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A B S T R A C T   

The identification of land use/land cover (LULC) changes is important for monitoring, evaluating, 
and preserving natural resources. In the Kurdistan region, the utilization of remotely sensed data 
to assess the effectiveness of machine learning algorithms (MLAs) for LULC classification and 
change detection analysis has been limited. This study monitors and analyzes LULC changes in the 
study area from 1991 to 2021 using a quantitative approach with multi-temporal Landsat im-
agery. Five MLAs were applied: Support Vector Machine (SVM), Random Forest (RF), Artificial 
Neural Network (ANN), K-Nearest Neighbor (KNN), and Extreme Gradient Boosting (XGBoost). 
The results showed that the RF algorithm produced the most accurate maps of the three-decade 
study period, accompanied by a high kappa coefficient (0.93–0.97) compared with the SVM 
(0.91–0.95), ANN (0.91–0.96), KNN (0.92–0.96), and XGBoost (0.92–0.95) algorithms. Conse-
quently, the RF classifier was implemented to categorize all obtainable satellite images. Socio-
economic changes throughout these transition periods were revealed by the change detection 
results. Rangeland and barren land areas decreased by 11.33 % (− 402.03 km2) and 6.68 % 
(− 236.8 km2), respectively. The transmission increases of 13.54 % (480.18 km2), 3.43 % (151.74 
km2), and 0.71 % (25.22 km2) occurred in agricultural land, forest, and built-up areas, respec-
tively. The outcomes of this study contribute significantly to LULC monitoring in developing 
regions, guiding stakeholders to identify vulnerable areas for better land use planning and sus-
tainable environmental protection.   

1. Introduction 

Climate change and human activities have significantly impacted the Earth’s land use and composition. Understanding and cat-
egorizing land use changes is crucial for investigating environmental transformations across spatiotemporal scales [1,2]. Human 
economic and population growth, as well as the demand for limited natural resources, have influenced land use patterns at both local 
and global levels [3]. Human-induced environmental problems pose a threat to future ecological limits. As maintaining evolving land 
use trends is a global challenge, comprehensive investigations into changes in land use/land cover (LULC) are indispensable for 
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preserving the environment and its natural resources [4,5]. 
In terms of the function and physical covering of a pattern, land use and land cover are generally interrelated concepts [6]. Land use 

classifications involve human activities, such as residential areas, transportation, industrial use, and crop cultivation [7]. Land cover 
refers to the continuous natural characteristics of the Earth’s surface, such as vegetation, rocks, soil, and water bodies [8,9]. LULC 
changes are dynamic processes that occur on biophysical surfaces over time and location [10]. These changes can be categorized as 
comprehensive replacements, such as rangeland conversion to farmland, or partial transformations, such as forest-type changes [11]. 

Human activities have extensively utilized land for various purposes. The need for food, housing, and energy driven by population 
growth has led to the expansion of land use in the arid and semiarid regions of developing countries [12,13]. Over the years, many 
countries have been concerned about LULC changes due to population growth, migration, and urbanization [14,15]. Advances in 
remote sensing (RS) data collection and classification methods have accelerated research in this field. Specialists are increasingly using 
advanced RS and geographic information system (GIS) for spatiotemporal analyses that require machine learning (ML) for Earth 
observations and RS communities [16]. 

Numerous studies have explored image classification and LULC change detection, offering insights into many of Earth’s surface 
issues that concern social, economic, and environmental aspects. Examples include the growth of developed areas and shifts in 
vegetation over time. Typical uses of the usual approaches to nonparametric supervised ML classifiers include support vector machines 
(SVM), artificial neural networks (ANN), decision trees, K-Nearest Neighbor (KNN), and random forests (RF) [17–24]. In addition, 
extreme gradient boosting (XGBoost) is a relatively new technique used in LULC classification studies. It is a decision tree-based 
ensemble ML developed using a ground-boosting machine (GBM) algorithm [25]. The results of several studies indicate that these 
algorithms generally provide a higher accuracy than conventional parametric classifiers. 

Few studies have been conducted to assess the performance of ML algorithms (MLAs) in LULC classification and change detection. 
This study is groundbreaking in the Kurdistan region, as it is the first to employ both traditional and innovative MLAs over an extended 
timeframe. This reveals notable shifts in LULC, particularly post-1991, which has been driven by political upheaval and popular 
resistance against the former government. These changes have led to significant population migration, with people returning to their 
villages to engage in agricultural and rebuilding efforts. Additionally, the geopolitical nature of the study area located between Iran in 
the east and Turkey in the north, makes the region economically important. 

In a local context, the selected study area (northeast Erbil Province) has experienced significant transformations over the past 30 
years, including population growth and economic progress, leading to the conversion of rangelands into developed and agricultural 
spaces. These changes occurred because of successive conflicts in the region, resulting in the relocation of people and the creation of 
new settlements in urban areas. This has resulted in demographic changes and improper use of rangelands, forests, and agriculture in 

Fig. 1. Geographical location of the study area: (a) Iraq map, (b) Study area showing elevation, and field data.  
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both urban and rural areas [26]. Therefore, five MLAs were chosen for LULC classification mapping in this study for the aforemen-
tioned reasons. Some studies have already employed RS data classification methods to estimate the different types of LULC and the 
changes that have occurred in each type in the local districts of Erbil Province as a whole or in a particular study area. 

