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Abstract

Anaplastic astrocytoma (AA; Grade III) and glioblastoma (GBM; Grade IV) are diffusely infiltrating tumors and are called
malignant astrocytomas. The treatment regimen and prognosis are distinctly different between anaplastic astrocytoma and
glioblastoma patients. Although histopathology based current grading system is well accepted and largely reproducible,
intratumoral histologic variations often lead to difficulties in classification of malignant astrocytoma samples. In order to
obtain a more robust molecular classifier, we analysed RT-qPCR expression data of 175 differentially regulated genes across
astrocytoma using Prediction Analysis of Microarrays (PAM) and found the most discriminatory 16-gene expression
signature for the classification of anaplastic astrocytoma and glioblastoma. The 16-gene signature obtained in the training
set was validated in the test set with diagnostic accuracy of 89%. Additionally, validation of the 16-gene signature in
multiple independent cohorts revealed that the signature predicted anaplastic astrocytoma and glioblastoma samples with
accuracy rates of 99%, 88%, and 92% in TCGA, GSE1993 and GSE4422 datasets, respectively. The protein-protein interaction
network and pathway analysis suggested that the 16-genes of the signature identified epithelial-mesenchymal transition
(EMT) pathway as the most differentially regulated pathway in glioblastoma compared to anaplastic astrocytoma. In
addition to identifying 16 gene classification signature, we also demonstrated that genes involved in epithelial-
mesenchymal transition may play an important role in distinguishing glioblastoma from anaplastic astrocytoma.
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Introduction

Astrocytoma, the tumor of astrocytic glial cells, is one of the

common types of primary central nervous system (CNS)

neoplasms [1]. It accounts for more than 60% of all primary

brain tumors and has a poor prognosis. Diffuse infiltrating

astrocytomas are graded into low-grade diffuse astrocytoma (DA;

grade II), anaplastic astrocytoma (AA; grade III) and glioblastoma

(GBM; grade IV) in the order of increasing malignancy [2].

Patients with diffuse astrocytoma have a median survival time of 6

to 8 years after surgical intervention. The more aggressive

anaplastic astrocytoma (AA) and glioblastoma (GBM) are also

called malignant astrocytomas [3,4]. The treatment protocols and

length of survival are distinctly different between AA and GBM

patients. GBM patients receive radiotherapy and chemotherapy

with temozolomide after the surgical removal of the tumor. In case

of AA, patients receive radiotherapy after the surgical removal of

the tumor tissue. Although AA patients conventionally receive

chemotherapy in addition to radiotherapy in some places/

countries, chemotherapy failed to consistently improve the

outcome of patients with anaplastic astrocytoma [4]. The median

survival time for AA patients is 2 to 3 years whereas patients with

GBM have a median survival of 12 to 15 months [5,6] and less

than 20% of GBM patients survive two years [7]. GBMs are

further divided into primary GBM and secondary GBM on the

basis of clinical and molecular profile. Primary GBM presents in

an acute de novo manner with no evidence of an antecedent lower

grade tumor and it accounts for .90% of all GBMs [8]. In

contrast, secondary GBM results from the progressive malignant

transformation of a DA or AA.

The current WHO grading system of astrocytomas is based on

the histopathological characteristics of the underlying tumor tissue.

Grading of diffusely infiltrating astrocytomas by individual

pathologists is dependent on the specific histologic features:

nuclear atypia, mitosis, microvascular proliferation and/or necro-

sis, which associate with biologically aggressive behaviour (WHO
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2007). The prognosis of patients and therapeutic decisions rely on

the grading based on pathological features. Though grading based

on histology is largely reproducible and well accepted, high-grade

astrocytoma tissue samples often have little cellular differentiation,

intratumoral histological variability and also can lack identifying

histological features [9,10,11,12]. In such cases, precise grading of

malignant astrocytoma samples becomes difficult.

Recent studies have attempted to characterize the molecular

basis for the histological and prognostic differences between AA

and GBM [13,14,15,16,17]. With the advent of advancements in

various expression profiling technologies, efforts are being made to

identify molecular markers to refine the current grading method

for malignant astrocytoma. Profiling studies have also led to the

development of new classification systems based on the molecular

profile identified by using various statistical methods [18,19].

There is a need for a more robust classifier gene set based on

molecular profile which would lead to improved classification

methods and better management of patients with malignant

astrocytoma.

In the present study, we have used gene expression profile in a

cohort of 50 AA and 132 GBM patient samples to identify the

most discriminatory genes between the two grades. We divided the

patient cohort randomly into training and test sets. We then used

the prediction analysis of microarrays on the training set to identify

a 16-gene signature that could distinguish GBM from AA. Further,

the signature was validated in the test set and independent cohorts

of AA and GBM patient samples from publicly available datasets.

Subsequently, through network analysis using the 16-gene

signature, we found that the most differentially regulated pathways

between the two grades are related to focal adhesion and the

epithelial-mesenchymal transition (EMT), which can possibly

explain the more malignant phenotype of grade IV GBMs. Thus,

our study demonstrates that gene expression signature, combined

with histopathological grading leads to accurate grading of the

patient samples, thus helping in prediction of prognosis and

deciding most appropriate therapy.

Materials and Methods

Patient tumor samples
Tumor samples used in the study were collected from patients

who were operated at National Institute of Mental Health and

Neurosciences (NIMHANS) and Sri Sathya Sai Institute of Higher

Medical Sciences (SSSIHMS), Bangalore, India. For non-neoplas-

tic control brain tissue sample, a portion of the non-dominant

anterior temporal cortex resected during surgery for intractable

epilepsy was used. Tissues were freshly received from the

neurosurgical operating rooms, bisected and one half was placed

in RNA later (Ambion Inc., USA), stored at 270uC and was

subsequently used for RNA isolation. The other half of the

resected tissue was fixed in 10% buffered neutral formalin,

processed for paraffin sections and was used for histopathology

and immunohistochemistry (IHC). This study has been approved

by the ethics committee of NIMHANS (NIMHANS/IEC/

No. RPA/060/05 dated 29.10.2005) and SSSIHMS

(SSSIHMS/IEC/No RPA/001/2005 dated 20.10.2005) and pa-

tient’s written consent was obtained. A total of 182 samples of

malignant astrocytoma and 20 control brain tissues were used in

this study.

