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Abstract

Many genes have been suggested as candidate genes for keratoconus based on their func-

tion, their proximity to associated polymorphisms or due to the identification of putative

causative variants within the gene. However, very few of these genes have been assessed

for rare variation in keratoconus more broadly. In contrast, VSX1 and SOD1 have been

widely assessed, however, the vast majority of studies have been small and the findings

conflicting. In a cohort of Australians of European descent, consisting of 385 keratoconus

cases and 396 controls, we screened 21 keratoconus candidate genes: BANP, CAST,

COL4A3, COL4A4, COL5A1, FOXO1, FNDC3B, HGF, IL1A, IL1B, ILRN, IMMP2L, MPDZ,

NFIB, RAB3GAP1, RAD51, RXRA, SLC4A11, SOD1, TF and VSX1. The candidate genes

were sequenced in these individuals by either whole exome sequencing or targeted gene

sequencing. Variants were filtered to identify rare (minor allele frequency <1%), potentially

pathogenic variants. A total of 164 such variants were identified across the two groups with

no variants fulfilling these criteria in cases in IL1RN, BANP, IL1B, RAD51 or SOD1. The fre-

quency of variants was compared between cases and controls using chi-square or Fishers’

Exact tests for each gene with at least one rare potentially pathogenic variant identified in

the case cohort. The number of rare potentially pathogenic variants per gene ranged from

three (RXRA) to 102 (MPDZ), however for all genes, there was no difference in the fre-

quency between the cases and controls. We conclude that rare potentially pathogenic

variation in the 21 candidate genes assessed do not play a major role in keratoconus sus-

ceptibility and pathogenesis.
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Introduction

Keratoconus (OMIM 148300) is a complex disease characterised by progressive stromal thin-

ning and conical protrusion of the cornea which usually develops in the second decade of life.

These abnormalities can lead to high myopia and irregular astigmatism which cause severe

visual impairment and affect patients during their most productive years with quality of life

estimates similar to that of age related macular degeneration.[1] The global incidence of kera-

toconus is approximately 1 in 50,000,[2, 3] and the prevalence varies greatly between ethnici-

ties and geographical locations, with a prevalence in Caucasians of between 54.5 and 265 per

100,000 individuals.[2–4] While there is strong evidence of the role of genetics in keratoconus

susceptibility, only a few specific genetic risk factors have been identified. Key challenges

include the complex nature of keratoconus, the genetic heterogeneity and adequate sample

sizes for well powered genetic analyses. Identifying genes and biological pathways involved in

keratoconus pathogenesis is critical for the development of novel treatments and biomarkers

to aid early diagnosis, which together would substantially improve the quality of life of individ-

uals with keratoconus. Several approaches have been used to elucidate genetic variants that

underpin keratoconus susceptibility.

Linkage analysis in extended families has identified more than 20 linkage regions.[5–21]

However, only regions on chromosome 5q have been replicated.[5, 8, 16, 19, 20] The number

of loci identified highlights the heterogeneous nature of the disease. Such family-based studies

have implicated few candidate variants and genes to date, due to the size of the regions. The

most promising keratoconus gene identified with this method is mir184. This microRNA gene

was found to have a pathogenic variant within the DNA binding domain in a family from

Northern Ireland.[13, 14, 22] The same variant was subsequently identified in an unrelated

family from Spain[8] and similar variants predicted to reduce the stability of the miRNA sec-

ondary structures were identified in two sporadic cases.[23] It is however important to note

that these individuals had both keratoconus and congenital cataract and therefore have a more

heterogeneous phenotype. Variants in other genes, such as IL1RN and SLC4A11, have been

hypothesised to play a role in disease due to the linkage-based identification of potentially

pathogenic variants in an Ecuadorian family.[18] IL1RN which encodes IL1 receptor antago-

nist and SLC4A11 which encodes sodium bicarbonate transporter-like protein 11 were selected

as candidate genes due to their involvement in the immune response and apoptosis, respec-

tively. However, these genes have not been assessed in other cohorts of keratoconus patients.

