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Background: Highlighting a gap in comprehending bone microarchitecture’s intricacies using dual-
energy X-ray absorptiometry (DXA), this study aims to bridge this chasm by analyzing texture in non-
weight bearing regions on axial computed tomography (CT) scans. Our goal is to enrich osteoporosis patient 
management by enhancing bone quality and microarchitecture insights.
Methods: Conducted at Busan Medical Center from March 1, 2013, to August 30, 2022, 1,320 cases 
(782 patients) were screened. After applying exclusion criteria, 458 samples (296 patients) underwent bone 
mineral density (BMD) assessment with both CT and DXA. Regions of interest (ROIs) included spine 
pedicle’s maximum trabecular area, sacrum Zone 1, superior/inferior pubic ramus, and femur’s greater/lesser 
trochanters. Texture features (n=45) were extracted from ROIs using gray-level co-occurrence matrices. A 
regression model predicted BMD, spotlighting the top five influential texture features.
Results: Correlation coefficients ranged from 0.709 (lowest for total femur BMD) to 0.804 (highest for 
femur intertrochanter BMD). Mean squared error (MSE) values were also provided for lumbar and femur 
BMD/bone mineral content (BMC) metrics. The most influential texture features included contrast_32, 
correlation_32_v, and three other metrics.
Conclusions: By melding traditional DXA and CT texture analysis, our approach presents a 
comprehensive bone health perspective, potentially revolutionizing osteoporosis diagnostics.
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Introduction

The assessment of bone quality and microarchitecture plays 
a critical role in determining bone strength and fracture 
risk. Conventionally, the dual-energy X-ray absorptiometry 
(DXA) and quantitative computed tomography (QCT) have 
been employed for such evaluations. DXA is extensively 
used to measure bone mineral density (BMD) and serves 
as the gold standard for diagnosing osteoporosis (1). 
Meanwhile, QCT utilizes computed tomography (CT) 
imaging to quantify BMD and other bone parameters, 
frequently used to evaluate bone health and fracture risk, 
particularly in patients with osteoporosis (2,3).

Despite their extensive use, DXA and QCT have 
inherent limitations, which has led to the exploration of 
supplementary techniques such as CT texture analysis (4,5). 
This technique assesses bone quality and microarchitecture 
by examining variations in pixel intensity and spatial 
distribution on CT images. By providing an additional 
layer of information about fracture risk beyond DXA 
BMD measurements alone, CT texture analysis has shown 
its potential in clinical applications. It can detect subtle 
changes in bone microarchitecture, such as trabecular 
spacing and connectivity, which may not be reflected in 
BMD measurements. Furthermore, it can identify patients 
at risk for fractures, even if their BMD is within the normal 
range, by revealing changes in bone microarchitecture that 
may signify reduced bone strength (6).

One significant advantage of CT texture analysis lies 
in its potential to reduce additional radiation exposure 
and enhance patient comfort (4). Often, CT scans are 
conducted for various clinical reasons, and conducting a CT 
texture analysis on these already acquired images doesn’t 
necessitate additional radiation exposure (5,6). While 
CT texture analysis offers the advantage of potentially 
reducing radiation exposure, it’s important to recognize 
its limitations, such as the dependence on image quality, 
potential variations based on scanning protocols, and the 
need for robust software algorithms. However, even with 
these constraints, the method’s potential to reduce radiation 
risk underscores its value as a safer approach for patients.

Notable studies (7,8) have demonstrated the predictive 
power of CT texture analysis in assessing fracture risk. 
They found a significant association between various texture 
analysis parameters and fracture risk, even after accounting for 
variables like age, body mass index (BMI), and DXA BMD.

However, the application of CT texture analysis for 
evaluating bone quality and microarchitecture in non-
weight bearing regions remains underexplored. Such 
regions of interest (ROIs) on axial CT scans typically 
include the lumbar spine and hip, promising areas for 
assessing bone health when combined with DXA BMD 
measurements (1,9-11). For example, texture analysis of the 
spine pedicle, Zone 1 of the sacrum, superior and inferior 
pubic ramus bones, and the greater and lesser trochanters of 
the femur, has offered valuable insights about bone quality 
and fracture risk prediction (12).

Despite the potential advantages, the number of studies 
investigating CT texture analysis in non-weight bearing 
regions is limited (7,13,14). This underlines the need 
for more focused research on this promising technique. 
Expanding the application of CT texture analysis to non-
weight bearing regions could broaden our understanding of 
bone health and, in turn, lead to more effective treatment 
decisions for patients at risk of osteoporotic fractures.