RNA isolation and real-time quantitative reverse
transcription-PCR

Total RNA isolation from the frozen tissue and quantification

were performed as described before [13]. The relative quantifi-

cation of the expression levels of selected genes was carried out by

real time qPCR. In the first step, cDNA was generated from RNA

derived from different tissue samples using a cDNA archive kit

(ABI PRISM); subsequently, real-time qPCR was carried out in an

ABI PRISM 7900 (Applied Biosystems) sequence detection system

with the cDNA as template using gene-specific primer sets and a

Dynamo kit containing SYBR green dye (Finnzyme). All

measurements were made in triplicates. The genes GARS

(glycyl-tRNA synthetase), AGPAT1 (1-acylglycerol-3-phosphate

O-acyltransferase 1), ATP5G1 [ATP synthase, H+ transporting,

mitochondrial F0 complex, subunit C1 (subunit 9)], and RPL35A

(ribosomal protein L35a) were used as internal controls because

their expression levels were found to be unaltered in the

microarray experiments previously carried out in our laboratory.

Non-neoplastic control brain tissue samples from 20 different

epilepsy patients were used as reference. Delta Delta Ct method

was used for the calculation of ratios of expression levels. Statistical

significance was tested by Mann-Whitney test using GraphPad

PRISM software. Sequences of reverse transcription-PCR primers

are listed in Table S1 in File S1 and all the primers worked at

the annealing temperature of 59uC. For the analysis done as a part

of the study, we have used the gene expression data from real time

PCR for 50 AAs, 132 GBMs and 20 control non-neoplastic brain

tissues. Out of this, real-time qRT-PCR for 50 AAs, 9 GBMs and

20 control non-neoplastic brain samples was carried as a part of

the current study while remaining data generation was carried out

as a part of a different project.

Data analysis
Class prediction analysis was performed by Prediction Analysis

of Microarrays (PAM) using the PAM package in the R software

(version 2.14.2). The method of the nearest shrunken centroids

was used to identify a subgroup of genes that best characterizes a

predefined class [20]. The prediction accuracy was estimated by

10-fold cross-validation. This means that the data set was divided

into 10 approximately equally sized subsets; a PAM model was

trained for nine subsets and prediction was conducted for the

remaining subset [20]. This training and prediction process was

repeated 10 times to include predictions for each subset. Centroid

is the average gene expression for each gene in each class divided

by the within-class standard deviation for that gene. In the nearest

centroid method, a standardized centroid is computed for each

class and this is called as class centroid. This method takes the gene

expression profile of a new sample and compares it to each of these

class centroids. The class whose centroid that it is closest to, in

squared distance, is the predicted class for that new sample.

Nearest shrunken centroid classification is a modification of the

standard nearest centroid classification. In this method, each of the

class centroids is ‘‘shrunken’’ towards the overall centroid for all

classes by an amount called as the ‘‘threshold’’. Typically, the user

would choose the threshold value giving the minimum cross-

validated misclassification error rate.

In Principal Component Analysis (PCA), orthogonal transfor-

mation is used to convert a set of variables into a set of values of

linearly uncorrelated variables called principal components. The

number of principal components is less than or equal to the

number of original variables. The first two components account

for the largest possible variance in the dataset. PCA was performed

using R package (version 2.7.1).

For the TCGA dataset, the level 3 expression data from the

Agilent platform was downloaded from the TCGA data portal

(tcga-data.nci.nih.gov/). For GSE1993, GSE4422 and GSE4271

datasets, the microarray data was downloaded from GEO website

(http://www.ncbi.nlm.nih.gov/gds).

A 16-Gene Classification Signature for Astrocytoma
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Network analysis
We used the 16 genes in our signature as input genes to the

Bisogenet plugin in Cytoscape to generate a protein-protein

interaction network. The generated network had 252 nodes (genes)

and 1498 edges (interactions between genes/proteins). This

network consisted of the seed proteins with their immediate

interacting neighbors. We extracted gene expression data for the

252 genes from the GSE1993 dataset. Using the Multi Experiment

Viewer (MeV) [21], we performed a t-test with 100 permutations,

and chose genes that were differentially regulated FDR corrected

p-value,0.1. There were 67 differentially regulated genes, out of

which 53 were up regulated and 14 were down regulated. We

calculated the fold change for each of these 67 genes and used this

data as input for downstream pathway analysis. We used web-

based software, the Pathway express, to find pathways that were

enriched by the differentially regulated genes. This software looks

at the magnitude of the fold change in addition to the genes

themselves, to identify the most differentially regulated pathways.

From the output of Pathway Express, we chose focal adhesion,

which is the most significant pathway to perform further analysis.

We extracted gene expression data for all the genes (n = 145) in the

KEGG focal adhesion pathway from the GSE1993 dataset. We

then identified genes that were differentially regulated between AA

and GBM (n = 58) using the MeV software (t-test with 100

permutations FDR corrected p value,0.25).

Results

The overall workflow of classification signature
identification and validation

In order to identify a gene expression signature to distinguish

AA and GBM, we have used the gene expression data of 175

genes. This set of 175 genes were selected based on their

differential expression in astrocytoma samples as compared to the

control non-neoplastic brain tissue originally derived from

previously performed microarray study in our laboratory [16]

(Table S2 in File S1). In the current study, we have carried out

the expression analysis of 175 genes in 50 AA, 9 GBM and 20 non-

neoplastic control brain samples by real time RT-qPCR. For

GBM cohort, we have used the expression data of 175 genes from

an additional set of GBM samples (n = 123) which was carried out

as a part of different project. Thus, in total, we have used the

expression data from 50 AAs and 132 GBM samples in the present

study. First, we randomly divided our patient cohort into training

set and test set, each having an equal proportion of AA (27%) and

GBM (73%) samples. The schematic of the analysis workflow is

shown in Figure 1. Next, the expression data from the training set

(Table S2 in File S1) was analyzed by Prediction Analysis of

Microarrays (PAM). In PAM, the method of the nearest shrunken

centroids was used to identify a subset of genes that best

characterized predefined classes (AA and GBM). PAM analysis

identified a 16 gene signature which was further validated through

Principal Component Analysis (PCA) and cross validated proba-

bility in the test set as well as in independent cohorts of patient

samples (TCGA, GSE1993, GSE4422 and GSE4271) from

publicly available datasets (Figure 1). The number of AA and

GBM samples in the training set, test set and independent cohorts

is shown in Table S3 in File S1.

