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Although cancers arise from genetic mutations enabling cells to proliferate uncontrollably,

they cannot thrive without failure of the anticancer immunity due in a large part to the

tumor environment’s influence on effector and regulatory T cells. The field of immune

checkpoint inhibitor (ICI) therapy for cancer was born out of the fact that tumor

environments paralyze the immune cells that are supposed to clear them by activating

the immune checkpoint molecules such as PD-1. While various subsets of effector T

cells work collaboratively to eliminate cancers, Tregs enriched in the tumor environment

can suppress not only the native anticancer immunity but also diminish the efficacy

of ICI therapies. Because of their essential role in suppressing autoimmunity, various

attempts to specifically deplete tumor-associated Tregs are currently underway to boost

the efficacy of ICI therapies without causing systemic autoimmune responses. A better

understanding the roles of Tregs in the anti-cancer immunity and ICI therapies should

provide more specific targets to deplete intratumoral Tregs. Here, we review the current

understanding on how Tregs inhibit the anti-cancer immunity and ICI therapies as well as

the advances in the targeted depletion of intratumoral Tregs.
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INTRODUCTION

ICI therapies targeting programmed death 1 (PD-1), programmed death ligand 1 (PD-L1),
or cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) have effectively treated various
types of cancer. PD-1 is induced in activated T cells while its ligand PD-L1 is expressed
in many cell types including antigen-presenting cells (APCs) and tumor cells. PD-1/PD-
L1 interaction inhibits T cell survival and proliferation (1). CTLA-4 is also induced on
activated T cells and has a much stronger affinity than CD28 to B7 molecules (CD80
and CD86) in APCs, thus competing with APCs for B7 and inhibiting full activation
of T cells (2). Unfortunately, only a fraction of patients responds to these therapies,
leaving the vast majority without benefit (3). While ICI therapies understandably have
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focused on reinvigorating cytotoxic responses by CD8+ or NK
cells, growing evidence indicates that CD4+ T cell subsets have
differential influences on the efficacy of ICIs (The multifaceted
role of Th1, Th9 and Th17 cells in immune checkpoint inhibition
therapy). One of the reasons for the poor response to ICIs in
many patients has been attributed to intratumoral regulatory
T cells (Tregs). As Tregs are essential in maintaining immune
homeostasis and preventing autoimmunity, deficiencies in Treg
development or function cause uncontrolled immune responses
and autoimmune diseases (4). However, intratumoral Tregs
may promote tumor progression by suppressing the natural
anticancer immune responses. The percentage of Tregs among
CD4+ cells is significantly higher in tumors compared to its
share in the immune organs (5–8). The increased percentage of
Tregs in many cancers is often associated with poor prognosis
(9). Therefore, the impact of Tregs should be considered for
successful ICI therapies. In this review, we discuss the role
of Tregs in the anticancer immunity and ICI therapies as
well as the strategies being developed to specifically deplete
intratumoral Tregs.

BRIEF OVERVIEW OF Treg DEVELOPMENT
AND DIVERSITY

Tregs, originally identified by Sakaguchi et al. as CD4+CD25+

T cells essential for self-tolerance (10), are divided in several
subsets in mice (Table 1). Natural regulatory T cells (nTregs) are
induced by a broad spectrum of autoantigens in the thymus,
thus also called tTregs. On the other hand, peripherally derived
Tregs (pTregs) or induced Tregs (iTregs) are differentiated from
naïve CD4+ T cells in the periphery or in vitro, respectively, by
various factors including transforming growth factor-β (TGF-β),
dendritic cells (DCs) expressing indole amine 2,3-dioxygenase
(IDO), or retinoic acid (11).While themaster transcription factor
Foxp3 (forkhead box P3) expression in both subsets is essential
for their suppressive function, there are important differences
between them. For instance, tTregs express a high level of Helios
and Neuropilin-1 (NRP1) whereas pTregs express very little of
them (12, 13). There are two other CD4+ Treg subsets that do not
express Foxp3, IL-10-producing T regulatory type 1 (Tr1) cells
(14) and TGF-β-producing T helper type 3 (Th3) cells (15). In
addition, there are CD8+ Tregs that express Foxp3, that are the

TABLE 1 | Treg subsets.