Al-Hameedawi and Buchroithner [27] worked on object-oriented classification using Synthetic Aperture Radar and optical data 
from Erbil City. Hamad et al. [28] compared the maximum likelihood classification, RF, and two LULC classification methods on 
Landsat images of Halgurd Sakran National Park in 1998 and 2015. The high accuracy assessment values demonstrated the efficacy of 
RF classification in their research area. Mohammad et al. [29] studied urban changes in Erbil City using Landsat and Sentinel-2 images 
over three years (2000, 2010, and 2018). They applied a maximum likelihood classifier to generate LULC maps and determined the 
specific changes that occurred. Khwarahm et al. [30] investigated past, current, and future LULC change detection over three years 
(1988, 2002, and 2017). In addition, a maximum likelihood classifier was used to reveal the Landsat imagery LULC class categories in 
Erbil Governorate. 

The primary objectives of this study were twofold. First, it aims to utilize and implement advanced MLAs to generate an LULC map, 
and subsequently determine the most effective algorithm for this task. Second, it intends to assess and quantify the spatial changes in 
LULC within a specific region over the past 30 years (1991–2021). The outcomes of this research will provide valuable insights to 
decision-makers, enabling them to comprehend the extent of changes in the study area and make informed decisions based on these 
findings. 

2. Study area and datasets 

2.1. Study area 

The designated study area encompasses a total land area of 3547.5 km2 and, comprises three districts: Soran, Choman, and Rwandz. 
Geographically, it is situated in the northeastern region of Erbil Province in the Kurdistan Region of Iraq, spanning 44◦ 14′ 44″–45◦ 05′ 
25″ E and 37◦ 11′ 37″–36◦ 26′ 7.8″ N. The study area features mountainous terrain with diverse topographical attributes, including 
valleys, plains, hills, and high mountains, with elevations ranging from 378 to 3601 m (Fig. 1). This area has a diverse vegetation cover, 
including rangelands, forests, and riparian zones. Rangelands consist of grasslands and bushes, whereas mountain forests primarily 
contain oak trees. Riparian zones, along with river and stream banks, mainly include willows, maples, walnuts, and poplar trees [31]. 

The selected region exhibits a semi-arid climate characterized by scorching and arid summers alongside cold and rainy winters. 
However, mountainous regions with higher elevations display Mediterranean climate patterns as determined by the Köppen climate 
classification [32]. The recorded average annual temperature ranges from − 6 ◦C to 46 ◦C, while the mean annual precipitation is 
approximately 700 mm. 

In 1991, data on the distributions of rural and urban populations were limited. Interviews with elderly individuals and local au-
thorities revealed that many villages have been destroyed, leading to forced migration and resettlement. The Fall of Baghdad in 2003 
triggered a reversal of migration patterns, with people returning to their villages and resuming reconstruction efforts [33]. In 2020, the 
population of the study area was 267788, with 65 % living in urban areas and 35 % living in rural areas [34]. Changes in land cover and 
population distribution have led to the selection of this region, making it challenging to classify land types because of urban expansion 
and vegetation cover. 

2.2. Datasets 

This study used satellite imagery with a spatial resolution of 30 m from Landsat 5 (TM) and Landsat 8 (OLI) over three decades 
(1991–2021). Landsat 5 images were selected for 1991, 2001, and 2010, and Landsat 8 images were obtained for 2021. These images 
were used to generate LULC maps of the study area. During the study period, eight cloud-free Landsat satellite images, specifically from 
path/raw 169/34 and 169/35, were downloaded from the United States Geological Survey (USGS) (http://earthexplorer.usgs.gov/). A 
digital elevation model (DEM) with a resolution of 30 m was acquired from the Shuttle Radar Topography Mission (SRTM). Table 1 
depicts the satellite images used in this study, which were acquired during the summer (July). 

The supplementary data sources utilized in this study included archived high-resolution Google Earth images, ESRI ArcMap base 
maps, and the expertise of local individuals. These resources were employed to generate the training and validation data. In addition, a 
field survey was conducted in 2021 for on-site data collection. A handheld GPS device (GARMIN Montana 680) was employed to record 
the 810 sample points utilized in the subsequent training and validation processes. Because incorporating additional variables into 

Table 1 
Satellite images used in this study.  

Satellite Sensor No. of Images (Scenes) Date of Acquisition Bands Path/Rows 

Landsat 5 TM 2 July 21, 1991 1,2,3,4,5,7 169/34,35 
Landsat 5 TM 2 July 16, 2001 1,2,3,4,5,7 169/34,35 
Landsat 5 TM 2 July 09, 2010 1,2,3,4,5,7 169/34,35 
Landsat 8 OLI 2 July 23, 2021 1,2,3,4,5,6,7 169/34,35 
NASA SRTM DEM 4 Sept, 2014 Single band N36E044,045 

N37E044,045  
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digital image classification improves LULC classification [35], this study incorporated the DEM and normalized difference vegetation 
index (NDVI) obtained from the near-infrared (NIR) and red (R) bands of Landsat to enhance the accuracy of the results. 

3. Methodology 

In this study, GIS- and RS-based techniques were applied to classify and analyze the LULC dynamics. This study involves image 
preprocessing, supervised classification, and change detection. An accurate statistical analysis of the LULC changes in the study area 

Fig. 2. Flowchart of the data processing.  
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was conducted. The methodology adopted in this study is summarized in Fig. 2. 

3.1. Image preprocessing 

Preprocessing the satellite images is an essential step prior to image classification and change detection because it mitigates the 
influence of the sensor, atmospheric, and topographic factors [36]. Within the scope of this study, several image preprocessing pro-
cedures were employed, including radiometric corrections, atmospheric corrections, and mosaicking using ENVI v5.3 software. A 
radiometric correction tool was used to address radiometric errors. Subsequently, atmospherically corrected and calibrated radiance 
values were obtained using the fast line-of-sight atmospheric analysis of spectral hypercubes atmospheric correction algorithm [37]. 
The process of mosaicking and image subsets was then implemented, and the spectral NDVI for all images was applied. All data were 
subsets within the study area shapefile and geometrically unified to the projection of the UTM 38 N and WGS-84 coordinate systems. 
DEM extraction for the study area was performed using ArcMap v10.8.2. 