Identification of 16-gene classification signature in
training set

Using training set, the PAM analysis identified that, out of 175

genes, 16 genes could discriminate AA and GBM samples at a

threshold value 2.5 with an error rate of 0.12 (Figure 2A). The 16

genes of the signature were differentially expressed in AA and

GBM (Figure 2B and Table 1). We then performed Principal

Component Analysis (PCA) of these 16 genes in the training set,

and found that the first two principal components were able to

distinguish the AA and GBM samples into two distinct groups

(Figure 3A). Prediction accuracy estimation by 10-fold cross-

validation using PAM (Figure 3B) revealed that among 30 AA

samples, the gene signature predicted 25 samples correctly as AAs

(cross-validated probability more than 0.5) with an error rate of

0.16. Similarly among 78 GBM samples analyzed, the signature

predicted 70 samples correctly as GBM with an error rate of

0.1(Figure 3B). Thus our 16 gene expression signature could

discriminate GBMs from AAs with an overall diagnostic accuracy

of 87.9% (Table 2). The sensitivity of the signature for AA is 80%,

whereas for GBM, it is 89.7%; the specificity for AA is 89.7%,

whereas for GBM, it is 80% (Table 2).

Validation of 16-gene classification signature in test set
In the test set, PCA analysis revealed that the expression of 16

genes (as identified from training set) (Figure S1 and Table S4
in File S1) was able to distinguish AA from GBM samples

(Figure 4A). The prediction accuracy estimation by 10-fold cross-

validation using PAM (Figure 4B) revealed that among 20 AA

samples, 16-gene signature predicted 18 samples correctly as AA

with an error rate of 0.1. Similarly, among 54 GBM samples, our

signature predicted 48 samples correctly as GBM with an error

rate of 0.09. Thus the 16 gene expression signature could

discriminate GBM from AAs with an overall diagnostic accuracy

of 89.1% (Table 2). The sensitivity for AA is 90%, whereas for

GBM, it is 88.8%; the specificity for AA is 88.8%, whereas for

GBM, it is 90% (Table 2).

Additional validation of 16-gene classification signature
in independent cohorts

To validate the 16-gene signature in independent cohorts of

patient samples, we used publicly available microarray datasets:

TCGA dataset [22], GSE1993 (from GEO) [19], GSE4422 (from

GEO) [23] and GSE4271 (from GEO) [18] datasets. The TCGA

dataset [22] comprised of 27 grade III gliomas (comprising of 10

anaplastic astrocytoma, 9 oligoastrocytoma and 8 oligodendrogli-

oma) samples and 152 GBM samples. The 16 genes of the

classification signature were differentially expressed in grade III

gliomas compared to GBM (Figure S2 and Table S5 in File
S1). We then performed Principal Component Analysis (PCA) of

these 16 genes in the TCGA dataset, and found that the first two

principal components were able to distinguish the grade III

gliomas and GBM samples into two distinct groups (Figure 5A).

A10-fold cross validation with PAM using the 16-gene signature

was able to classify 26 out of 27 grade III glioma samples and all

152 GBM samples correctly (Figure 5B). Thus the 16 gene

expression signature could discriminate GBMs from grade III

gliomas with an overall diagnostic accuracy of 99.4% (Table 2).

The sensitivity for grade III glioma is 96.3%, whereas for GBM, it

is 100%; the specificity for AA is 100%, whereas for GBM, it is

96.3% (Table 2). Additionally, we also used only anaplastic

astrocytoma samples (n = 10) along with 152 GBM samples for the

PAM analysis and found that the prediction accuracy was 100%

(data not shown).

The GSE1993 dataset comprised of 19 AA samples and 39

GBM samples [19]. The PCA analysis of GSE1993 based on the

expression of 16 genes (Figure S3A and Table S6 in File S1)

segregated the samples into distinct AA and GBM subgroups

(Figure S3B in File S1). Using PAM with a 10-fold cross

validation (Figure S3C in File S1) the 16-gene signature was

A 16-Gene Classification Signature for Astrocytoma
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able to predict 14 AA samples out of 19 correctly with an error

rate of 0.26. Similarly, among 39 GBM samples used, our 16-gene

signature predicted 37 samples correctly as GBM with an error

rate of 0.05 (Figure S3C in File S1). Thus, the 16 gene

expression signature could discriminate GBM from AAs with an

overall diagnostic accuracy of 87.9% (Table 2). The sensitivity for

AA is 73.9%, whereas for GBM, it is 94.8%; the specificity for AA

is 94.8%, whereas for GBM, it is 73.9% (Table 2).

Another independent dataset GSE4422 contained 5 AA and 71

GBM samples [23]. PCA based on the expression of our 16 gene

signature (Figure S4A and Table S7 in File S1), segregated the

samples into distinct AA and GBM subgroups (Figure S4B in
File S1). Using PAM with 10-fold cross-validation, (Figure S4C
in File S1) our 16 gene signature was able to classify 4 out of 5 AA

samples with error rate of 0.2 and 66 out of 71 GBM samples

correctly with an error rate of 0.07 (Figure S4C in File S1).

Thus the 16-gene expression signature could discriminate GBMs

from AAs with an overall diagnostic accuracy of 92% (Table 2).

The sensitivity for AA is 80%, whereas for GBM, it is 93%; the

specificity for AA is 93%, whereas for GBM, it is 80% (Table 2).

The validation of the 16-gene signature in GSE4271 dataset

(Phillips dataset) revealed that the overall accuracy of the 16-gene

signature in this dataset was 82%, however the sensitivity for AA

samples was low (54%). Though the 16-gene signature was

validated with high accuracy rates in three independent cohorts, in

GSE4271 dataset, the accuracy was lower. The reason for the

lower accuracy of the signature for AA samples in this dataset is

described later in the discussion section. The details of the analysis

are provided in the Supplementary Results in File S1 section

along with Figure S5 in File S1.

Comparison of previously reported signatures with the
16-gene classification signature

As the previous report by Petalidis et al identified a 59-gene

signature for the subtyping of high grade astrocytoma, which

correlated with survival of the patients, we checked the 59-genes in

classifying AA and GBM samples. For this analysis, we have

chosen the TCGA dataset. The detailed analysis is described in the

Supplementary Results in File S1 section along with Figure
S6 in File S1. The analysis with 59-gene signature showed that

the set of 59-genes was able to classify AA and GBM samples of

the TCGA dataset accurately, with 100% accuracy. This showed

that the 59-gene signature of the Petalidis et al and the 16-gene

signature both worked equally well for the classification of AA and

GBM.

