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In the process of artificial interventional therapy, the operation of artificial catheter is not accurate, which will bring strong radiation
damage to surgeons. The purpose of this study is to develop a catheter operating system of surgical robot to assist doctors in remote
operation and avoid the influence of radiation. BP neural network plays an important role in the flexibility and rapidity of control.
According to the actual output of the system, the control parameters of the controller are constantly adjusted to achieve better
output effect. This paper introduces the practical application of BP neural network PID controller in the remote operation of the
system and compares with the traditional PID controller. The results show that the new control algorithm is feasible and
effective. The results show that the synchronization performance of BP neural network PID controller is better than that of
traditional PID controller.

1. Introduction

Vascular interventional surgery in medicine, whether from the
diagnosis or the actual operation, has been welcomed by the
society. However, as a new way of operation, it needs surgeons
with high skill to intubate in vivo. In addition, the interven-
tional operation is carried out in the patient’s body, and the
specific process cannot be directly observed by the doctor.
During the operation, any incorrect operation may cause dam-
age to the patient. According to the data survey, a surgeon with
rich clinical experience can achieve an operation accuracy of
about 2mm in the interventional operation. However, the con-
tact force between the blood vessels in the patient’s body and
the surgical catheter cannot be perceived by the doctor [1]. In
addition, X-ray camera is needed for angiography during the
operation, and long-term radiation will cause harm to patients.
Although doctors wear protective clothing, it is difficult to pro-
tect their hands and faces from X-ray radiation. In order to
solve these problems effectively, we need better medical equip-
ment to assist doctors [2]. The robot system has the advantages

of high control accuracy and remote control. Therefore, in this
paper, according to the needs of interventional surgery, com-
bined with the robot system, the master-slave operating system
of interventional surgery robot which can assist doctors in
interventional surgery is designed [3].

There are a large number of products and research reports
in the field of surgical robots [4]. One of the most popular
commercial products is the Sensei robotic catheter system
designed and developed by Hansen, which is mainly to help
doctors push the catheter. Compared with the manual push,
the Sensei robot catheter system can make the push process
more stable and rapid, and the operation accuracy is higher.
The remote control method can reduce the original radiation
impact of doctors. Another commercial product is amigo,
which is mainly designed to solve the problem that the sheath
of the surgical catheter has multiple degrees of freedom and
the force detection at the end of the catheter is difficult. The
robotic catheter system has an additional mechanical sheath
to guide the surgical catheter [5]. The pushing process of the
surgical catheter is controlled by the console at the host end.
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In 2010, Magnetecs Company got the design inspiration from
the treatment of atrial fibrillation and designed a system that
can use magnetic field to guide, control, and image the surgical
catheter in British. The system consists of four permanent
magnets placed around the table, and the top of the designed
surgical catheter is equipped with magnets. The catheter
moves in the magnetic field under the control of the console
at the main end.With the popularity of surgical robots, stereo-
tactic companies have also developed a magnetic navigation
system: Stereotactic Niobe. The system can generate controlla-
ble magnetic field by two permanent magnets on both sides of
the operating table, reduce the number of permanent magnets,
and make the navigation of magnetic guide wire more conve-
nient and accurate in percutaneous coronary intervention
(PCI). In other universities, Ma and others developed a cathe-
ter navigation system that can be operated remotely [6]. The
system allows the main end operator to use the real surgical
catheter instead of the handle to control the movement of
the surgical catheter in the patient’s body. This progress can
make the doctor’s original surgical experience applied to the
actual operation. However, the system is lack of force feed-
back, which operational safety cannot be guaranteed. In order
to simulate the use of doctors’ hands, Bao et al. proposed a
special linear step structure in Nagoya University. Based on
the above products and academic research, the main problem
lies in the security of system operation [8]. During the opera-
tion, it is an important step to monitor the force information
of the catheter inserted into the blood vessel to ensure the
safety of the operation. However, in these systems, there is a
lack of effective measurement of conduit stress [8].

