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Known genetic susceptibility loci for type 2 diabetes
(T2D) explain only a small proportion of heritable T2D
risk. We hypothesize that DNA methylation patterns
may contribute to variation in diabetes-related risk
factors, and this epigenetic variation across the
genome can contribute to the missing heritability in
T2D and related metabolic traits. We conducted an
epigenome-wide association study for fasting glucose,
insulin, and homeostasis model assessment of insulin
resistance (HOMA-IR) among 837 nondiabetic
participants in the Genetics of Lipid Lowering Drugs
and Diet Network study, divided into discovery (N =
544) and replication (N = 293) stages. Cytosine guanine
dinucleotide (CpG) methylation at ;470,000 CpG sites
was assayed in CD4+ T cells using the Illumina Infinium
HumanMethylation 450 Beadchip. We fit a mixed
model with the methylation status of each CpG as the
dependent variable, adjusting for age, sex, study site,
and T-cell purity as fixed-effects and family structure
as a random-effect. A Bonferroni corrected P value of
1.1 3 1027 was considered significant in the discovery
stage. Significant associations were tested in the

replication stage using identical models. Methylation
of a CpG site in ABCG1 on chromosome 21 was
significantly associated with insulin (P = 1.83 3 1027)
and HOMA-IR (P = 1.60 3 1029). Another site in the
same gene was significant for HOMA-IR and of
borderline significance for insulin (P = 1.29 3 1027 and
P = 3.36 3 1026, respectively). Associations with the
top two signals replicated for insulin and HOMA-IR
(P = 5.753 1023 and P = 3.353 1022, respectively). Our
findings suggest that methylation of a CpG site within
ABCG1 is associated with fasting insulin and merits
further evaluation as a novel disease risk marker.
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Candidate gene and genome-wide association studies
(GWAS) have identified a number of sequence variants
that explain some of the interindividual variation in the
susceptibility for type 2 diabetes (T2D) (1,2). However,
a large component of heritable T2D risk remains poorly
understood, with less than half of total genetic variation
explained by known single nucleotide polymorphisms
(SNPs), a problem known as missing heritability (3–6).
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T2D is a complex and heterogeneous disease, in which
disease onset and development are dependent on inter-
actions between different genetic and environmental
factors (7). Epigenetic variation, whether intrinsic or al-
tered by environmental exposure, contributes to varia-
tion in gene expression and risk for metabolic disease (8).
Furthermore, Liu et al. (9) and others (10,11) have sug-
gested that genetic and epigenetic modifications could
interact biologically and that methylation analysis might
uncover heritable genetic variants contributing to disease
that are difficult to tease out of conventional GWAS
results. Ultimately, T2D susceptibility in humans is likely
to depend on both genetic and epigenetic mechanisms
(8,12–14).

Studies of diabetes-related traits (e.g., fasting glucose
and fasting insulin) in healthy individuals have been
shown to be a fruitful approach for identifying T2D risk
loci (15). Hence, for the current analysis, we examined
epigenome-wide methylation associations (EWAS) for
fasting glucose, insulin, and homeostasis model assess-
ment of insulin resistance (HOMA-IR) in nondiabetic
subjects from the Genetics of Lipid Lowering Drugs
and Diet Network Study (GOLDN). We were also
interested in the role of SNP variation in significant
EWAS regions. Additionally, as previous studies have
identified correlations between genetic variation and the
quantitative trait of DNA methylation enriched at nearby
loci (cis-meQTLs) (15), we integrated regional GWAS
data with significant epigenetic findings for a uniquely
comprehensive analysis of variation in metabolic traits.

