCR4 targeting efficiency and clear-
ance characteristics. This is mainly attributed to the
differences in chelator denticity, overall charge, and

Table 1 Comparison of the lipophilicity and the in vitro CXCR4 targeting characteristics of [68Ga]NOTA-pentixafor and [68Ga]pentixafor

Compound logP IC50 (nM) Total cellular activity 1 h (%) Internalized activity 1 h (%)

NOTA-pentixafor – 253 ± 49 – –

[68Ga]NOTA-pentixafor −2.36 17.8 ± 7.7 2.45 ± 0.02 0.43 ± 0.07

Pentixafor – 102 ± 17 – –

[68Ga]pentixafor −2.90 24.8 ± 2.5 6.36 ± 0.46 3.39 ± 0.16

Competitive binding studies (IC50) were carried out using Jurkat T cells and [125I]FC131 as the radioligand. For internalization studies, CXCR4+ Chem-1 cells
were used

Table 2 Biodistribution data for [68Ga]NOTA-pentixafor and
[68Ga]pentixafor in Daudi xenograft bearing CB-17 SCID mice
(1.5 h p.i.) and relating tumor-to-organ ratios

Organ Tracer

[68Ga]NOTA-
pentixafor
(n = 5)

[68Ga]NOTA-
pentixafor +
AMD3100
(n = 3)

[68Ga]pentixafor
(n = 6)

Blood 0.65 ± 0.41 0.62 ± 0.26 0.97 ± 0.34

Heart 0.34 ± 0.19 0.36 ± 0.14 0.58 ± 0.17

Lung 0.73 ± 0.25 0.95 ± 0.38 1.32 ± 0.29

Liver 2.30 ± 0.88 2.02 ± 0.76 2.05 ± 0.27

Gallbladder 3.61 ± 3.00 5.14 ± 2.24

Pancreas 0.12 ± 0.05 0.16 ± 0.05 1.06 ± 0.22

Spleen 0.44 ± 0.22 0.54 ± 0.19 0.30 ± 0.10

Kidney 2.71 ± 1.06 3.56 ± 1.03 1.65 ± 0.91

Adrenals 0.52 ± 0.30 0.48 ± 0.15 3.68 ± 0.72

Stomach 0.45 ± 0.21 0.58 ± 0.24 0.48 ± 0.08

Intestine 1.89 ± 0.83 3.97 ± 0.92 0.67 ± 0.21

Muscle 0.13 ± 0.10 0.13 ± 0.05 0.19 ± 0.06

Bone 0.25 ± 0.18 0.16 ± 0.07 n/a

Tumor 1.71 ± 0.40 0.52 ± 0.17 16.2 ± 3.82

Tumor-to-organ ratio

T/blood 2.64 ± 1.78 16.7 ± 7.05

T/liver 0.74 ± 0.34 7.90 ± 2.13

T/kidney 0.63 ± 0.29 9.81 ± 5.89

T/muscle 13.0 ± 9.86 85.2 ± 33.6

CXCR4 specific tumor accumulation of [68Ga]NOTA-pentixafor was
demonstrated by co-injection of 50 μg AMD3100. Data are given in % ID/g
tissue and are means ± SD
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resulting changes in the complex geometry, which also
affects the lipophilicity (Table 1). The increased logP of
[68Ga]NOTA-pentixafor seems to be the main reason
for the enhanced background accumulation of the new
compound, especially in the gallbladder and intestines.
Moreover, the [Ga]NOTA-for-[Ga]DOTA exchange within
the pentixafor conjugates alters the overall charge of the
chelator moiety from neutral to positive which can also
influence the pharmacokinetic profile. The strong depend-
ence of the pharmacokinetics on the chelator and radio-
metal have also been reported for somatostatin [25, 26]
or bombesin-targeting peptides [27]. In contrast, the
unexpectedly low tumor accumulation of [68Ga]NOTA-
pentixafor in the Daudi xenograft model may be mainly
attributed to the substantially decreased internalization

efficiency of [68Ga]NOTA-pentixafor compared to
[68Ga]pentixafor, which also seems affected by the struc-
tural changes induced by the NOTA-for-DOTA substitu-
tion. Such substantial influence of the chelator on the
biodistribution has also been shown in human epidermal
growth factor receptor type 2 (HER2)-targeting affibodies
with DOTA, NOTA, or NODAGA-conjugates [28] as well
as other GPCR ligands such as somatostatin receptor-
targeting 68Ga-labeled [Tyr3]octreotide [25].

Conclusion
Despite improved CXCR4 affinity, [68Ga]NOTA-pentixafor
showed severely compromised CXCR4 targeting efficiency
compared to the parent compound [68Ga]pentixafor,
both in vitro and in vivo. Alongside, a substantially de-
creased uptake in CXCR4-positive lymphoma xenografts,
[68Ga]NOTA-pentixafor also shows enhanced accumula-
tion in the excretory organs, leading to low tumor/back-
ground ratios and inferior imaging contrast compared to
[68Ga]pentixafor. The present data on [68Ga]NOTA-pen-
tixafor underline the strong dependence of the pharmaco-
kinetics of pentixafor-based peptides on the chelator and
radiometal and highlight the outstanding characteristics of
[68Ga]pentixafor for successful CXCR4 imaging.
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Fig. 2 a, b μPET images of Daudi xenograft bearing CB-17 SCID mice
at 90 min p.i. of [68Ga]NOTA-pentixafor (15.2 MBq, 195 pmol/171 ng
peptide; a tracer only; b co-injection with 50 μg AMD3100).
c, d μPET/CT images of Daudi (left, high CXCR4) and SU-DHL-8
(right, low CXCR4) lymphoma xenografts at 90 min p.i. of 5 MBq
[68Ga]pentixafor (c) and co-injection of 50 μg AMD3100 (d). Bladder
activity was blanked out [12]. Credit c and d: © 2015 Ivyspring
International Publisher
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