Overall, texture analysis of non-weight bearing ROIs on 
axial CT scans offers a promising technique for evaluating 
bone quality and assessing fracture risk. This approach can 
provide valuable information about bone microarchitecture 
in a variety of anatomical regions, including the spine 
and femur, which is not entirely captured by DXA BMD 
measurements (15). When used in conjunction with 
DXA BMD, texture analysis has the potential to not only 
deepen our understanding of bone health but also improve 
our ability to predict fracture risk. This could enable 
more informed treatment decisions for patients at risk of 
osteoporotic fractures or for those suffering from other 
bone-related conditions.

Objective

In this study, we set two objectives. The primary objective 
is to assess the potential of texture analysis of non-weight 
bearing ROIs on axial CT scans to provide complementary 
information about bone quality and microarchitecture. The 
secondary objective is to explore how this data can aid in 
predicting fracture risk and guiding treatment decisions in 
patients with osteoporosis or other bone-related conditions. 
We present this article in accordance with the STROBE 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-23-512/rc).

https://qims.amegroups.com/article/view/10.21037/qims-23-512/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-512/rc
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Methods

Participant recruitment

In this cross-sectional study conducted at Busan Medical 
Center, we retrospectively analyzed 1,156 cases involving 
590 patients who had undergone both CT and DXA 
scans from March 1, 2013, to August 30, 2022. Our study 
included patients who fulfilled the following criteria. Firstly, 
the time interval between their CT and DXA scans had 
to be less than one month. This was to ensure consistency 
in the bone conditions captured in both scans, thereby 
allowing for an accurate comparison and analysis. Secondly, 
the CT scans had to cover specific regions, particularly the 

abdomen and pelvis. Notably, the axial cuts of the scans 
should clearly show the L1–S1 vertebral body and pedicle. 
In addition, the axial cuts should cover both the right and 
left superior and inferior pubic ramus, as well as the femur’s 
greater and lesser trochanters. These areas were critically 
analyzed in our texture analysis approach for assessing 
BMD. Patients were excluded if they had a history of 
previous fractures, previous surgery for a fracture, severe 
osteolytic changes, or metal artifacts. After applying the 
exclusion criteria, the analysis was performed on 458 sets 
of ROIs obtained from axial CT scans of 296 patients, as 
shown in Figure 1. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). 

Assessed for eligibility

n=1,320 cases (782 patients) 

Included in study

(DXA and CT taken 

within a month)

n=1,156 (590 patients) 

Abdomen-pelvis CT

(actual measurable axial cuts for  

L1, L2... femur intertrochanter)

n=692

(346 patients)

Final analysis for the study

n=458 (296 patients) 

Excluded

(DXA and CT taken over a month)

n=164 (192 patients)

Excluded

Abdomen-pelvis CT 

(not quantifiable axial cuts) 

n=464 (244 patients)

Excluded

(I) History of Lumbar body compression 

or burst fractures (n=80) (14 patients)

(II) History of surgery for a previous 

fracture 

- Vertebroplasty (n=34) (9 patients)

- Kyphoplasty (n=24) (6 patients)

- Metal artifacts (n=30) (7 patients)

(III) Difficulty in identifying trabecular bones 

due to severe osteolytic or pathological 

changes (n=66) (14 patients)
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Figure 1 Diagram illustrating the process of case selection. DXA, dual-energy X-ray absorptiometry; CT, computed tomography.
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This study was approved by the Busan Medical Center 
Institutional Review Board (IRB No. 2023-01-002) and 
individual consent for this retrospective analysis was waived.

Abdomen-pelvis CT imaging protocols

The CT imaging was carried out on a Siemens SOMATOM 
128, Definition AS+ scanner (manufactured by Siemens 
Healthcare, Forchheim, Germany) using a single-energy 
CT protocol. The following parameters were utilized 
during the imaging: 120 kVp, 247 mA, dose modulation, 
0.6-mm collimation, and an effective pitch of 0.8. The 
acquired images had a 3.0 mm slice thickness for both the 
abdomen and pelvis CT, with a 3.0 mm slice increment.

DXA imaging protocols

At our institution, BMD values were predominantly 
determined using DXA as the reference standard. The 
clinical assessment procedure specifically involved 
conducting DXA measurements on the L1–L4 regions of 
the spine and the neck and intertrochanteric areas of the 
femur using a GE Lunar Prodigy DXA device (manufactured 
by GE Healthcare, Chicago, USA) following a well-defined 
imaging protocol (16). The obtained BMD values from 
these DXA images were automatically analyzed and reports 
were subsequently generated using the Physicians Report 
Writer DX software provided by the vendor, Hologic 
(located in Discovery, WI, USA).