RESEARCH DESIGN AND METHODS

Study Population

GOLDN, described in detail in prior publications (16–18),
recruited families with at least two siblings from the
participants of the National Heart, Lung, and Blood In-
stitute Family Heart Study in Minneapolis, MN, and
Salt Lake City, UT. The trial aimed to identify genetic
factors that mediated response to lipid-raising (i.e.,
postprandial lipemia challenge) or lipid-lowering (feno-
fibrate therapy) among metabolically healthy individuals.
Participants were asked to discontinue the use of lipid-
lowering agents for at least 4 weeks, to fast for at least
8 h, and to abstain from alcohol for at least 24 h prior to
study visits. The study protocol was approved by the
Institutional Review Boards at the University of Minne-
sota, University of Utah, Tufts University/New England
Medical Center, and the University of Alabama at
Birmingham, and written informed consent was obtained
from all participants. For the current study, we evaluated
diabetes-related traits (glucose, insulin, and HOMA-IR)
among 837 GOLDN participants without physician-
diagnosed or -treated diabetes and available EWAS data.
We used a split sample approach to set up internal rep-
lication in which N = 544 participants were included in
the discovery stage and 293 were included in the repli-
cation stage.

Data Collection

Measurement of T2D-Related Traits
Briefly, blood samples were drawn after an overnight
fast. Plasma glucose was determined by a hexokinase-
mediated reaction on the Hitachi commercial kit (Roche
Diagnostics). Plasma insulin was measured by a com-
mercial kit using competitive radioimmunoassay (Linco
Research, St. Charles, MO), with intralaboratory re-
liability of glucose and insulin measurements of 0.984
and 0.975, respectively. HOMA-IR was calculated as
fasting glucose 3 fasting insulin/22.5 (19).

Epigenetic Phenotyping
CD4+ T cells were isolated from frozen buffy coat sam-
ples using positive selection by antigen-specific magnetic
beads (Invitrogen, Carlsbad, CA). DNA was isolated from
the CD4+ T cells using DNeasy kits (Qiagen, Venlo, the
Netherlands) (20). We used the Infinium Human Meth-
ylation 450 array (Illumina, San Diego, CA) to quantify
genome-wide DNA methylation, as described in further
detail in a manuscript from our group (20). Briefly, prior
to the standard manufacturer protocol steps of amplifi-
cation, hybridization, and imaging steps, we treated
500 ng of each DNA sample with sodium bisulfite (Zymo
Research, Irvine, CA). We used Illumina GenomeStudio
software to estimate b scores, defined as the proportion
of total signal from the methylation-specific probe or
color channel, and detection P values, defined as the
probability that the total intensity for a given probe falls
within the background signal intensity. During the
quality-control (QC) stage, we removed any b scores with
an associated detection P value .0.01 and samples with
.1.5% missing data points across ;470,000 autosomal
cytosine guanine dinucleotides (CpGs). Additionally, we
excluded any CpG probes for which .10% of samples
failed to yield adequate intensity (20). We normalized the
filtered b scores using the ComBat package for R soft-
ware (21). We performed the normalization on random
subsets of 10,000 CpGs per run, in which each array of
12 samples was used as a batch. We separately

Table 1—Characteristics of GOLDN participants

Variable
Discovery
(N = 544)

Replication
(N = 293)

Age (years) 48 6 15.8 49 6 17

Sex (% female) 286 (52.5) 140 (47.5)

Field center (% from Minnesota)* 258 (47.5) 195 (66)

Fasting glucose 98.6 6 12.1 101.6 6 16.9

Fasting insulin 13.7 6 7.5 13.3 6 8.2

HOMA-IR 3.4 6 2.0 3.5 6 2.7

Data are mean 6 SD or N (%). *Statistically significantly dif-
ferent, P , 0.05.
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normalized probes from the Infinium I and II chemistries
and subsequently adjusted the b scores for Infinium II
probes using the equation derived from fitting a second-
order polynomial to the observed methylation values
across all pairs of probes located ,50 base pairs (BPs)
apart (within-chemistry correlations .0.99), where one
probe was Infinium I, and one was Infinium II (20). Fi-
nally, we eliminated any CpGs in which the probe se-
quence mapped either to a location that did not match
the annotation file or to more than one locus. We iden-
tified such markers by realigning all probes (with un-
converted Cs) to the human reference genome (20). After
QC, we had data for 461,281 CpGs. Principal compo-
nents based on the b scores of all autosomal CpGs
passing QC were generated using the prcomp function in
R (v2.12.1).