3.2. LULC classification method 

The classification of the LULC categories in this study followed the widely recognized classification system introduced by Anderson 
[38]. This classification system was particularly suitable for this study because of its extensive geographical scope and spatial reso-
lution of 30 m. The LULC type was selected on the basis of the specific physical characteristics of the study area. The eight classes 
encompassed in the classification were as follows: (1) agricultural land, (2) barren land, (3) built-up areas, (4) forests, (5) rangelands, 
(6) riparian forests, (7) snow-covered areas, and (8) water bodies. A detailed explanation of each class is provided in Table 2. 

High-level techniques are recommended for constructing classification procedures to make high-level decisions when interpreting 
remotely sensed data [39]. ML can significantly improve the efficiency and time-saving classification of remotely sensed images [19]. 
Consequently, five pixel-based nonparametric MLAs were developed and evaluated in terms of the accuracy with which they solved the 
identified issues. Classification layers were created using a supervised classification method with MLAs. After using the algorithms to 
classify the study area, the best algorithm was selected for change detection analysis based on its accuracy and acceptable kappa. The 
classification process and assessment of MLAs were implemented using the R programming package [40]. 

3.3. MLAs 

Modern technologies, such as ML approaches, which are a branch of artificial intelligence, are applied to the interpretation of RS 
data and earth observation studies and are relied upon by data scientists and decision-makers. This is because these techniques have 
already been proven effective in resolving problems and reducing timeframes [41]. For LULC classification and change detection, 
freely available satellite images and enhanced algorithms yield reliable results [42,43]. The following supervised MLAs were selected 
for the classification system and assessments and applied to the area of interest. 

3.3.1. SVM 
SVMs are nonparametric supervised statistical learning methods that do not assume the underlying distribution of a training 

dataset. They have been widely adopted owing to their attractive characteristics and strong empirical performance [44]. SVMs use a 
nonparametric technique with kernel functions to regulate a hyperplane that separates a dataset into predefined classes consistent with 
the training data. This approach is powerful for solving classification problems in MLAs and was introduced by Vapnik [45]. SVMs are 
popular in RS because they often outperform conventional methods in terms of classification accuracy, even with smaller training 
datasets [46]. However, the performance of SVMs can vary depending on the kernel type used [47]. 

3.3.2. KNN 
The KNN algorithm is a valuable nonparametric approach that is widely used for the classification of various datasets [48]. An 

appropriate K value is determined by the employed metrics and varies when switching between datasets. Its advantages, such as the 
quick inclusion of data from beyond the study region, make it popular for classifying large-area RS data [49,50]. This method assigns a 
training sample to a predefined class label. Moreover, the KNN method, which uses georeferenced and remotely sensed field data, 
enables spatially continuous predictions [51]. 

Table 2 
Description of LULC classes.  

Class Type Description 

Agricultural Land Agricultural croplands, cultivated lands, and agricultural fallow lands 
Barren Land Bare exposed rock and soil, un-vegetal land, degraded lands, and mixed barren land 
Built-up Areas selected as residential, commercial, industrial, and transportation facilities 
Forest Deciduous natural forest land, evergreen trees, mixed forest land 
Rangeland Herbaceous rangeland, shrubs, grassland, mixed rangeland 
Riparian Zone Riparian vegetation and riparian forestry 
Snow Perennial snow areas 
Water Rivers, streams, and ponds  
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3.3.3. ANN 
ANNs, also known as neural networks, have been successfully applied to the study of RS images since the 1990s [52,53]. These 

nature-inspired algorithms represent complex data and are widely used in artificial intelligence for tasks ranging from regression to 
classification. ANNs consist of interconnected nodes, each with input and output connections and carry weighted information [54,55]. 
Their superiority over traditional methods has led to their rapid adoption in RS [56,57]. 

3.3.4. RF 
Currently, some of the most widely used MLAs are RFs. The adaptability of this algorithm as a classification and regression tool for 

categorical and continuous data is a major factor in its success [58]. In addition, the RF algorithm is an integrative classifier, which is a 
reasonable option for LULC classification systems in RS [59]. This algorithm originally explains a set of predictors for a forest, in which 
each tree is predicted based on the values of a random vector drawn from the same distribution [60]. The RF classifier ensemble has the 
potential to increase RS image classification consistency and accuracy [61]. To accurately map various types of LULC, RS-based land 
cover monitoring requires reliable classification algorithms. The ability to assess the importance of variables and their nonparametric 
nature is the main advantage of RF [62]. 

3.3.5. XGBoost 
In recent years, the XGBoost algorithm has emerged as a dominant force in applied ML, significantly affecting field GBMs owing to 

the rapid speed of its model execution and overall performance [63]. Its popularity stems from its superior performance compared with 
other GBMs. XGBoost is a subtype of gradient boosting that addresses regression and classification tasks using an ensemble of weak 
prediction models. Each model aims to rectify the weaknesses of its predecessors. Notably, XGBoost employs a pre-sorted technique to 
estimate the optimal splits in a dataset, ensuring the efficient handling of missing values and reducing overfitting. The integration of 
the gradient descent technique and leaf-wise pruning strategy contributes to minimizing errors and achieving optimal results [64]. 