We performed additional analysis also to assess the potentiality

of the Phillips et al gene signature [18] in classification of high

gliomas. The Phillips et al gene signature is meant for the

prediction of the survival in high-grade glioma [18]. The potential

use of Phillips et al gene signature for high grade classification was

tested mainly because of the reason that grade III gliomas were

represented in Proneural subtype that had the best survival among

the three subtypes. Our analyses of Phillips et al gene-signature

across various datasets suggest that the Phillips gene signature fails

to consistently predict AA and GBM samples with high accuracy.

The sensitivity of the signature for AA varies greatly across

datasets: 0% in GSE4422 dataset Figure S9 in File S1; 44% in

our dataset Figure S7 in File S1, 50% in GSE4271 dataset

(Phillips dataset) Figure S8 in File S1 and 85% in TCGA dataset

Figure S10 in File S1. In particular, the Phillips gene signature

fails to predict AA samples accurately, thus compromising the

sensitivity for AA prediction and specificity for GBM prediction. A

possible reason for the inability of Phillips gene signature to classify

Figure 1. The schematic representation of the work flow of statistical analysis. The expression of 175 genes was subjected to prediction
analysis of microarray (PAM) in the training set. PAM analysis identified the 16 discriminatory genes between AA and GBM which was further
validated by principal component analysis (PCA) and cross validated probability by PAM. The 16-gene signature was further validated in test set and
three independent cohorts of patient samples (GSE1993, GSE4422, TCGA and GSE4271).
doi:10.1371/journal.pone.0085200.g001
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AAs from GBMs is that the signature was not developed for this

purpose. The detailed account of the analysis is given in the

Supplementary Results in File S1 section along with Figure
S7, Figure S8, Figure S9 and Figure S10 in File S1.

The discordant AA and GBM samples identified by the
16-gene signature had GBM-like or AA-like features
respectively

Since the 16-gene signature identified the discordant samples,

whose grading did not match with the original histopathological

grading, it was of our interest to find out whether discordant

samples have clinical features and genetic markers similar to that

of grades identified by 16-gene signature. For this purpose, we

analyzed clinical features like age and survival as well as the

molecular markers like CDKN2A/2B loss, EGFR amplification

and p53 mutation. For these analyses, we divided the patients into

four groups: Authentic AA (samples which were identified as AA

by histopathology as well as by 16-gene signature), Authentic

GBMs (samples which were identified as GBM by histopathology

as well as by 16-gene signature), Discordant AA (samples identified

as AA by histopathology but having a GBM-like profile as per the

16-gene signature) and Discordant GBMs (samples identified as

GBM by histopathology but having an AA-like profile as per the

16-gene signature).

With respect to the age at diagnosis, as expected [5], the average

age of Authentic AAs (n = 21; average age being 33 years) and

Authentic GBMs (n = 37; average age being 56.8 years) were

significantly different (P = 0.361026) (Figure 6A). In case of

Discordant AAs (n = 8), the average age was 47.5 years, which was

found to be significantly higher than that of Authentic AAs

(P = 0.03) while it was similar to that of Authentic GBMs (P = 0.12)

(Figure 6A). Similarly, in case of Discordant GBMs (n = 13), the

average age was 43.6 years which was found to be significantly less

than that of Authentic GBMs (P = 0.0006). However, the

difference between the Discordant GBMs and Authentic AAs

were also found to be significantly different (P = 0.01) (Figure 6A).

We further compared the survival of patients across the four

groups. The Authentic AA samples (n = 13; median survival of 5.7

Figure 2. Identification of 16-gene signature in training set. A. Plot showing classification error for the 175 input genes from PAM analysis in
the training set. The threshold value of 2.5 corresponded to 16 genes which classified AA (n = 30) and GBM (n = 78) samples with classification error of
0.12. B. Heat map of one-way hierarchical clustering of 16 PAM-identified genes in AA and GBM patient samples of the training set. A dual-color code
was used, with red and green indicating up- and down regulation, respectively.
doi:10.1371/journal.pone.0085200.g002
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Figure 3. PCA and cross validated probabilities of AA and GBM samples of training set. A. PCA was performed using expression values of
16- PAM identified genes between AA (n = 30) and GBM (n = 78) samples in training set. A scatter plot is generated using the first two principal
components for each sample. The color code of the samples is as indicated. B. The detailed probabilities of 10-fold cross-validation for the samples of
training set based on the expression values of 16 genes are shown. For each sample, its probability as AA (orange color) and GBM (blue color) are
shown and it was predicted by the PAM program as either AA or GBM based on which grade’s probability is higher. The original histological grade of
the samples is shown on the top.
doi:10.1371/journal.pone.0085200.g003
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years) had significantly better survival when compared with the

Authentic GBMs (n = 165; median survival of 0.96 years) with P

value of ,0.0001 as expected [5] (Figure 6B). The Discordant

GBMs (n = 13; median survival of 2.46 years) had better survival

as compared to Authentic GBMs (n = 165; median survival of 0.96

years) with P value of 0.008 (Figure 6B). However, the difference

in survival between the Discordant GBMs and Authentic AAs

were also found to be significantly different (P = 0.01) (Figure 6B).

Since there was only one Discordant AA, it was not included in the

analysis. However, it is important to note that this patient survived

only for 1.2 years.

We further looked at the molecular markers like CDKN2A/2B

loss and EGFR amplification, which are characteristic of GBMs

[49] and p53 mutation which is characteristic of AAs [49] across

the four groups of samples of GSE1993 dataset [19] (Figure 6C).

CDKN2A/2B loss was found in 75% of Authentic GBMs (n = 37)

and 28% of Authentic AAs (n = 21). In case of Discordant AAs

(n = 5), 80% of the samples showed CDKN2A/2B loss suggesting

the presence of characteristic GBM-like feature in Discordant AA

samples (Figure 6C). Similarly, when we looked at EGFR

amplification, another characteristic feature of GBM, 40% of the

Authentic GBMs (n = 37) showed the amplification of EGFR gene

whereas none of the Authentic AAs showed EGFR amplification.

