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Abstract: Background: Glioma is one of the major health problems worldwide. Biomarkers for
predicting the prognosis of Glioma are still needed. Methods: The transcriptome data and clinic
information on Glioma were obtained from the CGGA, TCGA, GDC, and GEO databases. The
immune infiltration status in the clusters was compared. The genes with differential expression were
identified, and a prognostic model was developed. Several assays were used to detect RPH3A’s
role in Glioma cells, including CCK-8, colony formation, wound healing, and transwell migration
assay. Results: Lower Grade Glioma (LGG) was divided into two clusters. The immune infiltration
difference was observed between the two clusters. We screened for genes that differed between
the two groups. WGCNA was used to construct a co-expressed network using the DEGs, and four
co-expressed modules were identified, which are blue, green, grey, and yellow modules. High-risk
patients have a lower overall survival rate than low-risk patients. In addition, the risk score is
associated with histological subtypes. Finally, the role of RPH3A was detected. The overexpression
of RPH3A in LGG cells can significantly inhibit cell proliferation and migration and regulate EMT-
regulated proteins. Conclusion: Our study developed a metabolic-related model for the prognosis of
Glioma cells. RPH3A is a potential therapeutic target for Glioma.

Keywords: glioma; metabolic signature; prognosis

1. Introduction

Glioma is composed of aberrant growing glial cells, which is one of the leading causes
of cancer deaths [1]. Lower grade Gliomas (LGG) account for about 10–20% of all primary
brain tumors [2]. Despite the advances in the current surgical and medical treatments for
LGG, the outcomes of patients are variable [3]. Therefore, an effective prognostic model to
distinguish the heterogeneity of Glioma is urgently needed to improve clinical outcomes.

Metabolites are closely associated with physiological and pathological changes. Tu-
mors have specific metabolites that ensure uncontrolled growth. Some specific metabolites
are altered in the processes of tumor progression. Tumor cells enhance anabolic pathways,
enabling them to use carbon sources other than glucose. Through metabolic reprogram-
ming, tumors can easily source energy through glycolysis [4]. In addition to differentiated
Glioma cells, Glioma stem-like cells can switch metabolic pathways in response to metabolic
stress. The metabolic heterogeneity and plasticity of Glioma stem-like cells are, therefore,
characteristic [5].

The tumor immune microenvironment plays a critical role in Glioma. Glioma has an
immune-suppressive nature, which is related to enhanced immunosuppressive factors, such
as PD-1, PD-L1, indolamine 2,3-dioxygenase, etc. [6,7]. Many immune-based therapeutics
have been developed, especially immune-checkpoint inhibitors [8]. The tumor immune
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microenvironment also affects the response of a tumor to cancer therapies [9]. Moreover,
LGG can be classified histologically and molecularly based on the immune status. The
immune status was associated with the prognosis of LGG [10]. The immune-related
signatures have a prognostic value for LGG [11].

It is the tumor microenvironment that determines the metabolic interactions between
tumor cells and the immune system, resulting in the metabolic heterogeneity of tumors
and affecting the prognosis of patients [12]. Therefore, comprehensively exploring the
role of metabolic heterogeneity in LGG is of great importance. In this study, differentially
expressed genes between different metabolic subtypes were identified. A metabolic-related
prognostic model was constructed and validated. Among the model component genes,
the overexpression of RPH3A has great potential for its anti-cancer effect on Glioma. To
validate our hypothesis, a cell-line-based assay was carried out to analyze the role of
RPH3A in Glioma. Our research provided an effective prognostic model to facilitate a
precise clinical therapy for Glioma and a potential therapeutic agent for Glioma treatment.

2. Methods and Materials
2.1. Glioma Datasets

The mRNA microarray and mRNA sequencing data of 301 and 693 Glioma patients
with corresponding clinical information were downloaded from the Chinese Glioma
Genome Altas (CGGA, http://www.cgga.org.cn/download.jsp, 1 August 2021), which
were marked as “CGGA array (301)” and “CGGA RNAseq (693)” in our work. From
the Genomic Data Commons, we downloaded information on the gene expression and
clinical characteristics of LGG patients from the Cancer Genome Altas (TCGA). (GDC,
https://portal.gdc.cancer.gov/, 1 August 2021). According to the WHO 2006 classification
of grade II Glioma (astrocytoma, oligoastrocytoma, or oligodendroglioma), the expression
levels were detected by microarray. The Gene Expression Omnibus was used to download
its classification (GEO, http://www.ncbi.nlm.nih.gov/geo, 1 August 2021) (GSE107850).