ROIs of non-weight bearing portions of body

In order to perform statistical analysis of the bone images, 
the researchers limited their selection of ROIs to the 
cancellous bone, avoiding the cortical bone that could 
introduce inaccuracies due to its differing structure and 
density. To define these ROIs, the thresholding method 
was selected from various available options (17). For each 
patient, a 2D slice image was chosen from the CT scans that 
contained the largest cancellous bone area in the lumbar 
body, ilium, and proximal femur regions. Based on the 
methodology employed by Link (18), a rectangular region 
was selected as it covers a comprehensive extent of the 
trabecular area, thus yielding more representative texture 
analysis results. This region was utilized for texture analysis, 
as depicted in Figure 2.

Process of obtaining 45 features

The study used a total of 45 features extracted from ROIs, 
including five intensity-based features and 40 texture-
based features. The intensity-based features were obtained 
from the ROI image histogram and provided information 
about bone intensities. The gray-level co-occurrence matrix 
(GLCM) is a statistical method that examines the texture 
of an image by calculating how often pairs of pixel with 
specific values and in a specified spatial relationship occur 
in an image (19). This matrix is instrumental in gauging 
various properties of the texture of an image, making it a 
valuable tool in medical imaging studies.

The 40 texture-based features in our study were extracted 
using a GLCM matrix. This matrix provides crucial 
information about the spatial relationships between adjacent 
pixels across a 2D image. The foundation of the GLCM 
lies in its capacity to measure the frequency of pairs of 
pixel values (i.e., gray levels) at a given offset. The GLCM 
was derived from a matrix size of N × N. For our analysis, 
eight separate GLCMs were created for each sample ROI 
image. These matrices served to measure five primary 
statistics—entropy, contrast, correlation, homogeneity, and 
variance. Each of these statistics was evaluated across four 
distinct levels (N=16, 32, 64, 128) and in two orientations 
(horizontal and vertical). The essence of these measures is 
to capture the intricacies and patterns of bone structures 
that might not be evident through mere visual inspection.

Combining both intensity-based and texture-based 
features, we then utilized them as input for a Linear 
Regression (LR) model to provide a robust estimation  
of BMD.

Statistical analysis

All statistical analyses were undertaken using MATLAB 
9.10 R2021a (MathWorks, Natick, Massachusetts, USA). 
A multiple regression model was deployed to examine the 
relationship between estimated BMD values derived from 
texture features and reference BMD values acquired via 
DXA.

For the purpose of this analysis, each feature was 
designated as xij, wherein ‘i’ symbolizes the feature index 
and ‘j’ marks the specific sample or case under consideration. 
To ensure consistency and minimize the influence of 
outliers, these features underwent normalization using their 
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Figure 2 Areas of interest in cross-sectional abdominal-pelvic CT scans. (A-1) Lumbar 1 left pedicle, (B-1) lumbar 1 right pedicle, (C-1) 
lumbar 2 left pedicle, (D-1) lumbar 2 right pedicle, (E-1) lumbar 3 left pedicle, (F-1) lumbar 3 right pedicle, (G-1) lumbar 4 left pedicle, 
(H-1) lumbar 4 right pedicle, (I) lumbar 5 left pedicle, (J) lumbar 5 right pedicle, (K) sacrum Zone 1 left pedicle, (L) sacrum Zone 1 right 
pedicle. (A-2) Femur left greater trochanter, (B-2) femur right greater trochanter, (C-2) femur left lesser trochanter, (D-2) femur right lesser 
trochanter, (E-2) pelvis left superior pubic ramus, (F-2) pelvis right superior pubic ramus, (G-2) pelvis left inferior pubic ramus, (H-2) pelvis 
right inferior pubic ramus. The blue line demarcates the ROIs specific to the non-weight bearing portions of the body, emphasizing the 
cancellous bone and avoiding the cortical bone. These regions were defined using a thresholding method as per the referenced techniques (13). 
CT, computed tomography; ROI, region of interest. 
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respective sample mean (xi) and standard deviation (σi). In 
tandem, the reference BMD values, represented by yj, were 
normalized drawing on the sample mean (y) and its standard 
deviation (σ).

Our chosen LR model employed a weighted aggregation 
of 45 distinct features, augmented by a singular bias term, 
to predict BMD estimates. The following equation provides 
a mathematical representation of our model:

0yj w wi xij= +∑ ×  [1]

Here, the objective was to optimize the weights (wi) to 
narrow down the discrepancy between the projected BMD 
values and their actual counterparts present in our dataset. 
The magnitude of this deviation was quantified by the 
formula:

( )ˆ 2e yj yj= ∑ − [2]

It’s pertinent to mention that our study deliberately 
refrained from implementing regularization techniques 
and dividing the dataset into training and test subsets, thus 
sidestepping potential pitfalls of bias and overfitting.