In case of Discordant AAs (n = 5), 40% of the samples showed

EGFR amplification which again suggested that Discordant AAs

indeed had GBM-like features (Figure 6C). p53 mutation, which

is characteristic of AA, was present in 76% of Authentic AAs and

32% of Authentic GBMs. Only 20% of the Discordant AA

samples showed p53 mutation whereas 50% of the Discordant

GBMs showed p53 mutation which suggested that Discordant AAs

less frequently had p53 mutation whereas more Discordant GBMs

had p53 mutation (Figure 6C). These results together revealed

that discordant AA and discordant GBM samples had both clinical

features and genetic markers similar to that of GBMs and AAs

Table 1. Expression of 16 genes selected from PAM in AA (n = 30) and GBM (n = 78) samples of the training set.

Gene Symbol Gene Name Average of AAs Average of GBMs Fold change P value*

CDKN3 Cyclin-dependent kinase inhibitor 3 20.1 2.0 2.0 3.461027

CHI3L1 Chitinase 3-like 1 20.5 4.9 5.5 4.5610213

COL4 Collagen, type IV 20.5 2.9 3.5 6.961028

DCN Decorin 21.0 1.7 2.7 3.461026

DLL3 Delta-like 3 protein precursor; delta homolog 7.0 2.7 24.3 7.161028

FABP7 Fatty acid binding protein 7 22.4 0.7 3.1 1.461027

IGFBP2 Insulin-like growth factor binding protein 2 0.7 4.1 3.4 5.3610214

IGFBP3 Insulin-like growth factor binding protein 3 0.8 3.4 2.6 8.961028

LAMB1 Laminin, beta 1 20.5 1.7 2.2 1.161029

LGALS1 Lectin, galactoside-binding, soluble, 1 21.2 1.3 2.4 1.861025

LGALS3 Lectin, galactoside-binding, soluble, 3 20.8 1.9 2.7 2.461029

PBEF1 Pre-B-cell colony enhancing factor 1 0.2 2.3 2.1 4.6610211

PLAT Plasminogen activator, tissue 20.4 1.8 2.2 1.461026

PTTG1 Pituitary tumor-transforming 1 1.3 3.4 2.1 5.561028

TIMP1 Tissue inhibitor of metalloproteinase 1 20.4 3.6 4.0 1.9610214

TOP2A Topoisomerase (DNA) II alpha 5.9 8.1 2.2 1.061025

*P value from student’s T-test.
doi:10.1371/journal.pone.0085200.t001

Table 2. The diagnostic accuracy, sensitivity and specificity of 16-gene signature to discriminate AA and GBM in training set, test
set and three independent cohorts (TCGA, GSE1993, GSE4422) of patient samples.

Cohort Dataset Overall accuracyA SensitivityB SpecificityC

Our cohort Training set 87.9% (95/108) AA: 83.3% (25/30), GBM: 89.7% (70/78) AA: 89.7% (70/78), GBM: 83.3% (25/30)

Our cohort Test set 89.1% (66/74) AA: 90% (18/20), GBM: 88.8% (48/54) AA: 88.8% (48/54), GBM: 90% (18/20)

Validation set TCGA 99.4% (178/179) AA: 96.3% (26/27), GBM: 100% (152/152) AA: 100% (152/152), GBM: 96.3% (26/27)

Validation set GSE1993 87.9% (51/58) AA: 73.7% (14/19), GBM: 94.8% (37/39) AA: 94.8% (37/39), GBM: 73.7% (14/19)

Validation set GSE4422 92% (70/76) AA: 80% (4/5), GBM: 93% (66/71) AA: 93% (66/71), GBM: 80% (4/5)

Validation set GSE4271* 81.6% (80/98) AA: 54% (10/22), GBM: 89.4% (68/76) AA: 89.4% (68/76), GBM: 54% (10/12)

APrediction accuracy was determined by 10-fold cross-validation on malignant astrocytoma samples.
Accuracy = (the number of samples predicted correctly)/(total number of samples analyzed).
BSensitivity = (the number of positive samples predicted)/(the number of true positives).
CSpecificity = (the number of negative samples predicted)/(the number of true negatives).
*14-genes of the 16-gene signature were used for analysis.
doi:10.1371/journal.pone.0085200.t002
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Figure 4. PCA and cross validated probabilities of AA and GBM samples of test set. A. PCA was performed using expression values of 16-
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PAM identified genes between AA (n = 20) and GBM (n = 54) samples in test set. A scatter plot is generated using the first two principal components
for each sample. The color of the samples is as indicated. B. The detailed probabilities of 10-fold cross-validation for the samples of test set based on
the expression values of 16 genes are shown. For each sample, its probability as AA (orange color) and GBM (blue color) are shown and it was
predicted by the PAM program as either AA or GBM based on which grade’s probability is higher. The original histological grade of the samples is
shown on the top.
doi:10.1371/journal.pone.0085200.g004

Figure 5. PCA and cross validated probabilities of AA and GBM samples of TCGA dataset. A. PCA was performed using expression values
of 16- PAM identified genes between grade III glioma (n = 27) and GBM (n = 152) samples in TCGA dataset. A scatter plot is generated using the first
two principal components for each sample. The color code of the samples is as indicated. B. The detailed probabilities of 10-fold cross-validation for
the samples of TCGA dataset based on the expression values of 16 genes are shown. For each sample, its probability as grade III glioma (orange color)
and GBM (blue color) are shown and it was predicted by the PAM program as either grade III glioma or GBM based on which grade’s probability is
higher. The original histological grade of the samples is shown on the top.
doi:10.1371/journal.pone.0085200.g005
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Figure 6. Discordant samples do not exhibit clinical features and molecular markers of its histologic grade. A. The average Age at
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respectively. This suggests that the 16-gene signature could

identify a subset within histologically diagnosed AA having clinical

and genetic features of GBM and vice versa, perhaps due to

genetic heterogeneity.

Network analysis identifies differentially regulated
pathways

In order to identify the pathways that 16 genes of the

classification signature could regulate or associated with, we used

the 16 genes as seed proteins to construct a protein-protein

interaction network using the Bisogenet plugin in Cytoscape. The

resulting network had 252 nodes representing genes and 1498

edges, representing interactions (Figure S11 in File S1). Out of

these 252 genes, we identified a subset of 67 genes that were

differentially regulated genes between GBM and AA (p,0.05 and

FDR,0.1). We used these genes along with their fold changes as

input into the Pathway Express tool from Kyto Encyclopedia of

Genes and Genomes (KEGG) to identify differentially regulated

pathways between AA and GBM. KEGG pathway identified 10

pathways as differentially regulated between GBM and AA with

significance (Table 3). Among these pathways, the most

significant ones with the maximum number of input genes playing

a role in them, were ECM (10 input genes) and focal adhesion (14

input genes) (Figure 7. and Table 3.). These pathways are

known to be involved in the epithelial to mesenchymal transition

(EMT) which is a hallmark of more aggressive tumors like GBM

[5]. This further emphasized the fact that the genes in our

signature along with their interacting partners were involved in the

epithelial to mesenchymal transition in GBM tumors, which

explains the aggressiveness and highly infiltrative nature of GBM

tumors in comparison to AA tumors.