In this paper, according to the operation needs of vascu-
lar interventional surgery, a new robot operation system of
surgical catheter is designed and constructed. Compared
with the abovementioned surgical robot system, the system
is also divided into two parts: one is the main end of the robot
catheter manipulating system, as shown in Figure 1(a), which
is mainly used to collect the axial displacement and radial
rotation movement of the operator, consisting of pressure
sensor, torque sensor, stepping motor, and controller. The
other is the slave end of the robot catheter manipulating
system, which is mainly used for the insertion and twisting
operation of the conduit is shown in Figure 1(b). In addition,
aiming at the safety of force detection, the research team
designed a new force feedback detection device, which can
detect the change of contact force between the catheter and
the vessel wall during the insertion of the surgical catheter
from the end of the system [9], and timely provide force feed-
back to the main end of the system to ensure the safety of the
operation [10].

2. Robotic Catheter Manipulation System

In this paper, the main mode of master-slave operation is
adopted. The main end of the system is the surgeon’s console,
and the slave end of the system is the surgical catheter
console. Setting the mobile platform of the main end doctor
console and the slave end catheter console to maintain the
same displacement, speed and rotation angle will make the
operation more stable and convenient [11]. At the same time,

the same digital signal processor (Ti, TMS320F28335) is used
as the control unit of the master doctor console and the slave
catheter console [12]. The main end and the slave end of the
surgical robot system establish a communication network
through the Internet, and the communication diagram is
shown in Figure 2. The console at the main end of the system
transmits the axial displacement and radial rotation motion
information of the mechanical handle to the catheter console
at the slave end to perform specific operation. Set the baud
rate of the communication serial port between the master
and slave of the system to 19200B/s [13].

2.1. The Surgeon’s Console. The doctor’s console at the main
end of the system is shown in Figure 1(a). Two independent
sensors are used to measure the axial and radial movement of
the mechanical handle. The switch on the left mechanical
handle is used to control the two graspers on the console of
the slave end conduit of the system to help realize the inser-
tion process of the slave end conduit. The mechanical handle
on the right is used to collect the specific actions of the
surgeon, including the axial movement and the radial
movement. The moving part of the slave end conduit console
maintains the same amount of movement as the right
mechanical handle of the main end console. The mechanical
handle on the right side of the main end is supported by the
mechanical bearing and connected with the load cell through
the coupling; the pulley are fixed on the mechanical handle
for the convenience of force transmission.

The measurement process of the axial movement of the
mechanical handle is as follows. When the doctor pulls or
pushes the right mechanical handle, the load cell measures
the pull/push force. According to the thrust value, the corre-
sponding displacement of the mobile platform is calculated,
that is, the mechanical handle can follow the synchronous
movement of the surgeon’s hand. By adjusting the moving
speed of the mobile platform, the force feedback of the
system can be realized. The displacement and speed informa-
tion of the system’s main end console is sent to the system’s
slave end console, and then, the slave end catheter console
and the main end doctor console are set to keep synchronous
motion. When the doctor turns the mechanical handle, the
mechanical encoder installed under the main end moving
platform will drive the encoder, then measure the actual angle,
and transmit the measured value to the slave end catheter
console for synchronous movement. In this way, the imple-
mentation process of the master side operation in the slave
side is realized.

2.2. The Surgical Catheter Console. Figure 1(b) shows the
conduit console at the slave end of the system. The device is
placed next to the patient. The catheter console can assist
doctors to push the catheter. It has two degrees of freedom:
axial displacement and radial rotation. Two clips are placed
in the pushing guide, and the switch of the clips is controlled
by the button on the left mechanical handle of the main end.
When the surgical catheter is clamped by the grasper 1 and
the jacket together, the movement of the main end doctor
to the mechanical handle can be realized, and the synchro-
nous movement of the slave end surgical catheter along the
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axial and radial directions can be driven [14]. When the
surgical catheter is clamped by the grasper 2, the catheter
maintains its position, and then, the catheter driving part at
the end can move freely to prepare for the next push. The
pushing action of the catheter from the end of the operation
is shown in Figure 3.

In order to achieve the axial movement of the conduit, all
the driving components are fixed on the mobile platform (the
flat plate under the motor 1). The mobile platform is driven
by a stepping motor (motor 2) to achieve axial movement.
The radial movement of the conduit needs to be realized by
the DC motor (motor 1), which is realized by the jacket
connected by two pulleys. When the surgical catheter is fixed
by the grasper 1, the surgical catheter is driven by the motor 1
to rotate.