Three genome-wide association studies (GWAS) have identified four genome-wide signifi-

cant loci as well as several loci that show a suggestive association with keratoconus. A large

GWAS which assessed loci associated with central corneal thickness in keratoconus patients

identified two single nucleotide polymorphisms (SNPs) associated with keratoconus in intro-

nic regions of FOXO1 (rs2721051) and FND3CB (rs4894535).[24] The same study found a sug-

gestive association at rs1324183, between MPDZ and NFIB, which reached genome-wide

significance following replication and meta-analysis.[24, 25] Similarly, rs4954218, upstream of

RAB3GAP1, showed a suggestive association in the initial study, but reached significance after

replication and meta-analysis.[26, 27] Other suggestive associations include SNPs in the pro-

moter of HGF,[28, 29] rs1536482 between RXRA and COL5A1,[24] rs9938149 between BANP
and ZNF469,[24] and two intronic SNPs (rs757219 and rs214884) in IMMP2L.[27] The identi-

fication of these loci has provided important insights into keratoconus genetics, however,

functional variation at these loci have not yet been determined. While the most significant

SNPs are located in non-coding regions, many of the nearby genes make good biological can-

didates for keratoconus. Thus, we hypothesise that rare coding variation in these genes may be

involved in keratoconus susceptibility.

Rare, potentially pathogenic variants in keratoconus candidate genes
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Many genes have also been hypothesised to play a role in keratoconus based on their func-

tion and known corneal expression. The genes selected in the present study can broadly be cat-

egorised as regulatory genes, such as CAST[30] and VSX1;[31] structural genes, including the

collagen genes COL4A3 and COL4A4;[32] and genes involved in immune responses, such as

SOD1,[33] TF[34] and RAD51,[35] IL1A[36] and IL1B.[37] The initial studies that implicated

CAST, COL4A3, COL4A1, TF, RAD51, IL1A and IL1B in keratoconus showed associations at

nearby or intronic SNPs. Therefore, the supporting evidence of the involvement of these genes

in disease has both a biological-, and positional-, basis. In contrast, the genes VSX1 and SOD1,

were initially proposed to play a role in keratoconus due to the identification of sequence vari-

ants in keratoconus patients that were absent in controls. As the first gene postulated to con-

tribute to keratoconus, VSX1 has been extensively assessed in many populations with

conflicting results. Many studies conclude that VSX1 is likely to be involved in keratoconus

pathogenesis,[31, 36, 38–49] while a similar number of studies do not find evidence of associa-

tion.[50–63] Similarly, the superoxide dismutase gene (SOD1) has been screened in several

populations including Slovenian,[53] Iranian,[45, 63] Italian,[43] Greek,[59] Saudi Arabian

[64] and multiethnic[33] cohorts. A 7bp intronic deletion was observed in cases but not con-

trols in two of these reports[33, 43] and was significantly more frequent in cases compared to

controls in another,[59] however, the remaining studies did not observe the variant.[45, 53, 63,

64] Given the contention surrounding the involvement of VSX1 and SOD1, and the few studies

that assessed the remaining functional candidates, further analysis is required to determine if

they contribute to keratoconus susceptibility and pathogenicity.

Through these different methodologies and approaches, many candidate genes have been

hypothesised to play a role in keratoconus based on their function, their proximity to associ-

ated SNPs or due to the identification of putative causative variants within the gene. However,

the majority of these genes have not been assessed beyond the initial study, and for those that

have, the majority of studies have been small, with fewer than 100 keratoconus cases. To

address this, our study assessed the role of 21 candidate genes in the largest cohort of keratoco-

nus cases to date (n = 385), compared to 396 population controls. Specifically, our study exam-

ines the frequency of potentially pathogenic variants in MPDZ, RXRA, RAB3GAP1, FOXO1,

BANP, HGF, COL5A1, IMMP2L, FNDC3B, NFIB, ILRN, SLC4A11, CAST, COL4A3, COL4A4,

TF, SOD1, VSX1, RAD51, IL1A and IL1B in a cohort of Australians of European descent. We

have previously assessed potentially pathogenic variants in ZNF469 in our cohort.[65]

Materials and methods

Study participants

All investigations adhered to the principles of the Declaration of Helsinki and were approved

by the Southern Adelaide Clinical Human Research Committee and the Human Research Eth-

ics Committee Tasmania, with all participants giving written informed consent.