3.4. Accuracy assessment 

The most important step in image classification is accuracy assessment, which compares classification with reference field data to 
assess how well the classification represents the actual world [65,66]. The performance of a test sample is typically the focus of ac-
curacy assessment using an error matrix. The resulting matrix allows us to compute the most popular measures of accuracy, including 
the overall accuracy (OA) and kappa coefficient (Kc) equations (3) and (4) [67]. 

Other measures of accuracy can be calculated, such as user accuracy (UA) equation (1), which indicates the proportion of pixels 
that are correctly classified within the image and represents the mutual error of commission. The producer accuracy (PA) equation (2), 
which is the probability that a pixel is correctly classified as a LULC type, is the mutual error of omission. The OA was calculated as the 
number of correctly categorized pixels divided by the total number of pixels used for evaluation [65]. More specifically, Kc is a 
standard statistical indicator used to measure classification precision. The Kc measures the classification accuracy of a randomly 
selected value [68]. Accuracy measurements were computed using the following equations: 

UA= xii/xi+ (1)  

PA= xii/x+i (2)  

OA=
∑r

i=1
xii

/
N (3)  

Kc=

(

N
∑r

i=1
xii −

∑r

i=1
(xi+ × x+i

))/(

N2 −
∑r

i=1
(xi+ × x+i

))

(4)  

where N is the total number of samples, r is the number of LULC classes, xii is the number of observations, and xi+ and x + i are the 
marginal totals for row ‘i’ and column ‘i’ respectively. Kc values > 0.80 reveal a high degree of agreement between the ground 
reference data and classification map information, 0.40–0.80 imply reasonable agreement, and <0.40 indicates low agreement [69]. In 
this study, an accuracy assessment of the generated classified images was performed to examine the quality of information produced 
from the data using reference samples. Seventy percent of the samples were chosen for training and 30 % were chosen for testing by 
random sampling. This evaluation was performed using the R programming language package. 

3.5. Change detection method 

Change detection is a valuable technique for quantifying temporal changes in multi-temporal images or any given area over time 
[70,71]. The application of change detection has proven beneficial in monitoring environmental conditions and aiding in the iden-
tification of potential problems, which in turn can inform effective development strategies concerning LULC changes [72]. The ac-
curacy of LULC change detection relies on precise classification mapping [73,74], enabling the tracking and quantification of such 
changes. RS data serve as a valuable resource for determining the magnitude of change, as is evident from the discernible differences 
between two images captured at distinct points in time [75]. 

A. Rash et al.                                                                                                                                                                                                           
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In this study, the finest ML classifiers were employed to classify Landsat images and generate LULC maps. The resulting maps 
facilitated the quantification of changes (km [2]) for each LULC class during the periods 1991–2001, 2001–2010, and 2010–2021. This 
was applied to the RS and GIS software, Quantum GIS (QGIS v3.28). Within QGIS, change detection maps and statistics were produced 
using the semi-automatic classification plugin. 

4. Results and analysis 

4.1. LULC classification maps and accuracy evaluation 

In this study, we applied and evaluated five supervised MLAs to datasets from 1991, 2001, 2010, and 2021. The study area was 
categorized into eight classes: agricultural land, barren land, built-up area, forest, rangeland, riparian forest, snow, and water. Fig. 3 
illustrates the classified maps generated by the five MLAs for the aforementioned years. Notably the most prevalent class in the study 
area was rangeland. This is primarily because of the mountainous terrain of the region, which has been inaccessible to the public since 
the previous regime. Consequently, the majority of the rural population has migrated to urban areas, resulting in rangeland 
dominance. 

To assess the accuracy of the classified LULC maps, an error matrix was calculated. The OA and Kc values were calculated for each 
LULC classification using all classifiers. Approximately 238 points were tested against 572 reference samples in 2021 obtained from 
field surveys, Google Earth, and interviews for each classified map. The allocation of points for assessing different land classes across all 
years is shown in Table 3. The error matrices of the ML classifiers are listed in Table 4. Furthermore, the evaluation identified correct 
and incorrect validation samples as well as determined the PA and UA. 

Fig. 3. LULC Classification maps using five MLAs (SVM, RF, ANN, KNN, and XGBoost) from 1991 to 2021.  
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Despite the complex nature of the study area, which was classified into eight distinct LULC categories, the LULC maps generated by 
the five MLAs demonstrated high-accuracy assessment results. The algorithms displayed noteworthy performances, with the RF 
classifier achieving the highest OA of 97.47 %, whereas the ANN classifier achieved the lowest OA of 92.47 %. Fig. 4 illustrates the 
highest and lowest OA achieved by all MLAs across all years. 

Because of the LULC spectral characteristics and varied algorithm performance, a consistent pattern was identified in the accuracy 
of the mapping categories [76]. However, in 2010, higher accuracy was recorded by the ANN and SVM algorithms (Fig. 4); both 
classified most categories as more accurate, with higher PA, particularly in the agricultural land and rangeland classes. Additionally, 
the sample size and quality of the training data may significantly influence the classification [19]. 

Furthermore, compared with alternative algorithms, the RF algorithm demonstrated superior OA. It also exhibited better perfor-
mance in terms of individual class accuracy, as evidenced by higher PAs and UAs across all LULC classes (Table 4). The resulting Kc 
values ranged from 0.91 to 0.97, indicating a high level of agreement with the reference LULC categories [69]. Based on these findings, 
the RF algorithm was selected as the optimal method for LULC classification in the study area (Fig. 5). Therefore, this algorithm was 
employed for the statistical analysis of LULC change detection over the study period. 