2.2. Metabolic Enrichment Based on Clustering

A total of 86 metabolic pathways were downloaded from the Kyoto Encyclopedia of
Genes and Genomes (KEGG, https://www.genome.jp/kegg/, 1 August 2021) database.
For each sample, a single-sample Gene Set Enrichment Analysis (ssGSEA) was utilized
to calculate the enrichment score of each metabolic gene set using the R package “GSVA”
with default parameters based on the transcriptomic data [13]. As a result, each sample
achieved 86 metabolic enrichment scores.

The patients were clustered using K-means using the metabolic pathway scores;
cluster 1 had a better prognosis than cluster 2. By using principal component analysis
(PCA), we explored the differences between the two clusters.

2.3. Comparison of Immune Infiltration between Clusters

According to CIBERSORT, the number of tumor-infiltrating immune cells was counted
for each type [14]. In a mixed cell population, CIBERSORT estimates the abundance of
different types of cells using gene expression data. A comparison between the CGGA
and TCGA cohorts was carried out to determine the range of 22 infiltrating immune cells.
The two clusters were compared according to the infiltration of immune cells using the
Wilcoxon rank-sum test.

2.4. Analysis of Functional Differences between Clusters

The CGGA array (301) differentially expressed genes (DEGs) were identified using the
“limma” package in the R software. A total of 688 genes were differentially expressed with
FDR < 0.001 and |logFC| > 1.5.

We performed pathway and process enrichment analysis for DEGs using the Metas-
cape web-based tool (https://metascape.org/gp/index.html, 1 August 2021). To ensure
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its content is current, Metascape is updated monthly. Default settings were used for the
Metascape analysis.

2.5. Identification of Meaningful Co-Expression Module

Weighted gene co-expression network analysis (WGCNA) corresponds to a data
reduction method and unsupervised classification method [15,16]. With the help of the
“WGCNA” package in the R software, the co-expression network was constructed based on
the DEGs expression profiles. An analysis of the CGGA array (301) cohort was conducted to
identify which co-expression module was most relevant to the tumor grade. An association
method based on module traits was applied. Using cluster analysis, the phenotypes
correlated with the gene modules.

2.6. Prognostic Model Established

In the CGGA array (301) cohort, we performed a univariate Cox proportional re-
gression model to identify the genes associated with OS in the “blue” module. A total
of 239 genes with p < 0.0001 were considered for the subsequent analysis. To identify
the significant prognostic genes, we used least absolute shrinkage and selection operator
(LASSO) as a variable selection procedure in a Cox regression model. The standard error
(SE) was selected as one standard deviation above the minimum criteria. A multivariate
Cox regression coefficient estimation based on 13 optimized genes and correlations was
used to calculate a risk score formula: Risk score = (exp Gene1 × coef Gene1) + (exp Gene2
× coef Gene2) + . . . +(exp Gene13 × coef Gene13).

2.7. Survival Analysis and Correlation Analysis of Histological Subtypes and Risk Score

According to the median risk score assigned to the patients with Gliomas, the high-risk
patients and the low-risk patients were classified as high-risk and low-risk patients. A
log-rank test was used to assess the difference in the survival time between the patients
with high and low risk. For the presentation of the results, Kaplan–Meier plots were used.

The patients were grouped according to tumor grade, Eastern Cooperative Oncology
Group (ECOG) score, and histological types. A Wilcoxon rank sum test was used to
determine whether there were any differences in risk scores among the groups.

2.8. Quantitative Real-Time PCR and Cell Culture

The Glioma cell lines (SW1783 and SW1088) were provided by BeNa Culture Collection
(Shanghai, China). A high-glucose DEME (Gibco, Grand Islan, NE, USA) and L-15 medium
containing 10% fetal bovine serum was used for the culture of the SW1783 (grade III astrocy-
toma) and SW1088(an astrocytoma cell line with a fibroblast-like morphology) cells. SW1783
and SW1088 were used for an in vitro model for LGG, similar to previous research [17–19].
For the plasmid construction and transfection for RPH3A overexpression, the plasmid
pcDNA™3.1 (Sino biological, Shanghai, China) was designed to construct RPH3A using a
Lipofectamine 2000 transfection reagent (Thermos Fisher Scientific, Waltham, MA, USA)
for transfection. A TRIzol lysis method was used to take the total RNA from the cells,
and a first-strand cDNA synthesizing kit from Thermos Scientific was used to reverse
transcribe the RNA into cDNAs (Thermos Scientific, Waltham, MA, USA). According to
the manufacturer’s protocol (SYBR Green Master Mix, Vazyme), we performed quanti-
tative real-time PCR to detect the RPH3A mRNA levels. The 2−∆∆Ct method was used
to calculate the gene expression levels. Sangon (Shanghai, China) provided the primers,
and the sequences for the qPCR were as follows: for RPH3A, the forward primer was
5′-GTCAAGCTCTGGCTGA-3′, and the reverse primer was 5′-GCAGCCTCCGATGTAA-3′