Genotyping
Detailed descriptions of DNA extraction and purification
procedures as well as the genotyping approach are
available in prior publications from our group (17,18).
Briefly, we used a hybrid data set of 2,543,887 SNPs, of
which 484,029 were typed using the Affymetrix Genome-
Wide Human 6.0 Array (Affymetrix, Santa Clara, CA),
and the rest were imputed using MaCH software (version
1.0.16; Ann Arbor, MI) with Human Genome Build 36 as
a reference. Prior to imputation, we excluded SNPs if
they were monomorphic, had a call rate of ,96%,
exhibited Mendelian errors, had a minor allele frequency
of,1%, or failed the Hardy-Weinberg equilibrium test at
the P value threshold of ,1026.

Statistical Methods

Baseline characteristics, including fasting glucose, in-
sulin, and HOMA-IR levels, were compared between the
discovery and replication data sets using t tests

and x2 tests for continuous and categorical variables,
respectively. In the discovery stage, we modeled associ-
ations between methylation b score at each CpG and log-
transformed measure of insulin, glucose, and HOMA-IR
using linear mixed models adjusted for age, sex, study
site, and the first four principal components generated to
capture T-cell impurity as fixed-effects and pedigree as
a random-effect using the lmekin function of the kinship
package in R (22). We used the Bonferroni correction to
adjust for multiple comparisons, with the genome-wide
significance level of 1.1 3 1027 (18). In the replication
stage, we evaluated markers that reached statistical sig-
nificance in the discovery set for association with the
trait of interest.

Integration of EWAS and Existing SNP Data

For CpG sites that showed a statistically significant as-
sociation in the discovery and replication data sets, we
extracted GWAS SNPs within 20 kb. Regional SNPs were
then tested for association with the phenotypic trait of
interest, adjusting for age, sex, and center as fixed-effects
and family as a random-effect. Similarly to other GWAS
published in the GOLDN data, we did not adjust for
substructure (18) due to the homogeneity of the study
population. Next, regional SNPs were associated with the
methylation b score at the significant CpG sites (cis-
meQTL) adjusting for age, sex, study site, and the first
four principal components for cell purity. Regional plots
were assembled to evaluate a potential role of underlying
SNP variation in highlighted EWAS regions.

RESULTS

Demographic and Clinical Characteristics

Table 1 summarizes the population characteristics for all
837 participants considered in this study. Discovery and

Table 2—Top 5 loci associated with fasting insulin in GOLDN participants without diabetes

CpG Chromosome Genes Base pair b SE P value N

cg06500161 21 ABCG1 43656587 0.03488 0.006598 1.83E-07 543

cg24457126 6 CYP39A1, SLC25A27 46620666 20.006877 0.00144 2.30E-06 543

cg01471036 17 ALDH3A1 19648972 20.01936 0.004132 3.55E-06 543

cg12483860 5 TNIP1 150460615 20.003574 0.0007895 7.39E-06 542

cg07897248 18 DCC 49866531 20.02328 0.005172 8.35E-06 543

Table 3—Top 5 loci associated with fasting HOMA-IR in GOLDN participants without diabetes

CpG Chromosome Genes Base pair b SE P value N

cg06500161 21 ABCG1 43656587 0.03564 0.005812 1.22E-09 544

cg01881899 21 ABCG1 43652704 0.01182 0.002268 1.29E-07 544

cg05819912 4 MFAP3L 170945459 20.02736 0.00555 6.87E-07 542

cg17126947 4 NA 182487738 20.03555 0.007411 8.50E-07 544

cg13708645 12 KDM2B 121974305 0.04404 0.009305 1.98E-06 544
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replication data sets did not differ significantly with regards
to levels of fasting glucose, fasting insulin, or HOMA-IR
(P . 0.05 for all variables). In the discovery sample, the
mean age of participants was 48 years; 52.5% of the
participants were female, and less than half were recruited
at the Minnesota center. The replication sample was de-
mographically comparable except that a larger proportion
of participants was recruited from the Minnesota field
center. All participants were of self-reported European
ancestry.