4.2. The variable importance valuation 

Assessing variable importance is crucial for datasets with high variables, and using only essential features can improve classifi-
cation accuracy [19]. To classify LULC using MLAs, this study used spectral values from satellite imagery as input variables [77]. 
Additionally, the DEM was incorporated as an input variable in the classification process, primarily to reduce misclassification in 
shaded regions [39,78]. 

The accuracy of the overall classification was affected by the difficulty in identifying vegetation. To address this problem, a pre-
vious study reported consistency among several spectral indices [79]. Among these spectral indices, NDVI plays a vital role in clas-
sifying LULC categories associated with vegetation owing to its strong correlation with green vegetation. 

Fig. 6 illustrates the importance of RF input variables for each LULC class in 2021. The features considered were the Landsat 8 OLI 
bands, NDVI, and DEM. B5 (NIR) and NDVI were identified as the most effective variables for vegetation cover, including riparian 
zone, forest, and agricultural land. This finding is consistent with the recognition of the usefulness of USGS Landsat bands (https:// 
www.usgs.gov/faqs/what-are-best-landsat-spectral-bands-use-my-research/). 

The identification and inclusion of the most significant features, which account for a substantial portion of the variance in the 
response variable, are crucial for the development of effective and high-performing models [80]. The study reveals that variable 
importance is the most significant factor in categorizing variables, with auxiliary variables like NDVI and DEM enhancing classification 
accuracy. Despite a constant distribution of LULC types and NDVI values, NDVI remains significant. 

The analysis reveals that the original NIR band (B5) and NDVI significantly influence classification outcomes, possibly due to the 
unique values of land cover types in the study area. Furthermore, the examination of these characteristics aids in mitigating the 
inaccuracies associated with classifying diverse terrain surfaces [79]. The riparian zone has the lowest reflectance values among 
vegetation classes, except for bands 5 and NDVI. Blue bands, such as B2, differentiate between types. Blue light reflection is low in 
forested and riparian zones, but higher in snow-covered and built-up areas. 

In general, the contributions of the remaining bands varied in importance ranking for specific LULC categories. For instance, the B6 
(SWIR1) and elevation variables were recorded as relatively important in the rangeland class, which aligns with the findings of a 
previous study [20]. B1 and B2 (blue) contributed highly to the built-up area class, conferring to the study Yu et al. [81], bands B1 and 
B2 in Landsat 8 OLI had the strongest correlation compared with other pairs of bands. The variable importance results for 1991, 2001, 
and 2010 obtained using the RF algorithm are shown in Figs. S1–S3. 

Even features that contribute less, such as B2, can be useful for determining the differences between classes. For instance, the 
reflectance of blue light is low in both vegetation and water but significantly higher in barren land and built-up areas [82]. Another 
significant factor is the sensitivity of the shortwave infrared to variations in the leaf moisture content and surface wetness [83]. This 
sensitivity enabled the classification of LULC categories, such as forests, rangelands, and open water, based on their distinct moisture 
profiles. For example, in NDVI, Bands 5 and 6 contributed significantly to the water spectral patterns. All variables contributed to the 
spectral reflectance of the snow cover, except for B5, which had a lower impact. 

The importance of the features was calculated, revealing that bands 5 and 6 made the highest contributions, making them more 
effective for LULC classification in the study area. The relevance of the satellite images and other variables followed the descending 
order of B5 > NDVI > B6 > B2 > DEM in the RF algorithm. Overall, variables B5, B6, and NDVI were considered significant features, 
indicating their substantial influence on the classification outcomes. This can be attributed to dimensionality, which suggests that the 
number of predictors affects the accuracy of the LULC classification predictions. 

Table 3 
Total yearly allocated sample points divided into training and validation points.  

Years Sample Points Training data 70 % Validation data 30 % 

1991 634 448 186 
2001 671 473 198 
2010 720 508 212 
2021 810 572 238  
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4.3. LULC change detection analysis 

Detecting changes across multi-temporal images over time requires a post-classification process that allows for pixel-based com-
parisons. Classified maps must be categorized appropriately [70,73]. 

Table 5 and Fig. 7 present the results obtained from the RF algorithm within the selected time frame from 1991 to 2021. The 
statistical analysis of LULC quantities revealed significant changes in the rangeland and agricultural land classes during this period. 
Notable changes were also observed in the barren land, forests, and built-up areas. However, relatively smooth changes were identified 
in the riparian zone, snow, and water classes. 

Specifically, the area of the rangeland class decreased from 2370.02 km2 in 1991 to 1435.68 km2 in 2001, which can be attributed 
to the people returning to their lands and villages. Consequently, the agricultural land class expanded from 137.02 to 813.94 km2, 
whereas built-up areas increased from 25.31 to 34.87 km2 over the same period. In addition, the forest class experienced rejuvenation, 
growing from 167.73 to 447.99 km2. Conversely, barren land remained relatively stable, with a slight decrease from 774.76 to 730.14 
km2. The riparian zone exhibited minimal changes, with its area fluctuating slightly from 45.86 to 45.89 km2. The snow and water 
classes, however, demonstrated an increase due to favorable climate conditions during that time, expanding from 2.95 to 10.72 km2 

and 23.85–28.29 km2, respectively. 
Over the same time frame, agricultural land significantly decreased from 813.94 km2 in 2001 to 531.56 km2 in 2010, as farmers 

abandoned their land to pursue employment opportunities in the government and security sectors. The forest area also suffered a notable 
decline, plummeting from 447.99 to 243.28 km2 due to deforestation driven by the demand for charcoal and firewood as alternative fuel 
sources. In contrast, built-up areas expanded from 34.87 to 42.94 km2 due to population growth and urbanization. Moreover, the ran-
geland and barren land categories experienced an upward trend, growing from 1435.68 to 1806.72 km2 and 730.14–839.69 km2, 
respectively. 