for β-actin, the forward primer was 5′-TGACATCAAGAAGGTGG-3′, and the reverse
primer was 5′-TTACTCCTTGGAGGCC-3′.
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2.9. Wound Healing and Transwell Migration Assay

A pipette tip (10 µL) was used to draw the surface of the cell layer in the SW1783
and SW1088 cells grown for 24 h on plates. In the next step, the cells were transfected
with RPH3A-overexpression and empty vector. Images were captured at 0 and 72 h using
a microscope (Phenix, Nanjing, China). After measuring the distance of the injury area
after 72 h, a relative migration rate was calculated by normalizing the distance at 0 h.

We performed a transwell migration assay (Labselect, Guangzhou, Guangdong, China)
using SW1783 and SW1088 mixed with a serum-free media and injected into the upper
layer of the chamber. The complete medium filled the transwell migration assay chamber.
Following 24 h of culture under suitable conditions, the transwell migration assay cham-
bers were fixed and stained with 4% paraformaldehyde and 0.1% crystal violet (Aladdin,
Shanghai, China). Counting was conducted on the cells at the bottom of the chambers.

2.10. Western Blotting

To extract the proteins from SW1783 and SW1088, a BCA Protein assay kit (Beyotime,
Shanghai, China) was used to determine the protein concentration. The separation of the
proteins was performed with an electrophoresis gel comprising sodium dodecyl sulfate
and polyacrylamide (12.5%). In order to block the polyvinylidene fluoride membrane
containing the proteins, 5% nonfat milk was applied to the membrane for two hours. The
membrane was incubated overnight at 4 ◦C with specific primary antibodies (Vimentin,
N-cadherin, and β-actin; Zenbio, Chengdu, Sichuan, China). After incubation with the sec-
ondary antibodies, the protein blots were detected with an ECL Western Blotting Substrate
(Solarbio, Shanghai, China).

2.11. Cell Colony Formation Assay

By performing colony formation experiments, it was determined whether or not the
cells could grow independently. A total of 1000 cells, transfected with either RPH3A or the
empty vector, were plated into 6-well plates. After 10–14 days, 4% paraformaldehyde was
used to fix the colonies. After staining with 0.01% crystal violet, the colonies were counted
to determine whether the cells had started to grow.

2.12. Cell Proliferation Assay

A proliferation assay was performed on the SW1783 and SW1088 cells transfected with
RPH3A or an empty vector using the Cell Counting Kit-8 (CCK-8). A 96-well plate was
seeded with SW1783 and SW1088 (2000 cells/well) 24 h following transfection. They were
incubated at 37 ◦C for two hours, followed by a measurement of the absorbance at 450 nm
with 10 µL of the CCK-8 regent. Repeated assays were carried out every 24 h.

3. Results
3.1. Stratification of Glioma Based on Metabolic Pathway

To understand the metabolic heterogeneity of Glioma, we first assessed the metabolic
dysregulation in the Glioma samples. ssGSEA was performed based on the metabolic
transcriptional profiles, and a quantitative evaluation for metabolic dysregulation was
formed. According to the unsupervised K-means clustering, we identified two hetero-
geneous subtypes in the CGGA cohorts (cluster 1 and cluster 2) (Figure 1A,B) and the
TCGA-LGG cohort (Figure S1A). PCA revealed that the patients had a distinctive metabolic
pathway enrichment score between the two clusters (Figures 1C,D and S1B). Next, we
explored the difference in prognosis, and survival analysis showed that cluster 1 had a
significantly better overall survival (OS) than cluster 2 in the CGGA array (301) and the
CGGA RNAseq (693) cohorts (Figure 1E,F, p < 0.0001, p = 0.00058), the same phenomenon
appearing in the TCGA-LGG cohort (Figure S1C, p < 0.05).
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Figure 1. Stratification of Glioma patients with distinct metabolic activity. (A,B) Heatmap shows
normalized ssGSEA enrichment score and individual characters of Glioma patients in CGGA array
(301) and CGGA RNAseq (693) cohorts between two clusters. (C,D) PCA of two clusters for the
enrichment score of metabolic pathways in CGGA array (301) and CGGA RNAseq (693) cohorts.
(E,F) Kaplan-Meier curves of OS between cluster 1 and cluster 2 in CGGA array (301) and CGGA
RNAseq (693) cohorts. CGGA array (301): HR = 2.783693; CGGA RNAseq (693): HR = 1.576667.
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3.2. Differential Metabolism and Immune Infiltration between Clusters