The robot system uses the torque sensor installed at the
slave end of the system to measure the actual rotation infor-
mation of the catheter during the operation. The torque data
will be sent to the surgeon’s console at the main end, and the
actual torque will be fed back to the surgeon. The specific
working process is that the torque sensor is connected with
the motor 1 and the pulley on a common shaft. In the process
of pushing conduit, the resistance of conduit rotation can be
transmitted to the torque sensor through the coupling pulley,
and then, the actual resistance value can be measured by the
torque sensor.

In order to measure the axial resistance of the catheter
during pushing, a new force measuring mechanism is
designed, which is shown in Figure 4 [15]. Use the load cell
fixed on the mobile platform to measure the resistance value.

Switch Handle
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Load cell

Motor 1

Motor 2Movement stage

(a) The main end

Catheter frame
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(b) The slave end

Figure 1: The robotic catheter manipulating system.

Console DSP DSP Catheter 
console

displacement
rotation

Contact force

Internet

Contact force

displacement
rotation

RS‑232 RS‑232

Figure 2: The communication diagram.
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The measured resistance value is sent to the main end of the
system. Combined with the push/pull value of the doctor to
the mechanical pusher, the system force feedback is realized.

2.3. Control of the System. At the slave end of the system, each
motor is coupled to the coder. The speed and angle of rotation
of these motors can be measured. Therefore, it is necessary to
design control algorithms to improve the operation accuracy
and motion performance of surgical robot system in remote
operation. At the main end of the system, the mechanical
handle should be able to move smoothly with the surgeon’s
hand. This means that the output displacement/speed of the
stepper motor should be the same as or similar to the input
displacement/speed of the surgeon’s hand. The speed and
displacement of the stepping motor can be measured by an
encoder coupled to the motor 2 in Figure 1(b). Therefore, it
is necessary to determine the axial and radial dynamic models
of the surgical robot system and establish the relationship
between the input force of the main end and the displacement
output of the stepper motor. In terms of synchronous tracking
performance, a PID controller based on BP neural network is
adopted to improve the accuracy of axial displacement during
remote operation [16].

3. BP Neural Network

Due to the high requirements for the positioning of surgical
catheter in interventional surgery, it is difficult to accurately
establish the control model of interventional surgery robot
system due to the influence of nonlinear factors such as blood

flow and vascular wall in human blood vessels, which has the
risk of vascular damage. Based on the analysis of the related
motion control algorithm, combined with the technical
requirements of catheter propulsion accuracy and collision
force in interventional surgery, a PID controller based on BP
neural network is designed. Through MATLAB simulation,
the control accuracy of the designed controller is verified.

3.1. Neural Network Theory. Figure 5 shows a simple artificial
neuronmodel, the “M–P neuron”model. In this neuronmodel,
each neuron receives input signals from other n neurons. After
entering the neuron, these input signals will be weighted and
then transmitted to the next step [17]. In the process of
transmission, the weighted signal value is compared with the
threshold set by neurons. If not, the neurons are not activated
if they are not transferred down [18].

The model consists of multiple inputs xi, i = 1, 2,⋯, n
and a single output y. The expression for y is as follows:

y = f 〠
n

i=1
wjixi − θj

 !
, ð1Þ

where θj is the threshold, wji is the connection weight (wji is
positive in the excited state; wji is negative in the suppressed
state), n is the number of input signals, and f ðÞ is the activa-
tion function.

3.2. The Definition and Characteristics of BP Neural Network.
BP neural network is a kind of feedforward multilayer net-
work, including input layer, implicit layer, and output layer
[19]. The neurons in the same layer of BP neural network
are not connected with each other, and the neurons in the
upper and lower layers are connected [20].

Figure 6 shows the network structure of simple BP neural
network. It consists of input layer, hidden layer, and output
layer. The connection weights of the j-th neuron in the input
layer and the i-th neuron in the hidden layer are wij, and the
weight between the i-th neuron in the hidden layer and the
l-th neuron in the output layer is wli. The input value of the
i-th neuron in the hidden layer is netið2Þ =∑m

j=1wij
ð2Þοj

ð1Þ.
The input value of the l-th neuron in the output layer is
netlð3Þ =∑q

i=1wli
ð3Þοi

ð2Þ. Finally, the output value of the
whole neural network is obtained after the weighted sum
calculation [21].