BMD correlation’s maximum index based on five features

In our analysis, we identified five key features that 
demonstrated the highest correlation with BMD values. 
The correlation for each feature was determined using 
Pearson’s correlation coefficient. This process was 
iteratively conducted for each feature index, ranging from 1 
to 45. The correlation for each feature was calculated with 

respect to BMD across all femur variants in the dataset, 
which included LumbarL-1, PelvisSupR-1, among others. 
This comprehensive examination led to the identification of 
the five features showing the maximum correlation indices 
with BMD.

Results

Demographic information of the patients

This study involved a total of 296 patients, composed of 
122 males and 174 females. The average age of the patients 
was 58.21±11.88 years. We analyzed the data obtained 
from the patients’ CT and DXA scans, with a mean gap of  
2.51±3.52 days between the two procedures. The average 
BMI for the male patients was 24.55±3.80 kg/m2, and for 
female patients, it was 22.91±5.30 kg/m2.

Statistical test for measuring the association between 
variables

Our study involved the generation of scatter plots  
(Appendix 1, Figures S1-S8) that juxtapose predicted BMD 
values and actual BMD values for all cases. In our study, 
the neural network model utilized was inspired by the deep 
learning principles described by Kriegeskorte and Golan 
[2019] (13). This model, comprised of interconnected nodes 
spread across multiple layers, excels in deciphering intricate 
patterns in data. After training the model on our dataset, its 
predictive accuracy was showcased in the graphs provided. 
In Table 1, we encapsulate the statistical analysis, showcasing 
both the correlation coefficient and the mean squared error 
(MSE) for the predicted versus reference BMD values.

Applying a LR model (15), we examined datasets with 
varying BMD and bone mineral content (BMC) parameters 
derived from different parts of the femur and lumbar 
region. The obtained correlation coefficients and MSE 
values demonstrate the prediction accuracy of our model: 
0.726 (0.125) for total lumbar BMD, 0.720 (11.243) for total 
lumbar BMC, 0.709 (0.131) for total femur BMD, 0.719 
(5.02) for total femur BMC, 0.721 (0.143) for femur neck 
BMD, 0.711 (0.572) for femur neck BMC, 0.804 (0.129) 
for femur intertrochanter BMD, and 0.729 (3.91) for femur 
intertrochanter BMC.

In Table 1, we also compare the performance of our 
method (employing 45 features) with a conventional 
approach that only uses the mean Hounsfield unit (HU) 
feature. Evidently, our LR model, which utilizes all 

Table 1 The LR model’s CC and MSE 

Datasets
CC,  

45 values
MSE,  

45 values

Total lumbar BMD 0.726 0.125

Total lumbar BMC 0.720 11.243

Total femur BMD 0.709 0.131

Total femur BMC 0.719 5.02

Femur neck BMD 0.721 0.143

Femur neck BMC 0.711 0.572

Femur intertrochanter BMD 0.804 0.129

Femur intertrochanter BMC 0.729 3.91

LR, Linear Regression; MSE, mean squared error; CC, correlation 
coefficient; BMD, bone mineral density; BMC, bone mineral 
content. 

https://cdn.amegroups.cn/static/public/QIMS-23-512-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-512-Supplementary.pdf
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45 features, offers significantly enhanced precision in 
estimating the average attenuation coefficient.

In the referenced figures (Appendix 1, Figures S1-S8), each 
scatter plot illustrates the correlation between predicted and 
actual BMD values, with the degree of dispersion around 
the line of best fit representing the accuracy of our model. 
Lower dispersion indicates better prediction accuracy.

Maximum 5 index correlation of BMD estimates

The five features that demonstrated the highest correlation 
with BMD estimates were labeled as 6, 12, 22, 26, and 
42. The corresponding Pearson correlation coefficients 
for these features represent different texture parameters 
derived from the CT images, specifically, “contrast_32”, 
“correlation_32_v”, “correlation_64_v”, “correlation_128_
v”, and “correlation_256_v”, respectively (as illustrated in 
Figure 3). In the context of our study, these labels are names 
assigned to the different texture parameters, where the 
number denotes the size of the neighborhood considered 
for texture calculation and the prefix denotes the texture 
feature (contrast or correlation). These findings underscore 
the potential significance of these specific features in 
elucidating the relationship between bone texture and 
BMD, which could have important implications for the 
diagnosis and management of bone disorders.