To compare the metabolite pattern between the subtypes, we identified differential
active pathways (Figures 2A,B and S1D). “D−Arginine and D−ornithine metabolism” and
“Histidine metabolism” were significantly upregulated in cluster 1, both in the CGGA array
(301) and the CGGA RNAseq (693) cohorts (p < 0.00001). In addition, many metabolic
pathways were significantly upregulated in cluster 1 according to the CGGA array (301) cohort,
such as “D−Glutamine and D−glutamate metabolism”, “Butanoate metabolism”, “Alanine,
aspartate and glutamate metabolism”, and “Synthesis and degradation of ketone bodies”,
and the “Glycosaminoglycan degradation” pathway was significantly downregulated
in cluster 1. A pathway enrichment score of 39 metabolic pathways in cluster 1 was
significantly higher than that of cluster 2 in the CGGA array (301) cohort (Figure 2C,
p < 0.01), and a total of 33 metabolic pathways were lower in cluster 1 (Figure 2D, p < 0.01).
A pathway enrichment score of 40 metabolic pathways in cluster 1 was significantly higher
than that of cluster 2 in the CGGA RNAseq (693) cohort (Figure 2E, p < 0.01), and a
total of 17 metabolic pathways were lower in cluster 1 (Figure 2F, p < 0.01). The pathway
enrichment score of eight metabolic pathways in cluster 1 was significantly higher than that
of cluster 2 in the TCGA-LGG cohort (Figure S2A, p < 0.01), and 70 metabolic pathways
were lower in cluster 1 (Figure S2B, p < 0.01).

Next, we investigated the divergence in the immune microenvironment between
the two clusters. CIBERSORT was used to quantify the abundance of 22 immune cells
from the Glioma samples. Overall, 77.27% (17/22) of the immune cells showed a signif-
icant difference in infiltration between the two clusters in the CGGA array (301) cohort
(Figure 3A, p < 0.05). The infiltration of “T cells CD4 memory activated” (p = 4.6 × 10−5),
“T cells CD4 memory resting” (p = 0.00097), and “T cells follicular helper” (p = 4.2 × 10−7)
in cluster 1 were significantly less than cluster 2 in the CGGA array (301) cohort, as
well as “Macrophages M0” (p = 6.5 × 10−15), “Macrophages M1” (p = 1.0 × 10−10), and
“Macrophages M2” (p = 9.5 × 10−6). The infiltration of “B cells memory” in cluster 1 was
significantly more than in cluster 2. A total of eight immune cells significantly infiltrated the
two clusters in the CGGA RNAseq (693) cohort (Figure 3B, p < 0.05). Similar to the CGGA
array (301), the infiltration of “T cells CD4 memory resting” (p = 0.0095), “T cells follicular
helper” (p = 1.1 × 10−5), and “Macrophages M0” (p = 0.0022) in cluster 1 were significantly
less than cluster 2 in the CGGA RNAseq (693) cohort, and “B cells memory” (p = 0.011)
in cluster 1 was significantly more. A total of eight immune cells showed significantly
different infiltration between the two clusters in the TCGA-LGG cohort (Figure S2C).

3.3. Mining of Meaningful Module

To identify the genes that play critical roles in mediating metabolic subtype differenti-
ation, we performed differential expression analysis between the two clusters. The volcano
plot showed 688 DEGs in cluster 1 compared with cluster 2 (Figure 4A). Our study utilized
Metascape to identify the pathways and processes that are enriched by DEGs to identify the
functional processes regulated by DEGs comprehensively. They were significantly enriched
in many crucial biological events, such as “trans-synaptic signaling”, “Neuronal System”,
“NABA CORE MATRISOME”, “synapse organization”, and the “regulation of membrane
potential” (Figure 4B). Some of the significantly enriched pathways were closely interlinked
(Figure 4C).