Species Names Markers

Mouse nTreg or tTreg CD4+CD25+Foxp3+HelioshighNRP1+

pTreg CD4+CD25+Foxp3+

iTreg (in vitro generated) CD4+CD25+Foxp3+

Tr1 CD4+ Foxp3− IL-10+

Human nTreg CD4+CD45RA+Foxp3lowCD127low

eTreg CD4+CD45RA−Foxp3high

Foxp3, Forkhead box P3; Treg, regulatory T cell; nTreg (mouse), natural Treg; tTreg,

thymus-derived Treg; pTreg, peripheral Treg; iTreg, induced Treg; Tr1, T regulatory Type

1; nTreg (human), naïve Treg; eTreg, effector Treg.

first reported suppressor T cells, and regulatory B cells (Bregs)
that suppress the proliferation of lymphocytes, including effector
T cells mainly via secretion of IL-10. Herein, we will mostly
focus on CD4+Foxp3+ Tregs. Treg heterogeneity was reviewed
previously (16, 17). As non-Tregs cells in humans also express
Foxp3 when acutely activated, Tregs are classified based on the
expression of other markers such as CD45RA and CD127 in
addition to Foxp3. Weakly suppressive naive Treg cells (nTreg:
CD4+CD45RA+Foxp3lowCD127low cells) can differentiate into
effector Tregs (eTreg: CD4+CD45RA−Foxp3high cells), which
are activated and highly suppressive (18, 19). In conclusion,
Tregs come in a variety of different forms depending on species
and locality (20), and thus are expected to express different
sets of surface markers and functions, especially in different
tumor microenvironments.

SUPPRESSIVE MECHANISMS OF Tregs

Both nTregs and pTregs suppress the functions of T cells
as well as other immune cells including B cells, NK cells,
dendritic cells (DCs), and macrophages via humoral (IL-10,
TGF-β, IL-35, granzyme B, adenosine, cAMP) and cell-cell
contact mechanisms (CTLA4, GITR, LAG3). The detailed
mechanisms were reviewed elsewhere (4). Although the local
environment influences which of these mechanisms Tregs use
to suppress immune responses, Foxp3-regulated genes are
most likely essential for the Treg functions. Foxp3 controls the
expression of IL-2, CD25 (IL-2 receptor α-chain), CD122 (IL- 2
receptor β-chain), and CTLA-4, and deficiency in any of them
results in autoimmune diseases observed in Foxp3 deficiency
(21). It is noteworthy that the canonical Th2 transcription
factor GATA binding protein 3 (GATA-3) is important
for maintaining Foxp3 expression and Treg suppressive
function (22, 23).

Tregs rely on IL-2 produced by effector T cells for survival
and proliferation since Foxp3 suppresses IL-2 expression (24).
However, Tregs express a higher level of the high-affinity IL-2
receptor complex comprised of IL-2Rα (CD25), IL2Rβ (CD122),
and IL-2Rγ (CD132) (10), which, acting as an IL-2 sink, can
starve other T cells of IL-2. Therefore, exogenous IL-2 can
rescue effector T cells from IL-2 depravation mediated by Tregs
in vitro (25). Theoretically, IL-2 supplementation during ICI
therapies may also relieve effector T cells of IL-2 depravation
where Tregs are enriched. However, systemic administration of
IL-2 at a high dose is risky as it can cause severe inflammation.
A low dose IL-2 or a modified IL-2 that can only bind to the
high-affinity IL-2 receptor can be considered to minimize the
systemic effect (26–28), which can be useful for activating Tregs
to suppress hyper-inflammation.

CTLA-4 is highly expressed in Tregs but also in activated
effector T cells. CTLA-4 has a much higher affinity than
CD28 for their common ligands CD80 and CD86, thus
preventing CD28 in effectors T cells from being activated by
CD80/CD86 in APCs (2). It also modulates T cells’ motility
and interactions with APCs (29). However, CTLA-4 regulates
CD4+ and CD8+ cells differentially since Chambers et al.
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showed that lymphoproliferation in CTLA-4−/− mice was
due to costimulation-dependent activation of CD4+ cells (30).
Ipilimumab (anti-CTLA-4 mAb) appears to be working in part
by depleting Tregs via antibody-dependent cellular cytotoxicity
(ADCC) in animal studies (31–33). Sharma et al. reported that
anti-CTLA-4 Abs (Ipilimumab and Tremelimumab) did not
deplete Foxp3+ cells within the tumor microenvironment, but
suggested modifying the Fc region of the antibodies to enhance
Fc-mediated depletion of intratumoral Tregs (34). Indeed, an
anti–CTLA-4 mAb engineered for high ADCC depleted Treg
cells more effectively (35). Although the clinical benefit of
Ipilimumab treatment highly correlated with the decreased
number of intratumoral Tregs (36), further studies are needed
to determine the precise role of anti-CTLA-4 therapy has on
intratumoral Tregs.