The case cohort consisted of 385 keratoconus patients of European descent. These individu-

als were recruited through the Flinders Eye Clinic (Adelaide, Australia), following referral by

their treating optometrist and ophthalmologists or were recruited from across Australia via

mail through Keratoconus Australia. All clinical examinations were performed by an experi-

enced ophthalmologist. Individuals were diagnosed with keratoconus if they had a history of

corneal transplantation for keratoconus, had videokeratographic features of keratoconus, or

any of the following signs: conical corneal protrusion, central or paracentral stromal thinning

or other distinctive features such as Fleischer’s ring, Vogt’s striae, epithelial or sub-epithelial

scarring, or oil droplet sign and/or scissoring of the retinoscopic reflex.

Rare, potentially pathogenic variants in keratoconus candidate genes
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The control cohort consisted of 396 ethnically matched females from the Anglo-Austral-

asian Osteoporosis Genetics Consortium. These individuals are known to have moderately

high, or low, bone mineral density measurements (1.5<|BMD|<4.0), however were not exam-

ined for eye disease. This cohort has been previously described in detail.[66]

Sequencing data

Whole exome sequencing (WES) data were available for 99 keratoconus cases. WES was con-

ducted by Macrogen Inc. using the SureSelect Human All Exon V4 enrichment kits (Agilent

Technologies Inc., Santa Clara, CA, United States of America) with paired-end sequencing on

an Illumina HiSeq 2000 (Illumina, San Diego, CA, United States of America). The Churchill

pipeline[67] was used to align raw reads to hg19 using BWA-MEM (version 0.7.12)[68] and

variants were joint-called with SAMtools and BCFtools (versions 1.3.1).[69]

In addition, the 21 genes of interest were assessed using a targeted sequencing approach in

341 cases using the HaloPlex Target Enrichment System (Agilent) with a custom designed

probe panel using pooled DNA samples. This method is described in detail previously.[65] In

brief, DNA pools containing equimolar DNA samples from eight keratoconus patients were

prepared and indexed with a unique primer cassette during the library preparation. Sequenc-

ing was conducted in batches of 11 pools using MiSeq V2 Reagent kits (300 cycles) with

paired-end reads on an Illumina MiSeq. Agilent’s SureCall program was used to align raw

reads to hg19 using BWA-MEM and Agilent’s SNPPET SNP Caller was used to call variants.

Due to the DNA pooling, it was expected that if one alternate allele was present in a single

pool, it would be observed in approximately 6.25% of reads. Therefore, the minimum allele fre-

quency for heterozygous single nucleotide variants (SNV) was set to 0.035. To allow for com-

parison of the sequencing methods, DNA from 55 cases were including in both the WES and

targeted sequencing dataset, however variants identified in these samples were only counted in

analyses once.

For the control cohort (n = 396), WES was generated using Illumina’s TruSeq Exome

Enrichment on an Illumina HiSeq 2000 at the University of Queensland Centre for Clinical

Genomics. Raw reads were aligned to hg19 using novoalign (version 02.08) and variant calling

and quality score calibration was conducted using GATK[70] (version 3.2–2), according to

GATK’s ‘Best Practices Guidelines’.[71, 72]

Included genomic regions and variant annotation

To ensure a sound comparison when comparing the frequency of variants between data with

different capture methods, only target regions that were common to all three capture methods

(both exome captures and the targeted sequencing) with a mean read depth�10 were included

in the analysis. For the WES data, all included individuals had high confidence genotypes for

�90% of the included regions. A complete list of the included regions is available in S1 Table.