BP neural network has the following characteristics in
information processing [22]:

(1) Distributed storage. The weights of neurons in each
layer of BP neural network represent the information
of the whole network. Therefore, all information is
distributed and stored through the network, and its
fault tolerance is relatively high

(2) Parallel processing of information. All neurons in the
BP neural network are relatively independent. The
neurons in the same layer are simultaneously proc-
essed by signal processing, and the whole network
has better real-time performance
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Grasper 2Grasper 1
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(b)

Grasper 2
Grasper 1
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(c)

Grasper 2Grasper 1
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Figure 3: Pushing action.
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(3) Adapt ability. The connection strength of the BP
neural network increases with use, which increases
the sensitivity of each neuron

3.3. Self-Learning of BP Neural Network. The BP neural algo-
rithm proposed in this paper is based on gradient descent
that is to adjust the parameters in the direction of negative
gradient of the expected target. The details are as follows:
three layer network structures, such as m neurons in the
input layer, q neurons in the hidden layer, and r neurons in
the output layer.

3.3.1. Information Forward Propagation. The output of the j
-th node of the input layer is as follows:

οj
1ð Þ = x jð Þ, j = 1, 2,⋯,m: ð2Þ

Then, the output of the input layer is weighed and
summed; it is the input of the i-th neuron of the hidden layer.

neti 2ð Þ = 〠
m

j=1
wij

2ð Þοj
1ð Þ, i = 1, 2,⋯, q: ð3Þ

After activating the function operation, the hidden layer
output is as follows:

οi
2ð Þ = f neti 2ð Þ

� �
, i = 1, 2,⋯, q: ð4Þ

The superscripts (1), (2), and (3) represent the input
layer, the hidden layer, and the output layer, respectively.
Wij

ð2Þ is the weight of the input layer to the hidden layer,
and f ðÞ is the hidden layer activation function.

The output of the hidden layer is the input of the l-th
neuron of the output layer after the weight summation calcu-
lation.

netl 3ð Þ = 〠
q

i=1
wli

3ð Þoi
2ð Þ, l = 1, 2,⋯, r: ð5Þ

The output of the output layer is as follows:

yl = ol
3ð Þ = g netl 3ð Þ

� �
, l = 1, 2,⋯, r, ð6Þ

where wli
ð3Þ is the weight of the hidden layer to the output

layer; g is the output layer excitation function.

3.3.2. Error Backpropagation [23]. If there is a large error
between the actual output value and the initial set value in
BP neural network, the closed-loop regulation will feed the
error back to the initial end of the system for regulation. At
the same time of system output, the output value of the
system gradually approaches to the initial set value by contin-
uously adjusting the weight of each network in the system.
The adjustment block diagram is shown in Figure 7.

In this paper, the mean square error of BP network is
selected as the standard function of evaluation, and the
weight of each layer network in the system is adjusted. The
mean square error is defined as follows:

E = 1
r
〠
r

l=1
el
2 = 1

r
〠
r

l=1
yl
∗ − ylð Þ2, ð7Þ

where yl
∗ is the given value of the l-th output node; yl is the

actual value of the l-th output node.
Let k be the number of iterations; then, the implicit layer

to output layer weight correction formula is as follows:

wli
3ð Þ k + 1ð Þ =wli

3ð Þ kð Þ + Δwli
3ð Þ =wli

3ð Þ kð Þ − η
∂E kð Þ

∂wli
3ð Þ kð Þ ,

ð8Þ

where η is a constant, indicating the learning rate, l = 1, 2,
⋯, r, i = 1, 2,⋯, q.

The total error surface’s gradient vector replace the out-
put value yl into Equation (8). Then we can adjust the hidden
layer’s connection weight to the output layer. Similarly, the
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Figure 5: The model of artificial neuron.
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connection weight from input layer to hidden layer can be
adjusted to gradually reduce the error of the whole system,
so that the system can meet the expected requirements.

Figure 8 shows the network topology of BP neural net-
work PID controller. The input signal of the system enters
the BP neural network through the network input layer. After
weighted processing, it is compared with the neuron thresh-
old and then enters the excitation function as the output of
the input layer, that is, the input of the hidden layer. After
processing, the output signal of the hidden layer is obtained.
After entering the output layer for processing, the final out-
put value of the system is obtained. The actual output value
is compared with the expected value, and then, the error
signal is fed back from the output layer to the hidden layer
twice and then transmitted back to the input layer. In the
whole feedback regulation process, the connection weights

of each layer of neurons are modified by the error gradient
descent algorithm, so that the actual output of the input
signal can be corrected after entering the neural network
again, so as to achieve the purpose of self-tuning of PID
control parameters and finally achieve the good response of
the whole system.