To identify the genes that were significantly associated with the clinical factors, we
performed WGCNA to construct a co-expressed network according to the expression of
DEGs in the CGGA array (301) cohort. To ensure average connectivity and independence,
we screened the power values between 1 and 30 for each module. A scale-free network
was ensured by setting the power to 14 once the scale-free R2 reached 0.9 at this time in
the study (Figure 5A,B). Four co-expressed modules were identified, and the number of
genes in each module was as follows: 318 in blue, 221 in green, 65 in grey, and 84 in the
yellow module. The cluster tree and the relationships between the modules are shown
in Figure 5C,D. Figure 5E shows the connectivity in each module. The blue module was
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selected on account of its high correlation with tumor grade, but it had little to do with the
gender and age of the patients (Figure 5F).
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Figure 2. Differentially active metabolic pathway between subtypes. (A,B) Volcano plot for differ-
entially active metabolic pathway between cluster 1 and cluster 2 in CGGA array (301) and CGGA
RNAseq (693) cohorts according to fold-change method. Red points mean the pathways that up-
regulated in cluster 1 compared with cluster 2, and blue points mean downregulation. Number of
differential up- and down-regulated pathways in (A) is 38 and 32, respectively; number of differ-
entials up- and down-regulated pathways in (B) is 36 and 16, respectively. (C–F) Distribution of
pathway enrichment score between two clusters in CGGA array (301) and CGGA RNAseq (693)
cohorts, one-sided Wilcoxon rank-sum test was used to evaluate the difference.
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3.4. Establish of Prognostic Model

We evaluated the prognostic power of the metabolic pathway enrichment score, and
the univariate Cox proportional hazard model revealed that metabolic activity was sig-
nificantly relevant to prognosis in the CGGA and TCGA cohorts (Figures 6A,B and S3,
p < 0.001). To identify the genes that are capable of distinguishing patients with distinct
prognoses, we conducted a univariate Cox proportional regression analysis for the blue
module genes and found that 239 genes were statistically significantly correlated with OS.
The most helpful prognostic genes were then determined using a LASSO analysis, and one
SE above the minimal requirements was picked, resulting in a model with 13 prognostic
genes (Figure 7A,B). Then, based on the expression of 13 genes, we established a predictive
model according to a multivariate Cox proportional hazard model: risk score = (−0.2073 *
NRSN1 exp) + (−0.1479 * ABCC8 exp) + (−0.1663 * RTN1 exp) + (0.07513 * ADARB2 exp) +
(−0.1077 * PAQR6 exp) + (−0.1733 * SPHKAP exp) + (−0.1198 * FAM155A exp) + (0.1465 *
GRIN3A exp) + (−0.1882 * CACNG2 exp) + (−0.03584 * AMZ1 exp) + (0.2154 * PCDH11Y
exp) + (0.2885 * ELAVL4 exp) + (0.01816 * RPH3A exp) (Figure 7C).
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Figure 4. Functional analysis for DEGs. (A,B) Heatmap shows DEGs between two clusters. Red
points mean upregulated in cluster 1, turquoise points mean downregulation. (B) An analysis of
pathway and process enrichment was conducted using the following ontologies: KEGG Pathway,
GO Biological Processes, Reactome Gene Sets, Canonical Pathways, CORUM, TRRUST, DisGeNET,
PaGenBase, Transcription Factor Targets, and COVID-19. Based on the graphical representation, the
top 20 enrichments with p < 0.01 were displayed. (C) Edges connect terms that have a similarity > 0.3.
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Figure 5. Differentially active metabolic pathway between subtypes. (A) Scale-free fit index versus
soft-thresholding power. (B) Mean connectivity versus soft-thresholding power. (C) An adjacency-
based clustering of dissimilarity-based clustering of genes is presented as a tree (dendrogram).
According to the dynamic tree cut method, the colored row below the dendrogram indicates mod-
ule membership, together with the color assigned to the merged modules and the original colors.
(D) WGCNA module correlations, colored red for positive correlations and blue for negative correla-
tions. (E) The connectivity in each module. (F) The rows correspond to Modu Eigengenes and the
columns to clinical phenotypes. Each cell contains the corresponding correlation and p values. Color
legends correspond to correlations in Table S1.
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Figure 7. Construction of Metabolic prognostic model. (A) LASSO coefficient profiles of 239 prognos-
tic genes. (B) Cross-validation of the LASSO model’s parameters. (C) The coefficients of 13 prognostic
genes in predictive model. (D–F) In CGGA and TCGA cohorts, we used log-rank tests to determine
whether high-risk and low-risk samples had different OSs. CGGA array (301): HR = 0.2004963; CGGA
RNAseq (693): HR = 0.37367; TCGA-LGG: HR = 0.4145335. (G–I) ROC curve of prognostic model in
CGGA and TCGA cohorts.
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A risk score was calculated for each patient in the CGGA and TCGA using the above
formula. By using the median risk score as a cutoff value, the patients were categorized into
high-risk and low-risk groups. There were significant differences in OS between the high-
risk and low-risk groups in both the CGGA and TCGA studies (Figure 7D–F, p < 0.0001).
According to the AUC (area under the curve) of the receiver operating characteristic (ROC)
curve, we identified that the risk score was able to predict mortality accurately in the
CGGA array (301) (AUC = 0.684), CGGA RNAseq (693) (AUC = 0.726), and TCGA-LGG
(AUC = 0.739) (Figure 7G–I).