Coverage of genes are reported for the coding regions of the longest transcript included in the

captures (S2 Table). However, other regions, including noncoding regions, may have also been

included in analysis.

Using ANNOVAR,[73] the variants identified within the included regions were annotated

with the minor allele frequency (MAF) observed in the non-Finnish European population of

the Exome Aggregation Consortium database (ExAC NFE),[74] pathogenicity/deleteriousness

predictions from Sorting Tolerant from Intolerant (SIFT)[75], the HumDIV algorithm from

Polymorphism Phenotyping v2 (PolyPhen2)[76] and Combined Annotation–Dependent

Depletion v1.3 (CADD).[77]

Rare, potentially pathogenic variants in keratoconus candidate genes
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Filtering strategy to identify potentially pathogenic variants

Variants were only included in analyses if a sequencing depth of�10 and a quality score of

�20 was obtained. Variants meeting these thresholds were then filtered to include SNVs that

were predicted to be pathogenic by SIFT or PolyPhen2 with a MAF <0.01. In addition, SNVs

with a CADD score�15 that met the MAF threshold were included in this filtering strategy.

These variants were considered ‘potentially pathogenic variants’ and were included in our sta-

tistical analysis. Insertions and deletions were not included in the analysis.

Variant validation by direct sequencing

To validate variants identified in the case cohort, primers were designed using PrimerBlast.

[78] DNA was amplified with MyTaq HS Mix (Bioline, London, UK) and purified using either

Agencourt AMPure XP (Beckman Coulter, Brea, CA, United States) according to the manu-

facturer’s instructions, or equivalent magnetic beads prepared in-house. Purified amplicons

were sequenced using the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems,

Foster City, CA, United States) on an ABI 3500 (Applied Biosystems). DNA sequences were

aligned to the human reference genome (hg19), and chromatograms were manually inspected

at the position of each variant using Sequencher 4.10.1 (Gene Codes Corporation, Ann Arbor,

MI, USA) to assess validation.

Statistical analysis

Following variant filtering, genes with at least one alternate allele identified in the case cohort

were included in the statistical analysis. For each of these genes separately, the number of vari-

ants that fulfilled the filtering strategy was compared between cases and controls using a Yates

corrected chi squared test or a Fishers’ exact test, where appropriate. Odds ratios and 95% con-

fidence intervals were also calculated. As 21 genes were assessed in the present study, a signifi-

cance threshold of p<0.0024 (0.05/21) was determined using the Bonferroni correction for

multiple testing.

Results

Demographic details for keratoconus cases and controls are provided in Table 1.

For each gene the coverage statistics are summarised for the coding portions of the longest

transcript that best fit the capture designs (S2 Table). Due to a high GC content, the coverage

of BANP was poor, particularly in the control data and the targeted sequencing dataset. When

considering regions captured by probes across the three datasets, only 58% of the gene was

captured, however, 70% of these regions had sufficient coverage for analysis. Similarly, 77.4%

of VSX1 was captured across all datasets due to insufficient capture of GC-rich regions and

60.6% of these captured regions met the coverage threshold for inclusion in the analysis.

Despite this poor coverage, a number of previously reported VSX1 variants in keratoconus

were sufficiently covered for analysis. The captured regions of the remaining genes ranged

from 75.3–97.5% and, apart from FOXO1, 99% - 100% of the coding bases in captured regions

were included in analysis (S2 Table). For FOXO1, the included portion of the captured region

Table 1. Demographics of keratoconus cases and controls at the time of examination, where n = the number of individuals and age is reported in years.

Cohort n Mean age (range) % Female Disease status

cases 385 45.2 (14–85) 44.2 affected

controls 396 69.7 (46–86) 100 unscreened

https://doi.org/10.1371/journal.pone.0199178.t001
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dropped to 82.5% as part of the first exon did not meet the minimum depth threshold for vari-

ant calling in the WES datasets. It is important to note that additional regions, including non-

coding regions, may also have been included in analysis.