The topological structure of BP neural network proposed
in this paper consists of three input nodes, six implicit nodes,
and three output nodes. The input signal is the motion state
and system error of the motor system, and the output signal
is the three parameters of PID.

3.3.3. Network Information Forward Propagation Calculation.

Select three inputs as
ο2

1ð Þ = e kð Þ,
ο2

1ð Þ = e k − 1ð Þ,
ο3

1ð Þ = 1:

8>><
>>: ð9Þ

The input and output of the hidden layer are as follows:

neti 2ð Þ kð Þ = 〠
m

j=0
wij

2ð Þοj
1ð Þ, ð10Þ

οi
2ð Þ kð Þ = f neti 2ð Þ kð Þ

� �
, i = 1, 2,⋯, ð11Þ

οi
2ð Þ kð Þ = f neti 2ð Þ kð Þ

� �
ο6

2ð Þ kð Þ = 1
,

8<
: i = 1, 2,⋯, ð12Þ

where j denotes the number of the input layer node; i denotes
the number of the hidden layer; superscripts (1), (2), and (3)
decibels represent the input, implicit, and output layers,
respectively; wij

ð2Þ is the input layer; j is the weight value of
the i-th hidden layer’s node.

The excitation function f ðxÞ is a hyperbolic tangent
function:

f xð Þ = tanh xð Þ = ex − e−x

ex + e−x
: ð13Þ
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3.3.4. Network Error Backpropagation Calculation. The gradi-
ent descent algorithm is used to adjust the weight coefficient
value, and the performance index function is selected as
follows:

E = 1
2 e

x kð Þ: ð14Þ

Let the error function E adjust in the direction of the fast-
est change to reduce, that is, adjust the network connection
weight coefficient according to the negative gradient direction
of the error function E, so that the error converges gradually.
There is

Δwli
3ð Þ kð Þ = −η

∂E kð Þ
∂wli

3ð Þ : ð15Þ

In order to speed up the error correction and reduce the
probability of the system falling into the local minimum, the
momentum factor is added. There is

Δwli
3ð Þ kð Þ = −η

∂E kð Þ
∂wli

3ð Þ + αΔwli
3ð Þ k − 1ð Þ, ð16Þ

where η is the learning rate and α is the momentum factor.
According to the gradient descent method,

∂E kð Þ
∂wli

3ð Þ =
∂E kð Þ
∂y kð Þ · ∂y kð Þ

∂u kð Þ · ∂u kð Þ
∂οl 3ð Þ kð Þ · ∂οl 3ð Þ kð Þ

∂netl 3ð Þ kð Þ ·
∂netl 3ð Þ kð Þ
∂wli

3ð Þ :

ð17Þ

In Equation (17), the variable ∂yðkÞ/∂uðkÞ is unknown,
but uðkÞ, yðkÞ, and the relative change amount can be
obtained, so

∂y kð Þ
∂u kð Þ = y kð Þ – y k − 1ð Þ

u kð Þ – u k − 1ð Þ : ð18Þ

Since uðkÞ = uðk − 1Þ + ο1
ð3ÞðeðkÞ − eðk − 1ÞÞ + ο2

ð3ÞeðkÞ
+ ο3

ð3ÞðeðkÞ − 2eðk − 1Þ + eðk − 2ÞÞ, so

∂u kð Þ
∂ο1 3ð Þ kð Þ = e kð Þ − e k − 1ð Þ,

∂u kð Þ
∂ο2 3ð Þ kð Þ = e kð Þ,

∂u kð Þ
∂ο3 3ð Þ kð Þ = e kð Þ − 2e k − 1ð Þ + e k − 2ð Þ:

8>>>>>>>>><
>>>>>>>>>:

ð19Þ

3.4. The Structure of BP Neural Network PID Controller. In
order to improve the control system of traditional PID
controller, other intelligent optimization algorithms are
combined with traditional PID controller to achieve better
control effect. Among them, BP neural network algorithm as
a classic intelligent optimization algorithm has the characteris-
tics of distributed storage, parallel processing, and adaption,
which makes up for the shortcomings of traditional PID

controller. Therefore, the combination of BP neural network
algorithm and traditional PID control can achieve the purpose
of optimizing the control effect. Through the adaptive charac-
teristics of BP algorithm, combined with input and output
samples, the BP neural network model is trained, and the
connection weights in the network are constantly adjusted to
make the output meet the expected requirements and reduce
the system error. This combined optimization control method,
especially for the servo motor control system, can effectively
solve the design problems that the motor PID control parame-
ters are difficult to adjust and the overall control of the system
cannot achieve the desired effect.