From 2010 to 2021, significant changes in vegetation cover were observed across various land categories. Agricultural land, forest, 

Table 4 
Accuracy assessment of LULC classes using MLAs from 1991 to 2021.   

MLAs Accuracy AL BL B F RL RZ S W OA Kc 

1991 SVM PA 94.44 92.59 100 89.13 89.47 95.5 100 100 93.01 0.917 
UA 80.95 96.15 83.33 97.62 100 80.77 100 100   

RF PA 88.89 92.59 100 91.3 94.74 95.45 100 100 94.09 0.93 
UA 84.21 100 90.91 97.67 94.74 84 100 100   

ANN PA 83.33 88.89 90 93.48 92.11 95.45 100 100 92.47 0.91 
UA 78.95 100 75 97.73 92.11 87.5 100 100   

KNN PA 77.78 92.59 100 93.48 94.74 90.91 100 100 93.01 0.92 
UA 82.35 96.15 90.91 95.56 90 90.91 100 100   

XGBoost PA 83.33 92.59 100 91.3 94.74 90.91 100 100 93.01 0.92 
UA 88.24 96.15 100 95.45 92.31 80 100 100   

2001 SVM PA 73.68 96.15 92.86 98.04 95.24 100 100 90 94.44 0.933 
UA 77.78 100 81.25 100 93.02 95.65 100 100   

RF PA 78.95 100 93.33 100 100 100 100 100 97.47 0.97 
UA 93.75 100 87.5 100 95.45 100 100 100   

ANN PA 80 100 81.25 100 95.24 95.65 100 100 94.95 0.94 
UA 88.89 92.31 86.67 100 93.02 95.65 100 100   

KNN PA 84.21 96.15 93.33 100 95.24 100 100 100 96.46 0.96 
UA 80 100 87.5 100 97.56 100 100 100   

XGBoost PA 73.68 96.15 93.33 100 97.62 100 100 100 95.96 0.95 
UA 93.33 100 82.35 100 91.11 100 100 100   

2010 SVM PA 85.71 96.3 100 97.87 95.65 100 100 88.89 96.23 0.955 
UA 94.74 92.86 100 97.87 93.62 96.3 100 100   

RF PA 80 100 95.24 100 95.74 100 100 66.67 95.28 0.94 
UA 88.89 89.66 95.24 100 91.84 100 100 100   

ANN PA 90 92.31 100 97.92 97.87 100 100 88.89 96.7 0.96 
UA 90 100 95.45 100 93.88 96.3 100 100   

KNN PA 80 92.31 100 97.92 95.74 96.15 100 100 95.28 0.94 
UA 80 100 100 100 90 96 100 100   

XGBoost PA 85 92.31 90.48 100 95.74 96.15 86.67 66.67 92.92 0.92 
UA 73.91 88.89 95 97.96 93.75 100 100 85.71   

2021 SVM PA 92.59 96.67 100 96.23 96.08 96.15 90 100 96.25 0.95 
UA 92.59 96.67 97.14 98.08 94.23 96.15 100 100   

RF PA 93.3 90 97.06 94.34 100 100 100 100 96.67 0.96 
UA 96.3 96.43 94.29 98.04 98.08 92.85 100 100   

ANN PA 96.3 86.67 97.06 98.11 94.12 100 100 100 95.83 0.95 
UA 86.67 96.3 94.29 100 97.96 96.3 100 90   

KNN PA 86.67 87.5 100 96 95.83 96.15 90.91 100 94.17 0.93 
UA 89.66 100 94.44 92.31 92 96.15 100 100   

XGBoost PA 85.71 100 94.44 96.08 100 96.15 90 100 95.83 0.95 
UA 100 96.77 100 96.08 94.34 92.59 100 100   

AL: Agricultural land, BL: Barren land, B: Built-up area, F: Forest, RL: Rangeland, RZ: Riparian zone, S: Snow, and W: Water. 
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rangeland, and riparian zones all expanded, increasing from 531.56 to 617.2 km2, 243.28–289.48 km2, 1806.72–1967.99 km2, and 
42.54–57.38 km2, respectively. Built-up land also increased from 41.94 to 50.52 km2. Conversely, the barren land class decreased from 
839.69 to 537.96 km2. 

By examining the LULC classification maps and associated attribute tables for 1991, 2001, 2010, and 2021, the shifts in each land 
category were identified and quantified. Table 6 presents the computed LULC changes for each class in each decade. The findings 
demonstrated that significant alterations occurred in the rangeland, barren land, agricultural land, and forest classes. 

Agricultural land in the study area witnessed a gain of 19.08 % from 1991 to 2001 and 2.41 % from 2010 to 2021 but experienced a 
loss of 7.96 % from 2001 to 2010. Similarly, the forest class increased by 7.9 % from 1991 to 2001 and 1.3 % from 2010 to 2021, but 
decreased by 5.77 % from 2001 to 2010. Built-up land gained 0.27 % from 1991 to 2001, 0.2 % from 2001 to 2010, and 1.3 % from 
2010 to 2021. 

In contrast, rangelands experienced a substantial decline of 26.34 % from 1991 to 2001 but displayed a rapid increase of 10.46 % 
from 2001 to 2010, followed by a 4.55 % increase from 2010 to 2021. Fig. 8 further illustrates the analysis of net change detection, 
revealing a notable increase of 13.54 % in agricultural land and a positive change of 3.43 % in forest coverage over the three decades. 
Additionally, both built-up areas and riparian zones experienced gradual expansion, with increases of 0.71 % and 0.32 %, respectively. 