For the 55 individuals that were included in both the WES and targeted sequencing data-

sets, a total of 20 potentially pathogenic variants were observed 21 times in the WES data. Of

these variants, 18 were also called in the targeted sequencing data, though were only included

once in analysis. The remaining three variants were not called in the targeted sequencing data

as they did not meet the minimum inclusion threshold of 3.5% of reads. However, the alternate

allele threshold of 3.5% was carefully selected to minimise the inclusion of spurious variant

calls.

Following variant filtering, 164 potentially pathogenic variants were identified across both

cases and controls (S3 Table). This included 138 nonsynonymous variants, 21 synonymous

variants, three nonsense variants, one intronic variant and one variant in a 3’ untranslated

region. Of these variants, 70 were unique to the cases, 69 were only observed in controls and

25 were identified in both groups. For the cases, a total of 146 potentially pathogenic variants

were observed, while 192 were identified in controls. Two variants, p.(R85Q) in IL1A and p.

(P1379S) in COL5A1, were each observed in the homozygous state in a single control. All

other variants were observed as heterozygotes.

No potentially pathogenic variants were identified in IL1RN in either cases or controls.

Additionally, potentially pathogenic variants were not observed in the case cohort in BANP,

IL1B, RAD51 or SOD1. However, in the control group, one potentially pathogenic variant was

observed in both IL1B and SOD1, two variants were identified in BANP, and three were

observed in RAD51. For the remaining genes, the total number of potentially pathogenic vari-

ants identified across both groups ranged from three in RXRA and up to 102 in MPDZ
(Table 2). Of the genes included in the chi-square or Fishers’ exact tests, COL4A3 and MPDZ
showed a nominally higher frequency of potentially pathogenic variants in controls compared

to the case cohort, with both genes obtaining a p<0.05 in the burden analysis, however, nei-

ther gene remained significant under correction for multiple testing. All other genes showed

no difference between groups.

Discussion

We show that rare potentially pathogenic variants in 21 candidate genes were not enriched in

keratoconus in our large cohort of Australians of European descent. We identified a total of

164 potentially pathogenic variants across cases and controls in 20 of the 21 genes assessed,

however, variants fulfilling these criteria were equally common between the two groups. No

potentially pathogenic variants were identified in IL1RN in either cases or controls, suggesting

that this gene is highly conserved. Additionally, no potentially pathogenic variants were

observed in our cases in BANP, IL1B, RAD51 or SOD1. Based on these findings, we suggest

that rare potentially pathogenic variants in the 21 genes assessed do not contribute to keratoco-

nus development in our cohort.

We assessed candidate genes in a large cohort of Australian keratoconus cases by combin-

ing WES data and targeted gene sequencing using pooled DNA samples. We have previously

demonstrated the utility of this approach.[65] To ensure high quality variant calls, particularly

those identified in targeted sequencing method, the present study only included SNVs. Exten-

sive variant validation experiments were conducted to confirm real variants and exclude

sequencing artefacts. Furthermore, the variant calls for the individuals included in both the

WES and targeted sequencing datasets were compared to assess concordance. In these individ-

uals, three variants identified in the WES data did not reach the inclusion thresholds in the

Rare, potentially pathogenic variants in keratoconus candidate genes
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targeted sequencing data in the present study, which is consistent with previous findings.

Additionally, in our previous study we observed a variant in the targeted sequencing data that

did not meet the inclusion thresholds for the WES data.[65] Overall we demonstrated a high

concordance of rare variant calls between the two datasets.