Discussion

The standard therapeutic protocol for GBM patients includes

maximal safe resection of the tumor mass followed by radiother-

apy with concomitant, and further, cyclical chemotherapy

(Temozolomide) [3]. Some studies have shown a small, but

significant improvement in survival of AA patients with chemo-

therapy in addition to irradiation [24,25]. However, improvement

in the outcome of AA patients with chemotherapy was not

consistent [4]. The length of survival is distinctly different between

AA and GBM patients [6]. Because of the intratumoral histologic

variations, there is a need for molecular classification based on

gene expression.

In the present study, using the expression data of 175 genes-

which were found to be associated with glioma before in cohort of

AA and GBM patient samples, we identified a 16-gene classifi-

cation signature in the training set having 30 AA and 78 GBM

samples. In the training set, the 16-gene classification signature

predicted AA and GBM samples with accuracy of 87.9%. The

signature was further validated in test set comprising of 20 AAs

and 54 GBMs. In the test set, the expression of 16 genes predicted

the grading with accuracy of 89.1%. Interestingly, one of the

GBM outliers of the test set, GS 246, was identified as discordant

as per the microRNA expression signature identified previously

[17]. This indicates that the molecular profiles are better able to

classify the samples and are also consistent.

We also validated the expression signature in four publicly

available datasets: TCGA [22], GSE1993 [19] GSE4422 [23] and

GSE4271 [18]. In TCGA dataset, the 16-gene signature was

validated in sample set of 27 grade III gliomas and 152 GBM

samples. In this dataset, the prediction accuracy was 99.4%. The

specificity for AA and sensitivity for GBM was 100% suggesting

the robustness of the classification signature. In GSE1993 dataset,

there were 19 AA and 39 GBM samples. The 16-gene signature

predicted the classification with an accuracy of 87.9%. The

additional validation of the 16-gene signature in GSE4422

identified that the signature predicted the AA and GBM samples

with accuracy of 92.7%. However, the overall accuracy of the

signature in GSE4271 was 82%, while the sensitivity of the

signature for AA samples was 54.5%. While we do not know the

exact reason for the low sensitivity of 16 gene signature for AA in

GSE4271 dataset, one possible reason could be because of the

missing data for 2 genes (DCN and LGALS3; see Supplemen-
tary Results in File S1 for details) of the 16-gene signature.

In three independent datasets (TCGA, GSE1993 and

GSE4422), the 16-gene signature was validated with accuracy

rate of 88% to 99%. However, there was a small proportion of the

discordant samples in each of the datasets. Further to verify, if the

clinical features and the molecular markers (specific for AA and

GBM) correlate with the grading done by 16-gene signature, we

have performed additional analysis on age, survival and molecular

markers (CDKN2A/2B loss, EGFR amplification and p53

mutation). This analysis clearly demonstrated that AA discordant

samples had GBM-like features and GBM discordant samples had

AA-like features.

The aggressive nature of the glioblastoma is due to the highly

invasive tumor cell population that invades to normal brain tissue.

High infiltrative nature of the glioblastoma is considered to be the

important factor contributing to their dismal outcomes. EMT is

considered as major modulator of metastasis in epithelial solid

tumors; whereas in case of tumors of neuroepithelial type

observations pointing towards an EMT(-like) process have been

recently reported [47]. EMT-like changes in malignant gliomas

are attributed to TWIST1, ZEB1/ZEB2 and SNAIl1/SNAIl2 as

inducers for cell-invasiveness in GBMs [48].

With the intention of finding out the differentially regulated

pathways by the 16 genes of the 16-gene signature, we used the 16

genes as seed proteins to generate a protein-protein interaction

network. We then identified only those genes in the network that

were differentially regulated between GBM and AA and used

them for downstream pathway analysis. Interestingly, we found

that the most differentially regulated pathways were related to the

epithelial to mesenchymal transition (EMT), which is known to

contribute to the aggressiveness of GBMs compared to lower

grades of glioma. Since 16 genes of our classification signature

directly or through interactions play a role in EMT pathway, they

were able to accurately distinguish GBM tumors from less

malignant AA tumors. This also explains why our signature was

extremely successful in the precise classification of Grade IV

tumors from Grade III tumors.

Diagnosis along with standard deviation is plotted for Authentic AAs (n = 21), Authentic GBMs (n = 37), Discordant AAs (n = 8) and Discordant GBMs
(n = 20). *** denotes that P,0.001, ** denotes that P,0.01 and * denotes that P,0.05. B. The Kaplan Meier survival analysis of Authentic AAs (n = 13),
Authentic GBMs (n = 165) and Discordant GBMs (n = 13). The median survival was significantly different across the groups with P,0.001. C. The
percentage of samples showing CDKN2A/2B loss, EGFR amplification and p53 mutation is plotted for Authentic AAs (n = 14), Authentic GBMs (n = 37),
Discordant AAs (n = 5) and Discordant GBMs (n = 2).
doi:10.1371/journal.pone.0085200.g006
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Several groups have previously reported the global transcript

profiling of glioma patient samples comprising of different grades

of astrocytoma and oligodendroglioma. While majority of the

reports highlighted the identification of grade specific gene

expression, few of them aimed at classifying the samples based

on the differential gene expression across different grades. Some of

these studies identified the gene expression signature which better

correlated with the prognosis of the patients than the histopath-

ological grading.