In conclusion, although Tregs use a host of different
mechanisms to suppress T and other cell types, IL-2 depletion
and up-regulation of CTLA-4 mediated by Foxp3 appear to be
the most relevant in suppressing anticancer immunity.

THE ROLE OF Tregs ON CANCER
DEVELOPMENT

It is quite clear in mice that Tregs suppress tumor-specific
effector T cells since mice depleted of Tregs by anti-CD25
antibody or T cell-deficient mice reconstituted only with effector
T cells effectively eliminate a variety of syngeneic tumors (37,
38). Several lines of evidence suggest that this is also true in
humans. Tregs are over-represented in a number of tumors
compared to immune organs or blood (5–8). The reasons for
the increased intratumoral Tregs numbers over effector T cells
include recruitment via different chemokines secreted by various
tumor cells and other cells in the tumor microenvironment
(7, 39, 40), local expansion of Tregs activated by self-antigens
presented by dying tumor cells (41, 42), the ability of Treg cells to
adapt their metabolism to the tumor microenvironment (43, 44),
and differentiation of naïve T cells to pTregs (45). Intratumoral
Tregs are more powerful suppressors relative to Treg derived
from the patient’s autologous blood (46–48). The number of
intratumoral Tregs is negatively correlated to poor prognosis
(8). However, in cancers that share a common feature of
prominent chronic inflammation, such as colon, breast, bladder,
or head and neck cancers, accumulation of Tregs in tumors is
associated with favorable prognosis by potentially suppressing
tumor-promoting inflammation (7). The discrepancy may be
attributed at least in part to the fact that non-Tregs also express
Foxp3 when activated (9), and thus highly suppressive effector
Tregs may have been over-estimated in some studies (8). Overall,
Tregs suppress immune surveillance against tumor development
and progression.

EFFECTS OF ANTICANCER
IMMUNOTHERAPY ON Tregs

The current immunotherapies target either PD-1/PDL-1 and/or
CTLA-4 to energize effectors T cells. However, Tregs in the tumor

microenvironment also express both PD-1 and CTLA-4 at a
high level compared to effector T cells. PD-1 appears to inhibit
the suppressive function of intratumoral Tregs. Indeed, PD-
1 inhibition significantly promoted the proliferation of highly
suppressive PD-1+ effector Treg cells in patients who developed
hyperprogressive disease after the anti-PD-1 mAb Nivolumab
treatment, resulting in inhibition of antitumor immunity (49).
Initially it was thought that CTLA-4 blockade in Tregs would
reactivate effector T cells to attack tumors by allowing CD28 in
T cells to bind to B7 molecules in APCs. However, anti-CTLA4
antibody (Ipilimumab) preferentially depleted intratumoral
Tregs by ADCC and antibody-dependent cellular phagocytosis
(ADCP) (35). These findings suggested that a combination of
PD-1 and CTLA-4 blockers is likely to synergize to activate
intratumoral effector T cells by relieving effector T cells from
PD-1/PDL-1-mediated anergy and depleting intratumoral Treg,
respectively. Indeed, the combination of Ipilimumab (anti-
CTLA-4) and Nivolumab (anti-PD-1) significantly enhanced
efficacy in metastatic melanoma patients and probably is
more effective in other cancers than monotherapies (50,
51). The combination therapy was approved for treatment
of other cancers including metastatic melanoma, advanced
renal cell carcinoma and metastatic colorectal cancer with
MMR/MSI-H aberrations.