However, the expansion of rangelands and barren lands occurred simultaneously with a decrease in their overall coverage. Ran-
gelands experienced a loss of 11.33 %, while barren lands decreased by 6.68 %. Throughout the study period, the areas covered by 
snow or water bodies did not substantially change. 

Table 7 presents the calculated net cross-transition changes among the different LULC classes, and Fig. 9 shows a chord diagram of 
these changes over the three decades. The change detection showed that within this period (1991–2021), 51.1 km2 of the agricultural 
land remained unchanged, while 16.68 km2 transformed into built-up areas, 12.39 km2 turned into barren land, and 53.38 km2 was 
converted into rangeland. Additionally, 0.39, 2.23, 0.66, and 0.18 km2 transitioned to forests, riparian, snow, and water zones, 
respectively. This indicated a noticeable increase in agricultural land following the 30-year LULC transformation. In terms of built-up 
areas, 12.98 km2 remained unaltered, while 7.78 km2 became agricultural land. The built-up class exhibited minor changes in the 
other LULC categories. Concerning barren lands, 378.97 km2 remained unchanged, while 148.26 km2 was converted into agricultural 
land, 104.46 km2 became forests, and 138.33 km2 into rangeland. Additionally, small portions of 1.68 and 2.69 km2 underwent 
changes in both built-up and riparian zone classes, respectively. Consequently, barren land decreased because of the other LULC types. 

Analysis of the forest class revealed that during the study period, approximately 114.9 km2 of forest land remained unaffected. 
However, 2.53 km2 was converted to agricultural land, 17.35 km2 was transformed into barren land, 28.02 km2 became rangelands, 
and 4.78 km2 was converted into riparian zones. Only 0.12 km2 of forest land changed into built-up areas, while no significant changes 
were observed in snow cover and water bodies. Overall, these findings indicated an increase in forest land. 

The rangeland category exhibited the most significant changes in terms of losses. Of the total rangeland area of 1722.26 km2, the 
majority remained unchanged. However, 398.53 km2 shifted to agricultural land, 18.5 km2 transformed into built-up areas, 114.29 
km2 converted into barren lands, 75.63 km2 changed to forest land, and 38.21 km2 was transferred to the riparian zone. Additionally, 
2.38 and 0.22 km2 of rangeland changed into snow cover and water bodies. In the riparian zone, 9.1 km2 remained unaffected. 
However, 1.45, 0.31, 0.79, 12.05, and 22.15 km2 were converted to agricultural land, built-up areas, barren land, forest, and 

Fig. 4. The OA percentage values of MLAs from 1991 to 2021.  
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rangeland, respectively. Minimal changes were observed in the snow cover and water bodies within this category. 
Additionally, when examining the last two LULC categories, snow cover and water bodies remained stable at 1.16 and 1.96 km2, 

respectively. However, there were alterations within the water class, with 7.55 km2 transforming into agricultural land, 0.23 km2 

turning into built-up areas, and 12.03 km2 converting into barren land. The ratios of 0.71, 0.98, 0.2, and 0.19 km2 experienced shifts 
towards individual classes such as forest, rangeland, riparian zone, and snow cover. These changes indicated a decline in the water 
class within the study area by 2021. 

Furthermore, considering the total transition within the entire study area, Table 7 shows that approximately 65 % or 2292.3 km2 

remained unchanged in terms of LULC in the selected study area over the three decades. However, these transitions can be visualized as 
a chord diagram. The chord diagram, a graphical method was utilized to statistically portray the flux transformation relationship 

Fig. 5. LULC classification maps using the RF algorithm for different years (1991, 2001, 2010, and 2021).  
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between LULC types over specified time periods, allowing for a clear description of the flow direction and diversity of LULC change. 
This diagram has been used by a variety of academics to construct transition matrices [84–86]. 

Fig. 9 represents the process of LULC transition in the study area from 1991 to 2021. The findings indicated that the observed 
increase in agricultural land (represented by the color yellow) was mostly due to the transformation of rangeland and barren land. The 
total area converted for this purpose amounted to 480.18 km2, which accounted for 13.54 % of the total area (see Fig. 8). The per-
centage of barren land (shown in brown) that was transformed into rangeland, forests, and agricultural lands is 6.68 %. The built-up 
area (shown in red) grew by 0.71 % due to the alteration in rangeland and agricultural lands. 

The observed expansion of forested areas (shown in dark green) primarily results from the conversion of rangeland, barren land, 
and riparian zones, accounting for a 3.43 % increase. In contrast, an area of 402.03 km2 of rangeland (purple) underwent conversion 
into agricultural land, forest, and built-up areas. In addition, there was a marginal increase of 0.32 % in the riparian zone (shown in 
light green) as a result of the rangeland loss. 

Overall, according to the LULC transfer trend analysis depicted in Fig. 9, it can be seen that rangelands exhibited the most sig-
nificant alterations among all LULC categories. Rangeland undergoes primarily four forms of land transformation, namely conversion 
into agricultural land, forested areas, riparian zones, and built-up areas. Tables S1–S3 and Figs. S4–S6 separately provide the cross- 
transition tables and chord diagrams of each decade. 

After post-processing in QGIS using the land cover change plugin, the two layers of the LULC maps were used to generate a 

Fig. 6. Variable importance for each LULC category in 2021 using the RF algorithm.  