Various studies based on the microarray expression profiling

have identified the differentially regulated genes across different

grades of glioma [13,14,16,26,27,28]. Gene expression profiling by

Liang et al revealed large expression differences between GBMs

and lower-grade oligodendroglial tumors [12]. Importantly, the

gene expression patterns in paired specimens of same GBM

that were having strikingly divergent histologies were more

closely related to each other than to any other tumor [12]. Large

scale gene expression profiling of GBM and comparison with

Figure 7. KEGG pathway analysis showed the upregulation of Focal adhesion pathway in GBM. 67 differentially expressed genes
between AA and GBM from GSE1993 was subjected to network analysis in Pathway Express which identified the focal adhesion as the significantly
differentially regulated pathway between AA and GBM. The input genes present in the network are represented in red and blue indicating the
upregulation or downregulation respectively in GBM as compared to AA.
doi:10.1371/journal.pone.0085200.g007

Table 3. Top differentially regulated KEGG pathways between AA and GBM as identified by Pathway Express.

Rank Pathway Name Impact Factor
No. of genes in
pathway

No. of input genes in
pathway

corrected gamma
p-value

1 ECM-receptor interaction 32.3 84 10 3.12E-13

2 Focal adhesion 31.56 203 14 6.41E-13

3 Pathways in cancer 25.38 330 12 2.52E-10

4 Small cell lung cancer 18.48 86 6 1.84E-07

5 MAPK signaling pathway 11.68 272 6 1.08E-04

6 Bladder cancer 10.96 42 3 2.08E-04

7 Cell cycle 10.88 118 4 2.25E-04

8 Complement and coagulation cascades 10.49 69 3 3.20E-04

9 GnRH signaling pathway 10.42 103 4 3.40E-04

10 TGF-beta signaling pathway 9.4 87 3 8.60E-04

doi:10.1371/journal.pone.0085200.t003
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lower-grade astrocytomas led to the identification of glioblastoma-

associated genes (GAG) that were associated with more malignant

phenotype of GBM [15]. Further analysis defined expression

differences between pGBM and sGBM. Secondary GAGs

suggested the loss of function in prominent cell cycle regulators,

whereas primary GAGs highlighted that played important role in

extracellular signaling. To compile the expression profiling done

by various groups, meta-analysis was done using publicly available

genome-scale mRNA datasets comprising of AA and GBM

samples [29]. Using the rank sum approach, .20 significant

Biocarta pathways were selected, of which the hypoxia-inducible

factor (HIF) pathway had highest significance suggesting that

many of the statistically significant genes work together in a

HIF1A/VEGF-regulated network to increase angiogenesis and

invasion in GBM as compared to AA.

Using the expression profiling data, Phillips et al identified

proneural, mesenchymal and proliferative as three prognostic

subclasses of high grade astrocytoma [18]. Using artificial neural

network (ANN) for microarray gene expression data for AA and

GBM samples, 59-classifier genes were identified and these genes

characterized three molecular tumor subtypes [19]. Three

identified tumor subtypes correlated better with prognosis than

histopathological grading, indicating a high prognostic potential

for the 59 gene classifiers. Gene expression studies also revealed

that the classifications based on the molecular profiles are useful

not only in accurate diagnosis but also in predicting the clinical

outcome than standard pathology [23,30].

Several genes of the 16-gene signature were found to be

individually associated with glioma. The aberrant splicing of

CDKN3 (cyclin-dependent kinase inhibitor 3) mRNA in human

gliomas generated a dominant negative CDKN3 variant and the

CDKN3 over expression correlated with decreased patient

survival [31]. CHI3L1 (YKL-40) expression levels in tissue and

serum correlated with poor prognosis of GBM patients [32,33].

Subsequently it was shown to upregulate VEGF and to promote

angiogenesis and radioresistance, thus promoting the progression

of glioblastoma [34]. COL4A2 was found to be over expressed in

AA and GBM as compared to DA and was also amplified in GBM

samples [26,35]. DCN (decorin) was known as tumor suppressor in

glioma [36,37,38] but it was found to be up regulated in our

patient cohort as well as in GSE1993, GSE4422 and TCGA

datasets. Higher expression of FABP7 was shown to negatively

correlate with survival of GBM patients [12] and the over

expression of FABP7 increased the migration of glioma cells in

vitro. Over expression of Insulin-like growth factor binding

proteins-2,3 was reported in glioma [39,40,41] and it is known

to be a modulator of the action of insulin-like growth factors

(IGFs), whereas IGF-independent effects of IGFBP-2 on cellular

proliferation, apoptosis, and mobility have also been revealed [41].

Laminin was found to be up regulated and correlated with poor

prognosis of GBM patients [42]. Inhibition of laminin 8 in glioma

cells reduced the invasiveness of glioma cells [42]. NAMPT

(PBEF1) is shown to be up regulated in malignant astrocytoma and

also in serum samples of the patients [43,44]. PBEF1 expression in

the tumor tissue along with its co-expression with p53 was

associated with poor survival [16]. PTTG (Pituitary tumor-

transforming gene) which is known to function in the control of

mitosis and DNA repair and markedly increased expression of

PTTG was found in high-grade gliomas compared to low-grade

gliomas and associated with an unfavorable patient outcome [45].

TOP2A (Topoisomerase 2A) was found to be upregulated in

glioblastoma compared to the lower grades and the mRNA levels

of TOP2A correlated with the better survival in glioblastoma

patients [46].

Our finding that the 16-gene expression signature could

accurately discriminate GBM from AA tumors raises the

possibility of using the expression signature to develop rapid and

accurate molecular diagnostic test to distinguish AA and GBM in

the future. The additional validation of the signature in the

independent cohorts of patient samples suggests the consistency of

the 16-gene signature in accurate prediction of AA and GBM

samples. The 16 gene signature can help in identifying the subsets

in histologically diagnosed AA and GBM, which would actually

behave different. Furthermore, when there is an ambiguity in

histological diagnosis, the 16 gene signature can help to classify the

tumor and predict the prognosis. The functional characterization

of the 16-genes of the classification signature in glioma cell lines

and mouse models might throw light on their biological

importance in astrocytoma development and progression.
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and Supplementary Results. Supplementary Tables:
Table S1. Primers used for RT-qPCR. Table S2. List of genes

selected for expression analysis by PCR array. Table S3. Number

of AA and GBM patient samples in training set, test set and three

independent cohorts of patient samples (TCGA, GSE1993 and

GSE4422). Table S4. Expression of 16 genes in AA (n = 20) and

GBM (n = 54) samples of the test set. Table S5. Expression of 16

genes in Grade III glioma (n = 27) and GBM (n = 152) samples of

the TCGA dataset. Table S6. Expression of 16 genes in AA

(n = 19) and GBM (n = 39) samples of GSE1993 dataset. Table
S7. Expression of 16 genes in AA (n = 5) and GBM (n = 71)

samples of the GSE4422 dataset. Supplementary Figures:
Figure S1. Heat map of one-way hierarchical clustering of 16