3.5. Risk Score Associated with Histological Subtypes

To confirm the power of the prognostic model under different treatment modalities, we
compared the survival outcome of the patients in the high-risk and low-risk groups treated
with chemotherapy and radiotherapy. The GSE107850 cohort had significantly poorer OS
for all patients, as well as those treated with temozolomide (Figure 8A,B, p < 0.05), and the
patients treated with radiotherapy had the same trend (Figure 8C, p = 0.14). The next step
was to investigate the relationship between the risk score and therapeutic response. The
ECOG performance status is a simple measure of the functional status of the patients, which
contains three measures: score “0” means fully active and no performance restrictions;
score “1” means strenuous physical activity restricted and fully ambulatory and able to
carry out light work; score “2” means capable of all self-care but unable to carry out any
work activities. We found that the risk score of the patients with an ECOG score of “2”
were significantly greater than an ECOG score of “0” and an ECOG score of “1” in the
GSE107850 cohort (Figure 8D, p < 0.05). The result revealed that the high-risk patients tend
to have poorer outcomes and worse therapeutic responses.

Moreover, we investigated the relationship between the risk score and histological
subtypes of Glioma. The risk score significantly increased with high tumor grade in both
the CGGA and TCGA cohorts (Figure 8E–G, p < 0.01). In addition, the risk scores of the four
TCGA subtypes were significantly different in CGGA RNAseq (693) (Figure 8H, p < 0.05).
The risk scores of the three histological types in the TCGA-LGG cohort were significantly
different (Figure 8I, p < 0.05).

3.6. RPH3A Decreases LGG Cell Proliferation and Induce Apoptosis

Further validation of RPH3A’s involvement in tumor progression was performed using
LGG. A comparison of the LGG samples with normal samples shows lower levels of RPH3A
as expressed in the GEPIA database (~1.4) (Figures 9A and S4). The expression of RPH3A in
the SW1783 and SW1088 cells after transfecting with the RPH3A plasmid was tested using
qRT-PCR and Western blotting. Our data show that, in LGG cells, RPH3A was significantly
increased in the RPH3A overexpression group compared with the control group or empty
vector group (Figure 9B,C). Consequently, the CCK-8 and colony formation assay were
employed to test LGG cell growth and proliferation after treatment with RPH3A. A colony
formation assay showed that the LGG cells, after overexpressing RPH3A, significantly
decreased the colonies and colony volume (Figure 9D). Cell growth was evaluated by a
CCK-8 assay after the overexpression of RPH3A in the LGG cells. Compared to the empty
vector (NC) group, RPH3A overexpression can suppress SW1783 and SW1088 cell viability
(Figure 9E). Thus, RPH3A affects cell growth and proliferation in LGG.
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Figure 8. Risk score associated with clinical groups. (A–C) Assessment of the difference in OS
between high-risk and low-risk samples in GSE107850 cohort within different therapy method
(all patients, temozolomide-treated patients, and radiotherapy-treated patients) by log-rank test.
(A): HR = 0.6703932; (B): HR = 0.5822906; (C): HR = 0.7964126. (D,E) The differences in risk scores
within tumor grading groups and TCGA subtypes in CGGA array (301) cohort were assessed using
the Wilcoxon rank-sum test. (F) The distribution of tumor gradings in the CGGA RNAseq cohort
(693). (G) Comparison of risk score among ECOG score in GSE107850 cohort. (H,I) Differences in
risk score between tumor grading groups and among histological types in TCGA-LGG cohort.
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Figure 9. RPH3A alters the proliferation of LGG cells. (A). Relative expression of RPH3A in LGG
and normal brain tissues. (B,C) Transfection efficiency of the RPH3A in SW1783 and SW1088 cells,
measured by qRT-PCR and western blotting. (D) RPH3A-containing colonies showed reduced
viability when compared to empty vector-containing colonies. (E) In CCK-8 assays, LGG cells
expressing up-regulated RPH3A showed decreased cell viability. Means and standard deviations are
represented as means and standard deviations. * p < 0.05, and ** p < 0.01 compare vs. Empty vector
group, *** p < 0.001 compare vs. normal group. ns p > 0.05 compare vs control group.