THERAPEUTIC TARGETS TO
SPECIFICALLY DEPLETE INTRATUMORAL
Tregs

Several lines of evidence suggest that intratumoral Tregs are a
major obstacle in ICI therapies. First, as mentioned above, the
percentage of intratumoral Tregs among CD4+ T cells is higher
than that of Tregs in peripheral blood; second, intratumoral
Tregs show a highly activated suppressive phenotype (52); third,
depletion of Tregs enhances anticancer immunity in mice and
humans. Therefore, intensive efforts are ongoing to find a way
to deplete intratumoral Tregs to enhance ICI therapies without
activating autoimmune response. The targets should be either
exclusively expressed or highly enriched in intratumoral Tregs,
preferably on the surface.

CD25 (IL-2Rα) is constitutively expressed in Tregs and
induced in activated effector T cells. Systemically targeting
CD25 can cause severe inflammation, and thus alternative
approaches to target CD25 exclusively in intratumoral Tregs
are being investigated. For example, Vargas et al. found that
upregulation of the inhibitory Fc gamma receptor (FcγR) IIb at
the tumor site prevented intratumoral Tregs depletion by anti-
CD25 antibodies. An anti-CD25 antibody with a higher affinity
to activating FcγRs effectively depleted intratumoral Tregs cells
and induced complete tumor rejection in combination with anti-
PD-1 antibody (53). Sato et al. developed to a photoactivable anti-
CD25 antibody that can be targeted by near-infrared radiation
to deplete intratumoral Tregs (54). Recently, Solomon et al.
reported efficient depletion of Tregs with an anti-CD25 antibody
(RG6292) without inhibiting IL-2 signaling in effector T cells
in both nonhuman primates and humanized mouse models,
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synergistically enhancing an ICI therapy but without overt
immune responses (55).

Intratumoral Tregs express several surface molecules at a
higher level than Tregs in normal tissues or blood such as PD-
1, PD-L1, PD-L2, TIGIT, GITR, OX-40, TIM-3, and 4-1BB (56),
suggesting they are activated and highly suppressive. Among
them, activation of ICOS, 4-1BB, and GITR was shown to inhibit
Treg suppressive function but stimulate effector T cells (57, 58),
leading to several clinical trials. Agonistic anti-OX40 mAb (59)
is being tried as a monotherapy or a combination therapy with
ICI on solid tumors (NCT02221960). GITR agonists are also
being tested on solid tumors alone or in combinations with
ICIs (NCT02583165 and NCT02628574) (60). The agonistic anti-
ICOS mAb JTX-2011 is currently being evaluated in a clinical
trial (NCT02904226) alone or in combination with a fixed dose
of Nivolumab in people with advanced solid tumors. It will be
interesting to see if these therapies indeed work on tumors by
inhibiting Tregs while activating effector T cells.

The fact that Tregs are enriched in the tumor tissues compared
to other organs or blood led to search for chemokines and
chemokine receptors essential to recruiting Tregs to tumors.
Different tumors harbor Tregs expressing different chemokine
receptors (7), therefore, the chemokine receptor expression
pattern in intratumoral Tregs can be exploited to enhance ICI
therapies. CCR4-expressing Tregs were shown to be attracted to
CCL22 released by macrophages within ovarian cancer, which
was associated with a decreased survival rate (39), and the anti-
CCR4 mAb Mogamulizumab effectively depleted effector Tregs
in humans to elicit anticancer response (61), which is now being
trialed alone or in combination with ICIs in solid tumors (62).
CCL28 induced by hypoxia in ovarian cancer recruited CCR10+

Tregs, promoting tumor tolerance and angiogenesis (40). In a
murine model of pancreatic cancer, a blockade of the CCR5-
CCL5 axis inhibited recruitment of Tregs and inhibited tumor
growth (63). Specificity of Treg chemotaxis to tumors needs
further investigation for clinical application.

Another approach to disable intratumoral Tregs is to
selectively convert them into effector T cells, although this
approach is still in an early stage of development. Several
molecules are essential for maintenance of Treg functions besides
Foxp3, including OX-40, GITR, the histone methyltransferase
EZH2, and Helios. Tumor-infiltrating Tregs are dependent
on EZH2, an epigenetic switch, to maintain Treg stability
and function (64, 65). A small molecule inhibitor of EZH2
drove intratumoral Tregs to acquire pro-inflammatory functions,
leading to remodeling the tumor microenvironment and
enhancing the anticancer immunity without provoking systemic
autoimmunity (66). Helios is essential for the maintenance
of Treg stability under inflammatory conditions such as
autoimmune diseases and cancers. CD4 Treg-specific deletion
of Helios enhanced antitumor immunity by induction of an
unstable phenotype and conversion of intratumoral Tregs into T
effector cells within the tumor microenvironment (67).