Discussion

Our study incorporated CT HU texture analysis with 
45 features to estimate BMD. The resultant correlation 
coefficients for our eight BMD/BMC targets, including Total 
Lumbar BMD and Femur Intertrochanter BMC, ranged 
from 0.709 to 0.804. This range underscores a moderate 
to strong positive correlation between the predicted BMD 
values and the established BMD measurements (20).

The superior average attenuation coefficient scores of 
our LR model, compared to traditional methods that use 
the mean HU feature, illustrate the method’s enhanced 
performance (4,8). This suggests that our approach could 
potentially provide a deeper, more accurate insight into 
bone health. Our analysis pinpointed five key features with 
strong correlation to BMD estimates, specifically labeled as 
6, 12, 22, 26, and 42. These represent texture parameters 
from CT images, such as “contrast_32” and various 
“correlation” metrics, as shown in Figure 3. Drawing from 
prior research, such texture attributes, including contrast 
and autocorrelation, stand out in medical image analysis, 

although the relevance of features can vary based on the 
imaging technique and research focus (5,21).

Distinctively, our study went beyond traditional research, 
which mainly emphasized weight-bearing regions. We 
expanded our analysis to include non-weight bearing 
regions, ensuring a holistic interpretation of bone health, an 
aspect previously underrepresented.

BMD, as valuable as it is, might not capture the entire 
essence of bone health (22). Hence, our method, which 
compared BMD with non-weight bearing ROI on CT 
scans using texture analysis, is meant to complement, not 
replace, traditional BMD measurements. It brings to light 
additional aspects of bone health, particularly the bone’s 
microarchitecture, which plays a pivotal role in fracture risk 
assessment (7,23,24).

Our approach, which melds the traditional DXA 
BMD and our innovative CT texture analysis, offers a 
dual perspective on bone health (25). While DXA BMD 
continues to be the cornerstone for assessing BMC and 
density, the texture analysis method offers a deeper dive 
into the intricate microstructural details of the bone, giving 
practitioners a more robust diagnostic tool.

We recognize that our study’s manual selection of 
the trabecular bone might introduce some subjectivity, 
potentially impacting the consistency of results across 
samples. The variance in our recorded MSE values, from as 
low as 0.129 for femur neck BMD to as high as 11.243 for 
total lumbar BMC, further underlines this.

While our study contributes valuable insights into 
estimating BMD using CT texture analysis (1,21,26), it 
does present certain limitations. A potential limitation is the 
manual selection of only the trabecular bone for analysis, 
which introduces the possibility for error. Although the 
“rectangular region” indicated in the methods was used 
for this selection, there is still potential for subjectivity and 
variation in the selection process, which might impact the 
accuracy of the results. We acknowledge this limitation and 
have strived to mitigate it through rigorous methodology 
and consistency in the selection process (27,28). 
Additionally, juxtaposing our results with QCT-derived 
BMD measures could solidify the validity and applicability 
of our approach.

We understand that BMD measurements are traditionally 
taken at weight-bearing sites like the hip and spine. Still, 
our study argues that non-weight bearing ROIs are also 
essential for evaluation, as they can be affected by conditions 
such as osteoporosis and osteopenia (1,7,29). Texture 
analysis of these non-weight bearing ROIs might be more 

https://cdn.amegroups.cn/static/public/QIMS-23-512-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-512-Supplementary.pdf
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Figure 3 Max index [5] counting for BMD correlation—this figure represents the highest index [5] value obtained for BMD correlation. 
The individual alphabetic markers correspond to various measurement regions as follows: LumbarL, lumbar left; LumbarR, lumbar right; 
SacrumL, sacrum left; SacrumR, sacrum right; PelvisSupL, pelvis superior ramus left; PelvisSupR, pelvis superior ramus right; PelvisInfL, 
pelvis inferior ramus left; PelvisInfR, pelvis inferior ramus right; FemurGrL, femur greater trochanter left; FemurGrR, femur greater 
trochanter right; FemurLeL, femur lesser trochanter left; FemurLeR, femur lesser trochanter right. BMD, bone mineral density. 
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sensitive to changes in bone quality and microarchitecture 
occurring earlier in the disease process compared to BMD 
measurements.

Conclusions

Our study, rooted in integrating the traditional DXA BMD 
measures and the contemporary CT texture analysis, offers 
a fresh lens through which to view and diagnose bone 
health. This integrated approach, we believe, can reshape 
the landscape of osteoporosis diagnostics and treatments, 
providing both practitioners and patients with a more 
holistic understanding of bone health.
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