3.7. RPH3A Suppressed LGG Cell Migration, Invasion and EMT

Wound healing and transwell migration assays were employed to test the role of
RPH3A on migration and invasion in LGG. Our data showed the expression of RPH3A
after increasing RPH3A in the LGG cells. Our data showed that invasive and migration
activities were decreased in the LGG cells in the RPH3A group (Figure 10A,B). EMT-relative
protein (N-cadherin and Vimentin) was detected in the LGG cells after the overexpression of
RPH3A. Our data show that RPH3A overexpression can significantly decrease the protein
level of N-cadherin and Vimentin in SW1783 and SW1088 cells compared to the NC group
(Figure 10C). Consequently, RPH3A plays a role in LGG migration, invasion, and EMT.
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Figure 10. RPH3A suppressed migration, invasion, as well as EMT in LGG cells. After transfection
with RPH3A in LGG cells. (A,B). Cell migration showed the signs of migration and invasion by
wound healing assays as well as Trans well assays. (C). The N-cadherin and Vimentin protein levels
in LGG cells after transfecting with RPH3A. In data analysis, mean values and standard deviations
are calculated. * p < 0.05.

4. Discussion

Although some studies have constructed some gene signatures [20–24], biomarkers for
predicting the prognosis of LGG are still needed. The present study constructed a metabolic
signature for Glioma classification. The data on Glioma were obtained from the CGGA,
TCGA, GDC, and GEO databases. ssGSEA was utilized to calculate the enrichment score
of each metabolic pathway. Based on the enrichment score, LGG was divided into two
clusters. We then compared the outcomes between the two clusters. The results showed
that cluster 1 has better OS than cluster 2 in the CGGA array and the CGGA RNAseq
cohorts (Figure 1). The metabolic pathways were shown to have different activity between
the two clusters (Figure 2). These results indicated that metabolic factors are related to the
prognosis of LGG patients.

We then observed the immune infiltration difference between the two clusters. The
immune infiltration difference was observed between the two clusters. The 22 kinds of
immune cells were analyzed using CIBERSORT. The infiltration of “T cells CD4 memory
activated”, “T cells CD4 memory resting”, and “T cells follicular helper” in cluster 1 were
significantly less than in cluster 2 in both the CGGA array and the CGGA RNAseq cohorts.
While “Macrophages M0” and “B cells memory” in cluster 1 were significantly more than
in cluster 2. It was reported that the number of CD4 T cells was larger than that in normal
brain tissues. CD4 T cell infiltration-positive Glioma patients have better overall survival
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compared with CD4 T cell-infiltration negative [25]. Our results are in accordance with the
current findings.

The DEGs between the two subtypes were screened. A total of 688 DEGs were
identified between the two subtypes. Pathway and process enrichment analyses were
performed using these DEGs. The DEGs were enriched in some Glioma-related processes,
including “regulation of ion transport”, “interferon-gamma signaling”, and “interleukin-4
and interleukin-13 signaling” (Figure 4). For example, the expression level of interferon-
gamma was positively correlated with PD-L1 in Glioma. Moreover, interferon-gamma
could enhance the expression of PD-L1, which may be an indicator for anti-PD-1/PD-L1
therapy [26]. Interleukin-4 is a Th2 cytokine that is related to the proliferation of lympho-
cytes [27]. Interleukin-4 could also promote tumor proliferation and aggressiveness [28,29].
The increased secretion of interleukin-4 was associated with macrophage-induced tumor
growth and metastasis [30]. Polymorphisms in the interleukin-4 receptor genes are as-
sociated with better OS in Glioma patients [31]. The interleukin-4-related genes have a
prognostic value for Glioma [32].