For the few genes that have previously been assessed, in silico tools that predict the pathoge-

nicity of variants such as PolyPhen2 and SIFT have been used to help differentiate between

benign variants and potentially pathogenic variants. However, these algorithms can only assess

nonsynonymous variants. To allow for the inclusion of potentially pathogenic synonymous

and non-coding variants in our study, variants were also scored with CADD. CADD uses a

machine learning method to predict the deleteriousness of variants such that a scaled score

above 10 refers to the top 10% of variants ranked by deleteriousness, a scaled score of 20 or

above includes the top 1% of variants and so on.[77] In the present study, a scaled CADD

score of 15 was selected as the minimum threshold for synonymous and non-coding variants.

In contrast, nonsynonymous variants were included if they were predicted to be damaging by

SIFT, or damaging/possibly or probably damaging by PolyPhen2 or obtained a CADD scaled

score of�15. This broad definition of potentially pathogenic variants was designed to mini-

mise the exclusion of likely important disease-related variants.

We compared the frequency of potentially pathogenic variants between Australian kerato-

conus cases and controls, using a control cohort consisting of 396 females. These individuals

were not screened for keratoconus, however, considering the prevalence of keratoconus in

Caucasians is between approximately 1 in 375 and 1 in 2000[2–4] it is unlikely that more than

one or two individuals in this cohort have keratoconus, if any. Considering the large sample

size for both the case and control cohorts, this is unlikely to affect our findings. Additionally,

the controls were 100% female while 44.2% of the cases were female. This is a potential

Table 2. Burden test results for genes in which at least one potentially pathogenic variant was identified in the case cohort. For each gene, the number of alternate

(alt.) alleles (potentially pathogenic variants) and wild type alleles (WT) are shown for both cases and controls, along with the p-value (P), odds ratio (OR) and the 95% con-

fidence interval (CI).

Case Alleles Control Alleles

Gene Alt. WT Alt. WT P OR 95% CI

CAST 6 764 7 785 >0.999� 0.881 0.262–2.924

COL4A3 21 749 39 753 0.024� 0.541 0.305–0.957

COL4A4 7 763 9 783 0.846� 0.798 0.267–2.348

COL5A1 32 738 22 770 0.176� 1.518 0.846–2.731

FNDC3B 5 765 2 790 0.281 2.582 0.446–19.237

FOXO1 3 767 1 791 0.368 3.094 0.289–77.330

HGF 3 767 6 786 0.507 0.512 0.101–2.302

IL1A 3 767 8 784 0.225 0.383 0.080–1.587

IMMP2L 1 769 3 789 0.625 0.342 0.014–3.665

MPDZ 40 730 62 730 0.045� 0.645 0.419–0.991

NFIB 3 767 3 789 >0.999 1.029 0.166–6.375

RAB3GAP1 5 765 5 787 >0.999 1.029 0.258–4.101

RXRA 1 769 2 790 >0.999 0.514 0.018–7.195

SLC4A11 4 766 6 786 0.753 0.684 0.162–2.739

TF 8 762 9 783 >0.999� 0.913 0.320–2.591

VSX1 4 766 1 791 0.212 4.131 0.438–97.260

P-values obtained using a Yates corrected chi-square test are denoted by a �. All other p-values were obtained using a Fisher’s exact test. P-values<0.0024 were

considered significant.

https://doi.org/10.1371/journal.pone.0199178.t002
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limitation, however, while epidemiological studies report a slightly higher prevalence in males

compared to females in Caucasian populations, these differences are not significant.[2–4]

Moreover, all of the genes assessed in the present study are autosomal. Consequently, we do

not expect sex-based differences in the frequency of variants, and therefore, the use of this all-

female cohort is unlikely to affect the outcomes of the present study.

Gaps in coverage, occurring either at the probe design stage or at the sequencing phase,

were a limitation of this study. Similarly, the capture methods were specifically designed to

capture exonic regions, and although non-coding variants were not excluded, very few were

observed. In addition, insertion and deletion variants were not assessed due to the challenges

of calling such variants in the targeted sequencing using pooled DNA. These limitations mean

that some variants will have been missed, but this is not expected to be a major bias between

cases and controls due to limiting the analysis to regions adequately covered by all methods.