Figure 9 shows the system diagram of BP neural network
PID controller. It is an organic combination of traditional
PID controller and BP neural network. The specific contents
of each part are as follows:

3.4.1. BP Neural Network Part. BP neural network is an
important part of BP neural network PID system. The main
function is to modify the connection weight of each layer of
neural network according to the actual input and output
through the self-learning characteristics of BP algorithm, so
as to achieve the purpose of adjusting the output, that is to
adjust the control parameters of PID controller in real time
and optimize the performance of the whole control system.
The output signal of input layer in BP neural network corre-
sponds to three control parameters Kp, Ki, and Kd in tradi-
tional PID controller. The adjustment process of control
parameters is shown in Figure 10.

3.4.2. Traditional PID Part. BP neural network is only an
abstract optimization algorithm, and the actual control of
the motor still depends on the traditional PID controller.
Therefore, the traditional PID part is an indispensable part
of the BP neural network PID system. The specific control
of the motor is still dependent on the closed-loop control of
the traditional PID controller, so that the motor’s speed out-
put follows the input.

3.5. BP Neural Network PID Controller. Taking the axial
motion of the surgical robot designed in this paper as an
example, the dynamic analysis is carried out. Its axial move-
ment is driven by Maxon EC32 motor. The motor drives the
system to move back and forth from the whole clamping
catheter platform at the end, so as to realize the purpose of
pushing the surgical catheter. According to Newton’s second
law of physics, after simplifying the reference factors of the
system, the dynamic model of the axial motion of the surgical
robot is established as follows:

f tð Þ =m€x tð Þ + c _x tð Þ + kx tð Þ, ð20Þ

where f ðtÞ is the motor driving force, xðtÞ is the displacement
of this motion, _xðtÞ is the motion velocity, €xðtÞ is the motion
acceleration, and Equation (20) illustrates the relationship of
motor drive force and output displacements.
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If x1ðtÞ = xðtÞ and x2ðtÞ = _xðtÞ, then,

_x tð Þ = AX tð Þ + Bu tð Þ,
y tð Þ = CX tð Þ,

(
ð21Þ

where XðtÞ = x1ðtÞ
x2ðtÞ

" #
, A =

0 1
−k/m −c/m

" #
, B =

0
1/m

" #
,

and C =
1 0
0 0

" #
.

That m is the mass of the overall axial movement of the
push platform, c is the overall damping coefficient of the push
platform, and k is the overall elastic coefficient of the push
platform. From Equation (22), it can be concluded that the
transfer function of the axial movement of the push device
is as follows:

H sð Þ = m
ms2 + cs + k

: ð22Þ

3.6. Simulation Analysis. Taking the axial motion of the inter-
ventional robot as an example, the step signal y = 1 is used to
simulate the axial expected displacement of the main hand
catheter during the actual operation of the doctor. Take
Equation (22)as m = 1 kg, c = 0:05N/ðm/sÞ, and k = 1:5N/m.
After MATLAB simulation, the simulation results shown in
Figure 11 are obtained and the results are in BP for compari-
son control effects.

Figure 11 shows the simulation comparison between BP
neural network PID control and traditional PID control. By
comparing the simulation results, it can be found that the
overshoot of the traditional PID control system is 22%, while
that of the newly designed BP neural network PID control
system is only 12%. Compared with the traditional PID con-
trol system, the adjustment time and precision of BP neural
network PID control system have been greatly improved. In

Learning algorithm

BP neural network

PID controller Motor
y (t)∗

Kp KdKi

y(t)u(t)e(t)

Figure 9: The control system of BP neural network PID controller.