WGCNA was used to construct a co-expressed network using the DEGs, and four co-
expressed modules were identified, which were the blue, green, grey, and yellow modules.
The associations between these modules and clinical factors were analyzed. The blue
module was highly correlated with tumor grade and had no correlation to the gender and
age of the patients (Figure 5).

We evaluated the prognostic power of the metabolic pathway enrichment score, and
the univariate Cox proportional hazard model revealed that metabolic activity was signif-
icantly relevant to prognosis in the CGGA and TCGA cohorts (Figure 6). Subsequently,
to identify the genes that could predict the prognosis of patients, we conducted a uni-
variate Cox proportional regression analysis using genes in the blue module. A total
of 239 genes were correlated with OS. Based on these genes, a prognostic model for LGG
was established using LASSO Cox regression. A 13-gene-involved model was constructed,
which included NRSN1, ABCC8, RTN1, ADARB2, PAQR6, SPHKAP, FAM155A, GRIN3A,
CACNG2, AMZ1, PCDH11Y, and ELAVL4, RPH3A (Figure 7). Some of these genes are
reported to be associated with the prognosis and progression of Glioma. NRSN1 was
identified as a hub gene related to Glioma by Zhang et al. [33]. Zhou et al. found that
ABCC8 mRNA expression could predict prognosis and chemosensitivity in Glioma [34].

According to the construct, the patients with Gliomas were classified into high-risk
groups and low-risk groups. The patients in the high-risk groups had significantly worse
OS in the CGGA and TCGA cohorts (Figure 7). Subsequently, we evaluated the role of the
prognostic model in cancer treatment. Surgical resection, chemotherapy, and radiotherapy
are the general treatment regimen for LGG. High recurrence and resistance rates are the
main problem [35]. Our results showed that temozolomide- or radiotherapy-treated pa-
tients in the low-risk group had a better OS in the GSE107850 cohort. Next, we investigated
the relationship between risk score and therapeutic response (Figure 8 A–C). We then
evaluated the association between the risk score and the clinical pathological characteristics
of the patients. The results showed that the risk score of the patients with an ECOG score
of “2” were larger than those with an ECOG score of “0” and an ECOG score of “1” in
the GSE107850 cohort (Figure 8D). The result revealed that high-risk patients tend to have
poorer outcomes and worse therapeutic responses. Moreover, we investigated the relation-
ship between risk score and histological subtypes of Glioma. The risk scores significantly
increased with increasing tumor grade in the CGGA and TCGA cohorts (Figure 8E–G).
In addition, the risk scores of four TCGA subtypes were different in CGGA RNAseq; the
neural subtype had the lowest risk score, while the classical subtype had the highest risk
score (Figure 8H). The risk scores of the three histological types in the TCGA-LGG cohort
were also significantly different. The astrocytoma subtype has the highest risk score, while
the Oligodendroglioma subtype has the lowest risk score (Figure 8I). This is consistent with
the current clinical observations that the prognosis of Oligodendroglioma was better than
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astrocytoma [36]. Therefore, the risk score was associated with the clinical treatment and
histological subtypes of LGG.

Finally, the role of RPH3A in Glioma was detected. RPH3A is a functional gene that
encodes rabphilin 3A and plays an essential role in neurotransmitter release and synaptic
vesicle traffic. As the model component genes, RPH3A also plays an essential in immune
microenvironment modulation. Ren C’s research indicated that RPH3A is an important
regulator in the polarization of neutrophil [37]. RPH3A plays an important role in the
process of neutrophil adhesion to endothelia during inflammation, which occurs through
the regulation of RAB21 and PIP5K1C90 polarization [37,38]. The expression of RPH3A
was increased in brain penumbra tissue of a rat cerebral ischemia-reperfusion model. The
inhibition of RPH3A could aggravate brain injury. Therefore, the increase in RPH3A may
be an endogenous protective mechanism against brain injury [39]. RPH3A was also shown
to be a novel target for levodopa-induced dyskinesias [40]. However, the role of RPH3A
in cancer remains unknown. We found that RPH3A was involved in our constructed
prognostic model. RPH3A was decreased in LGG tissues. To further observe the effect of
RPH3A on Glioma, RPH3A was overexpressed in SW1783 and SW1088 cells. The enhanced
expression of RPH3A could inhibit the proliferation, migration, invasion, and EMT of
LGG cells.

5. Conclusions

The present study developed a metabolic-related model for the prognosis of Glioma.
This predictor may improve the prognosis of LGG. Additionally, RPH3A showed an anti-
cancer effect on LGG.
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