PAM-identified genes in AA (n = 20) and GBM (n = 54) patient

samples in the test set. A dual-color code was used, with red and

green indicating up- and down regulation, respectively. Figure
S2. Heat map of one-way hierarchical clustering of 16 PAM-

identified genes in grade III glioma (n = 27) and GBM (n = 152)

patient samples in TCGA dataset. A dual-color code was used,

with red and green indicating up- and down regulation,

respectively. Figure S3. A. Heat map of one-way hierarchical

clustering of 16 PAM-identified genes in AA (n = 19) and GBM

(n = 39) patient samples in GSE1993 dataset. A dual-color code

was used, with red and green indicating up- and down regulation,

respectively. B. PCA was performed using expression values of 16-

PAM identified genes between AA and GBM samples in GSE1993

dataset. A scatter plot is generated using the first two principal

components for each sample. The color of the samples is as

indicated. C. The detailed probabilities of 10-fold cross-validation

for the samples of GSE1993 dataset based on the expression values

of 16 genes are shown. For each sample, its probability as AA

(orange color) and GBM (blue color) are shown and it was

predicted by the PAM program as either AA or GBM based on

which grade’s probability is higher. The original histological grade

of the samples is shown on the top. Figure S4. A. Heat map of

one-way hierarchical clustering of 16 PAM-identified genes in AA

(n = 5) and GBM (n = 71) patient samples in GSE4422 dataset. A

dual-color code was used, with red and green indicating up- and

down regulation, respectively. B. PCA was performed using

expression values of 16-PAM identified genes between AA and

GBM samples in GSE4422 dataset. A scatter plot is generated

using the first two principal components for each sample. The

color of the samples is as indicated. C. The detailed probabilities

of 10-fold cross-validation for the samples of GSE4422 dataset

based on the expression values of 16 genes are shown. For each
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sample, its probability as AA (orange color) and GBM (blue color)

are shown and it was predicted by the PAM program as either AA

or GBM based on which grade’s probability is higher. The original

histological grade of the samples is shown on the top. Figure S5.
A. The detailed probabilities of 10-fold cross-validation for the

samples of GSE4271 dataset based on the expression values of 16

genes are shown. For each sample, its probability as AA (orange

color) and GBM (blue color) are shown and it was predicted by the

PAM program as either AA or GBM based on which grade’s

probability is higher. The original histological grade of the samples

is shown on the top. B. The average Age at Diagnosis along with

standard deviation is plotted for Authentic AAs (n = 12), Authentic

GBMs (n = 68), Discordant AAs (n = 10) and Discordant GBMs

(n = 8) of GSE4271 dataset. C. The Kaplan Meier survival analysis

of samples of GSE4271 dataset. Figure S6. PAM analysis of the

Petalidis-gene signature in TCGA dataset. A. Plot showing

classification error for the Petalidis gene set in TCGA dataset.

The threshold value of 0.0 corresponded to all 54 genes which

classified AA (n = 27) and GBM (n = 604) samples with classifica-

tion error of 0.000. B. The detailed probabilities of 10-fold cross-

validation for the samples of TCGA dataset based on Petalidis

gene set are shown. For each sample, its probability as AA (green

color) and GBM (red color) are shown and it was predicted by the

PAM program as either AA or GBM based on which grade’s

probability is higher. The original histological grade of the samples

is shown on the top. Figure S7. PAM analysis of the Phillips gene

signature in our dataset. A. Plot showing classification error for the

Phillips gene set in our dataset. The threshold value of 0.0 that

correspond to all 5 genes which classified AA (n = 50) and GBM

(n = 132) samples with classification error of 0.159. B. The

detailed probabilities of 10-fold cross-validation for the samples of

our dataset based on Phillips gene set are shown. For each sample,

its probability as AA (orange color) and GBM (blue color) are

shown and it was predicted by the PAM program as either AA or

GBM based on which grade’s probability is higher. The original

histological grade of the samples is shown on the top. Figure S8.
PAM analysis of the Phillips gene signature in Phillips dataset. A.
Plot showing classification error for the Phillips gene set in Phillips

dataset. The threshold value of 0.0 that correspond to all 8 genes

which classified AA (n = 24) and GBM (n = 76) samples with

classification error of 0.169. B. The detailed probabilities of 10-

fold cross-validation for the samples of our dataset based on

Phillips gene set are shown. For each sample, its probability as AA

(orange color) and GBM (blue color) are shown and it was

predicted by the PAM program as either AA or GBM based on

which grade’s probability is higher. The original histological grade

of the samples is shown on the top. Figure S9. PAM analysis of

the Phillips gene signature in GSE4422 dataset. A. Plot showing

classification error for the Phillips gene set in GSE4422 dataset.

The threshold value of 0.0 that correspond to all 8 genes which

classified AA (n = 5) and GBM (n = 76) samples with classification

error of 0.065. B. The detailed probabilities of 10-fold cross-

validation for the samples of our dataset based on Phillips gene set

are shown. For each sample, its probability as AA (orange color)

and GBM (blue color) are shown and it was predicted by the PAM

program as either AA or GBM based on which grade’s probability

is higher. The original histological grade of the samples is shown

on the top. Figure S10. PAM analysis of the Phillips-gene

signature in TCGA dataset. A. Plot showing classification error for

the Phillips gene set in TCGA dataset. The threshold value of 0.0

corresponded to all 8 genes which classified AA (n = 27) and GBM

(n = 604) samples with classification error of 0.008. B. The

detailed probabilities of 10-fold cross-validation for the samples of

TCGA dataset based on Phillips gene set are shown. For each

sample, its probability as AA (orange color) and GBM (blue color)

are shown and it was predicted by the PAM program as either AA

or GBM based on which grade’s probability is higher. The original

histological grade of the samples is shown on the top. Figure S11.
Network obtained by using 16-genes of classification signature as

input genes to Bisogenet plugin in Cytoscape. The gene rated

network had 252 nodes (genes) and 1498 edges (interactions

between genes/proteins). This network consisted of the seed

proteins with their immediate interacting neighbors. The nodes

corresponding to the input genes are highlighted by the bigger

node size as compared to the rest of the interacting partners. The

color code is as indicated in the scale.
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