0 1 2 3 4 5 6 7 8 9 10
Time (s)

0.1

0.12

0.14

K
d

0 1 2 3 4 5 6 7 8 9 10
Time (s)

0

0.1

0.2

K
p

0 1 2 3 4 5 6 7 8 9 10
Time (s)

0

1

2

K
i

Figure 10: Intelligent adjustment output of parameters Kp, Ki, and Kd .
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the actual operation process, the pushing process of the surgi-
cal catheter needs several times to push and pull the catheter to
reach the designated lesion. Shortening the pushing time of
the catheter is helpful to improve the efficiency of intubation
and the success rate of operation.

4. Experiments

4.1. Experimental Setup. The simulation experiment is made
up of the RCMS which is composed of the main terminal
(surgeon console) and the slave terminal (surgical catheter
console) by remote operation and connected by network com-
munication. The operation catheter was driven by step motor
and DC motor for axial and radial movement. Therefore, in
the process of using, it is helpful to monitor the motion state
of stepping motor and DC motor for practical application
and control. The BP neural network with double input and
single output structure is used as the adjusting module of the
control parameters in the PID controller. The displacement
error ðeðkÞÞ and the change of displacement error ðceðkÞÞ
are regarded as two inputs of the controller. The realization
process of the new controller is as follows: monitoring the
current output value of step motor or DC motor; calculating
the movement error and error change speed through the cur-
rent value; inputting the error into BP neural network; and
adjusting it through self-learning characteristics. Then, the
adjusted Kp, Ki, and Kd are transmitted to PID controller to
adjust the output signal uðtÞ of the whole system.

4.2. Experimental Results. First of all, we use the traditional
PID controller to carry out the basic remote operation
experiment. Then, the new designed BP neural network

PID controller is used to carry out the same remote operation
experiment. The experimental results of traditional PID axial
displacement are shown in Figure 12, and the error of
traditional PID axial displacement is shown in Figure 13.
Figure 14 shows that BP neural network PID controller
obtains smooth response without overshoot, and its axial
displacement error curve is shown in Figure 15.

The steady-state error of traditional PID controller is
large, and the synchronous tracking performance is far
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Figure 11: Simulation results.
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Figure 12: Axial displacement of PID controller.
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inferior to that of BP neural network PID controller. How-
ever, although the BP neural network PID controller has
good effect, it also has some errors. These errors are due to
time delays in remote operations. This is also a key technical
issue to be considered in future research.

Of course, for the axial motion of the system, we only use
a simple physical method to establish the system dynamics
model, without considering the higher requirements of the
system in different working environments or other nonlinear
factors. For a system with two degrees of freedom (radial
rotation and axial displacement), when the displacement
velocity or rotation direction changes, the system operation
will be affected by nonlinear factors. Therefore, for the
system, the nonlinear dynamic factors should be added to
the known model in order to enhance the anti-interference
ability of the control system and achieve better control effect.

5. Conclusions and Future Work

The system is based on the catheter robot operating system
(RCMS), including a mechanical system with high precision
and remote operation to assist surgeons in vascular interven-
tion. The system takes digital signal processor (DSP) as the
control unit, and has high measurement accuracy and
processing speed in the main terminal console and the slave
terminal console. Load cell and torque sensor are used to
obtain the motion information of force and rotation angle.
A new controller, BP neural network PID controller, is
designed, which can improve the axial and rotary motion
accuracy of the system in remote operation. Simulation
results show that the proposed BP neural network PID con-
troller has good dynamic response quality. When BP neural
network PID controller is used for remote control, the syn-
chronous tracking error of axial displacement is less than
1.5mm. Although there are some errors in radial rotation
and axial displacement due to time delay, the system can also
meet the actual requirements of minimally invasive surgery.
In conclusion, BP neural network PID control algorithm
can improve the control performance of the system.

In the future research work, we will add the dynamic
model of radial rotation in the operation system of surgical
catheter robot, and increase the nonlinear influence factors.
Combined with the established dynamic model of axial
displacement, we will improve the control accuracy and anti-
interference ability of the system in remote control [24]. In
addition, more advanced sensors are used tomeasure the force
(contact force and friction force) and displacement informa-
tion in the system. And for the perfect system, real animal
experiments were carried out to verify the reliability and safety
of the system and ensure the feasibility of operation.
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The article data used to support the findings of this study are
available from the submitting author upon request.
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