Some specific variants that have previously been reported in keratoconus could not be

assessed. This is particularly important for SOD1, as the variant previously associated with ker-

atoconus was a 7bp intronic deletion, outside of the capture regions in this study. Similarly,

IL1RN and SLC4A11 were implicated by an intronic SNV and a 54 bp intronic deletion

(respectively) which almost completely co-segregated with keratoconus in an Ecuadorian fam-

ily.[18] Although these specific variants could not be assessed in our study, the overarching

design and aim was to examine the coding regions of the 21 selected genes for enrichment of

potentially pathogenic variants in keratoconus.

VSX1, which encodes a vertebrate paired-like homeodomain transcription factor with

known ocular expression,[79, 80] is the most studied gene in keratoconus. It was initially stud-

ied as a candidate gene for posterior polymorphous dystrophy (PPD; OMIM 122000) as it was

located within a linkage region for this disease.[31, 81] PPD is a rare, bilateral corneal dystro-

phy that primarily affects the endothelium and results in variable degrees of visual impairment

which has been associated with keratoconus.[82–86] It was therefore hypothesised that the two

diseases may share a common genetic basis. The original paper identified four VSX1 variants

in keratoconus cases that were absent in 277 controls,[31] as well as p.(G160D) and p.(P247R)

in a family with PPD.[31] Subsequently, the p.(G160D) variant has been identified in keratoco-

nus cases in two Italian studies[38, 43] a European cohort,[42] and in two cases in the current

study. This was the only variant observed in our cases that had been reported in other kerato-

conus cases. In contrast, the p.(G160D) variant was found at similar frequencies in both cases

and controls in a Han Chinese cohort,[36] indicating that this variant is not highly penetrant

for keratoconus, at least in the Chinese population. Interestingly, the p.(G160V) variant, which

results in a different amino acid substitution at the same position, has been observed in cases

in two Korean studies.[40, 57] The p.(P247R) variant originally reported in the PPD family

[31] and subsequently reported in keratoconus[38, 43, 51] was observed in a single control

subject in our study. As our controls were not screened for eye disease it is possible that a small

number of individuals in this group may have keratoconus or PPD and therefore the involve-

ment of this variant in disease cannot be ruled out. Furthermore, as keratoconus is a complex

disease it is likely that unaffected individuals may carry risk alleles, without ever developing

disease, therefore, to assess the potential role of specific variants such as p.(P247R), a large

meta-analysis is required. Additionally, we identified p.(L237P) and p.(E234K) for the first

time in keratoconus, each observed in a single case. Taken together, the VSX1 gene may con-

tribute in a very small number of cases with clear segregation in families identified,[38, 39, 45,

47] however, rare potentially pathogenic variants in this gene do not contribute widely to kera-

toconus susceptibility in our cohort.
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Conclusion

In conclusion, our study demonstrated that overall the frequency of potentially pathogenic sin-

gle nucleotide variants is not different between cases and controls in 21 candidate genes in our

large cohort of Australians of European descent. While specific variants may contribute to ker-

atoconus risk in a small proportion of cases, these genes do not contribute to disease in the

vast majority of keratoconus patients. With the frequency of the variants observed in the pres-

ent study, much larger cohorts are required for individual variant analysis with sufficient

power. As demonstrated by the success of identifying the keratoconus-associated gene mir184,

[13, 14, 22] family studies paired with next-generation sequencing technologies may be a pow-

erful method for elucidating specific disease-causing variants. Together, this would allow for

less biased approaches for variant identification without a priori hypothesis and candidate

gene selection. Furthermore, our study suggested that coding variants in the closest genes to

GWAS hits are unlikely to contribute to disease. Therefore, fine-mapping and re-sequencing

techniques are required to identify the functional risk-associated variants. Combined with

quantitative trait locus analysis, this would aid the identification of target genes and biological

pathways involved in keratoconus.
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