Discovery

Tables 2 and 3 show the top hits from the EWAS analyses
for both insulin and HOMA-IR. Manhattan plots for the
association of insulin and HOMA-IR with markers of
methylation are shown in Figs. 1 and 2. In adjusted
analyses, a CpG site in ABCG1 (CpG06500161) was sig-
nificantly associated with insulin (P = 1.83 3 1027). In
addition, CpG06500161 was also significantly associated
(P = 1.60 3 1029) with HOMA-IR, while CpG1881899,
also a CpG site in ABCG1, was marginally significant for
that phenotype (P = 3.36 3 1026). None of the CpG sites
investigated was associated with fasting glucose after
correction for multiple testing (data not shown).

Replication

We replicated findings from our discovery set in a repli-
cation data set (N = 293) in which we removed prevalent
patients with diabetes. Table 4 shows the replication of
the top insulin CpG signal (CpG06500161), as well as
a second insulin CpG signal that was marginally signifi-
cant in the discovery set (CpG01881899) in ABCG1
(P = 5.75 3 1023 and P = 3.35 3 1022, respectively).
HOMA-IR replication analyses are also shown in Table 4
for both CpG signals on ABCG1 (CpG06500161, P = 1.3 3
1023; and CpG01881899, P = 4.3 3 1022).

Integration of Regional SNP and cis-meQTL Signals

Finally, we examined SNP-phenotype associations within
20 kb from CpG06500161 in ABCG1. We identified 37
regional SNPs in the region on chromosome 21 (i.e.,
3638855 to 43676586, HG19 build), of which 14 were
located 20 kb downstream of CpG06500161 and 23 lo-
cated 20 kb upstream. The level of significance for cis-
meQTLs ranged from P = 2.26 3 1024 to P = 0.84. Level
of significance for the same SNPs associated with
insulin ranged from P = 1 3 1022 to P = 0.05. Fig. 3
demonstrates the regional overlap of the EWAS, cis-
meQTL, and SNP association signals. Similarly, the same

Figure 1—Manhattan plot of epigenome-wide results testing for association between and the methylation status of fasting insulin. The
x-axis displays the chromosome on which the CpG is located, and the y-axis displays 2log10(P value).

Figure 2—Manhattan plot of epigenome-wide results testing for association between and the methylation status of HOMA-IR. The x-axis
displays the chromosome on which the CpG is located, and the y-axis displays 2log10(P value).

804 EWAS of T2D-Related Risk Factors Diabetes Volume 63, February 2014



SNPs were associated with HOMA-IR with P = 1.33 1023

to P = 0.95. The main CpG signal of interest was also
plotted on the ABCG1 genomic region using ENCODE to
visualize proximity of CpG06500161 to a CpG island,
shore, or shelf (Fig. 4).

DISCUSSION

Our findings suggest that differential methylation of
a CpG site within ABCG1 is associated with fasting in-
sulin and HOMA-IR in GOLDN. Additionally, our results
provide evidence in support of cross talk between genetic
and epigenetic modifications in complex traits (6–8).
Specifically, our data show that underlying SNP variation
correlates with methylation of a CpG site in ABCG1 and
is marginally associated with the metabolic traits of in-
terest. This study highlights a novel epigenetic finding
for diabetes-related traits and demonstrates an example
of SNP variation tagging important functional variation.