Recently, Ho et al. found that CD36 was selectively
upregulated in intratumoral Treg cells in lung cancers and
melanomas and that CD36 deletion in Tregs suppressed tumor
growth without causing systemic autoimmune response (68).

TABLE 2 | Approaches to deplete or disable intratumoral Tregs.

Modes Target Drugs

Checkpoint

molecules

OX40 OX40 Agonist Ab MEDI0562 (59)

ICOS ICOS Agonist Ab JTX-2011

(73, 74)

GITR GITR Agonist Ab BMS-986156

(60)

CTLA-4 Ipilimumab, ADCC-optimized

anti-CTLA-4 Ab (35)

Blocking Treg

chemotaxis to tumors

CCR4 Mogamulizmab (61)

CCR5 Anti-CCR5 Ab (63)

CCR10 Anti-CCR10 Ab immunotoxin

(40)

Conversion of Tregs

to effector T cells

EZH2 Several inhibitors including

GSK343 (66, 75)

Helios An inhibitor of Helios to be

developed

Others surface

molecules

CD36 CD36 deletion Ab (68)

CD25 Fc-optimized depletion CD25 Ab

(53), photoactivable CD25 Ab (54)

Treg-depleting CD25 Ab

(RG6292) (55)

Ab, Antibody; ADCC, antibody-dependent cellular cytotoxicity; CCR, C-C motif

chemokine receptor; EZH2, Enhancer of zeste 2 polycomb repressive complex 2; CTLA-

4, Cytotoxic T lymphocyte antigen 4; GITR, Glucocorticoid-induced TNFR-related protein;

ICOS, Inducible T cell co-stimulator; OX-40, TNF receptor superfamily member 4.

In this study, as CD36 in Tregs was important to suppress
the anticancer immunity, a monoclonal antibody that blocked
CD36 from bonding to fatty acids and to oxidized LDLs induced
apoptosis of Treg cells while promoting the accumulation of
CD8+ T cells in the tumor. Whether this phenomenon is unique
to certain cancers remains to be seen.

TGF-β is essential for development of Tregs as well as Th17
cells andwas originally thought to be secreted primarily by cancer
cells and/or Tregs in the tumor microenvironment. However, the
major source of TGF-β in tumors was reported to be CD4+ Th
cells (69–71). Recently Li et al. reported that TGF-β suppresses
Th2 cell-mediated anticancer immunity in an autocrine fashion
and that blocking TGF-β signaling in CD4+ T cells inhibited
cancer progression (72). In this study, the effects of TGF-
β blockade on Tregs were not analyzed. Identifying exclusive
markers of intratumoral Th2 cells to deplete them or systemic
TGF-β blockade can be considered in combination with ICIs.

In conclusion, a growing number of options to deplete or
disable intratumoral Tregs are being developed and tested. Most
of these approaches require a precise characterization of Treg
phenotypes, which is not always possible. These approaches are
summarized in Table 2.

CONCLUSION

There is a growing consensus that intratumoral Tregs promote
tumorigenesis and progression and inhibit ICI therapies by
suppressing anticancer immunity. The critical question is then
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how to disable or deplete Tregs inside tumors specifically to avoid
systemic inflammation. Fortunately, there has been a significant
progress in characterizing the phenotypes of intratumoral Tregs
that are distinct from those of Tregs in the periphery or normal
tissues. With continuing technical advances to take advantage
of these findings to target intratumoral Tregs, the future is
promising. However, some questions remain to be answered
even if some of these approaches are eventually approved for
clinical uses. Should Treg depletion be applied to all ICI therapies
or selectively? What should be the selection criteria for the
latter? Furthermore, all the cutting-edge medicines including ICI
therapies are prohibitively expensive for the vast majority of
patients, thus leavingmost people in the developing countries out
of reach. Therefore, more research should be done to bring down
the cost of these medicines.
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