The protein encoded by ABCG1 is a member of the
superfamily of ATP-binding cassette (ABC) transporters.
ABC proteins transport various molecules across extra- and
intracellular membranes. More specifically, ABCG1 is in-
volved in macrophage cholesterol and phospholipid trans-
port and may regulate cellular lipid homeostasis in other
cell types. Our results contribute to the body of evidence in
support of the role of lipid metabolism, specifically of ABC
transporters, in insulin resistance. In mice, Sturek et al.
(23) have shown that ABCG1 regulates subcellular choles-
terol distribution in b-cells, suggesting that islet ABCG1
expression may play a role in T2D pathogenesis and
treatment. Others have also shown that ABCG1 expression
and cholesterol efflux are reduced in patients with T2D
and that this impaired ABCG1-mediated cholesterol efflux
significantly correlates with increased intracellular choles-
terol accumulation (24). ABCG1 has also been implicated in
modulating islet inflammatory responses, indicating pos-
sible pleiotropic effects of ABC transporters in T2D etiol-
ogy (25). Additionally, decreased function of ABC
transporters has been associated with impaired insulin
secretion (26). Therefore, our research adds considerable
support to evidence linking ABCG1 to T2D and related
traits and suggests that methylation-driven gene expres-
sion changes may mediate some of the observed effects.

Few genetics studies have investigated a role for
ABCG1 in T2D, most with null findings. For instance,
Schou et al. (27) showed that coding SNPs in ABCA1 and
ABCG1 were not associated with T2D in the Copenhagen

General Population Study of nearly 40,000 individuals.
Recent GWAS have also reported negative findings with
regard to ABCG1 and risk for T2D (15,28,29). However,
previous analyses did not consider epigenetic mod-
ifications. Importantly, our findings suggest that not only
is methylation variation in ABCG1 associated with both
insulin and HOMA-IR, but also that underlying SNP
variation may mediate some of the epigenetic effects.
SNPs in the regions were marginally associated with our
traits of interest, but not at a significance threshold that
would have been picked up in GWAS, confirming the
importance of expanding research in the field of T2D to
epigenetics.

The results of this study must be interpreted in light
of several limitations. First, CD4+ T cells were harvested
from stored lymphocytes in which methylation could
have been altered due to the freezing and thawing process.
Further, this may have resulted in some contamination of
CD4+ T cells with other cell types (e.g., CD15+ neutrophils
and CD14+ monocytes). Still, CD4 T cells are a reasonable
choice for global determination of CpG island methylation
(30). CD4+ T cells were selected for three reasons. First,
DNA methylation patterns are often tissue-specific (31).
For instance, studies of whole-blood samples reflect
methylation variations within each blood cell type that
may act to confound genomic association results. Second,

Table 4—Replication results for fasting insulin and HOMA-IR

CpG Chromosome Genes b SE P value N Phenotype

cpg06500161 21 ABCG1 0.0229027689 0.008 5.75E-03 293 Insulin

cpg01881899 21 ABCG1 6.26E-03 2.93E-03 3.35E-02 293 Insulin

cpg06500161 21 ABCG1 1.45 0.4448 1.25E-03 290 HOMA-IR

cpg01881899 21 ABCG1 2.647 1.3 4.3E-02 290 HOMA-IR

Figure 3—Integrated regional overlap of EWAS, cis-meQTL, and
GWAS signals. The x-axis displays the cis-meQTL and GWAS
signals, 20 kb upstream and downstream from the EWAS signal of
interest (CpG06500161); and the y-axis displays 2log10(P value).
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there is evidence that key genes involved in glucose me-
tabolism are expressed in lymphocytes (e.g., GLUT1) (32).
Therefore, we hypothesized this cell type should reflect
underlying epigenetic variation influencing our key
diabetes-related phenotypes, while minimizing potential
confounding (33). Third, blood collection is the most vi-
able tissue collection method among healthy individuals.

Finally, there were some differences in the discovery
and replication populations within GOLDN due to the
order in which samples were selected for processing. The
split-sample design, however, did allow for increased
design sensitivity, as well as decreased potential for
confounding. Despite these limitations, however, one
major strength of this study includes genome-wide epi-
genetic testing with a dense, genome-wide panel of CpG
markers on a large sample of healthy adults and an in-
ternal replication data set.

In summary, we have identified two plausible meth-
ylation signals for T2D-related factors: insulin and
HOMA-IR. The results of this integrated study implicate
DNA methylation as an intermediary in T2D pathogen-
esis. In sum, this information contributes to the un-
derstanding of epigenetic and genetic mechanisms
governing glycemic traits and ultimately the risk of T2D.
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