Table 5 
Land area class distribution (km [2]) and percentage (%) in the study area for the years 1991, 2001, 2010, and 2021.  

Class type 1991 2001 2010 2021 

Area km [2] Area% Area km [2] Area% Area km [2] Area% Area km [2] Area% 

Agricultural Land 137.02 3.86 813.94 22.94 531.56 14.98 617.20 17.40 
Barren Land 774.76 21.84 730.14 20.58 839.69 23.67 537.96 15.16 
Built-up 25.31 0.71 34.87 0.98 41.94 1.18 50.52 1.42 
Forest 167.73 4.73 447.99 12.63 243.28 6.86 289.48 8.16 
Rangeland 2370.02 66.81 1435.68 40.47 1806.72 50.93 1967.99 55.48 
Riparian Zone 45.86 1.29 45.89 1.29 42.54 1.20 57.38 1.62 
Snow 2.95 0.08 10.72 0.30 6.41 0.18 5.18 0.15 
Water 23.85 0.67 28.29 0.80 35.37 1.00 21.80 0.61 
Total 3547.5 100 3547.5 100 3547.5 100 3547.5 100  
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comprehensive representation of the spatial changes that occurred between 1991 and 2021. Fig. 10 shows the LULC classes that 
remained unchanged. All other converted classes are listed in Table 7, which illustrates the spatial mapping of the cross-transitions. 
The formation of these transitions corresponded to anthropogenic gathering and relocation along the main roads for easy trans-
portation and commercial benefits. The Haj-Omran crossing border and trading gate are located between Iraq and Iran, specifically in 
the Choman District, southeast of the study area (Fig. 10). 

Fig. 7. LULC area classes for the years 1991, 2001, 2010, and 2021.  

Table 6 
Land change class distribution (km [2]) and percentage (%) in the study area for the decades 1991–2001, 2001–2010, and 2010–2021.  

Class 1991–2001 2001–2010 2010–2021 

Change area km [2] Change% Change area km [2] Change% Change area km [2] Change% 

Agricultural Land 676.92 19.08 − 282.38 − 7.96 85.64 2.41 
Barren Land − 44.62 − 1.26 109.55 3.09 − 301.73 − 8.51 
Built-up 9.57 0.27 7.06 0.20 8.59 0.24 
Forest 280.26 7.90 − 204.72 − 5.77 46.20 1.30 
Rangeland − 934.34 − 26.34 371.05 10.46 161.27 4.55 
Riparian Zone 0.02 0.00 − 3.34 − 0.09 14.84 0.42 
Snow 7.77 0.22 − 4.31 − 0.12 − 1.24 − 0.03 
Water 4.44 0.13 7.08 0.20 − 13.57 − 0.38  

Fig. 8. LULC change detection (km [2]) from 1991 to 2021.  
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Due to the necessity of human life, parts of the rangelands have been altered into agricultural and built-up areas, along with the 
reclamation of riparian zones. In addition, the expansion of agricultural land occurred in the Soran District, as indicated by the 
southwest, northwest, and city centers. The Rwandz district faced minor alterations in LULC because it is located on no main roads and 
is not under major human relocation compared with the other two districts. 

5. Discussion 

Assessing and tracking changes in LULC across large regions is essential in various fields, including climate change studies and 
natural resource management [87]. The accurate estimation of LULC maps generated from RS data is in high demand, particularly in 
areas with limited or no available LULC prevalence data [30]. The use of the five MLAs in this study uniquely enhanced the reliability 
and precision of the LULC classification and land change detection over a 30-year period from 1991 to 2021. This approach is 
especially noteworthy when compared with previous studies. For example, Ge et al. [20] applied four MLAs to extract LULC infor-
mation in September 2017 in the Dengkou Oasis dryland regions in China. Abdi [42] examined four nonparametric algorithms for one 
year in each season in a complex mixed-use landscape in Sweden. Loukika et al. [87] used three different MLAs for 2016, 2018, and 
2020 in the Munneru River Basin, India. Tariq et al. [23] implemented three ML techniques from 1990 to 2017 in Khyber Pakhtun 
Khwa, Pakistan. Atef et al. [88] applied three algorithms to investigate spatiotemporal land use changes in El-Fayoum Governorate, 
Egypt. 

The effectiveness of MLAs varies depending on the specific application and characteristics of the training data [19]. We observed 
that the accuracies of most algorithms were similar. This is because properly fine-tuning algorithmic parameters can potentially lead to 
classification accuracies exceeding 90 % [18,20]. In this study, optimal parameter tuning was examined to attain higher performance: 
for instance, ’mtry’ and ’ntree’ parameters in the RF algorithm and ’K values’ the number of neighbors in the KNN algorithm. XGBoost, 
an ensemble learning technique rooted in gradient boosting [25], particularly excels when dealing with high-resolution RS data and 
scales well with more training data [25]. This study showed that XGBoost achieved impressive accuracy levels between 93 % and 96 % 
when applied to medium-resolution RS images. However, the RF algorithm generally performed even better in the context of 
medium-resolution images. 

Table 7 
Cross-transition matrix of LULC changes (km [2]) in 1991–2021.  

LULC 2021 

LULC 1991 Class AL B BL F RL RZ S W Total No Change 
AL 51.1 16.68 12.39 0.39 53.38 2.23 0.66 0.18 137.02 51.1 
B 7.78 12.98 1.3 0.03 1.97 0.17 0.74 0.34 25.31 12.98 
BL 148.26 1.68 378.97 104.46 138.33 2.69 0.04 0.31 774.75 378.97 
F 2.53 0.12 17.35 114.9 28.02 4.78 0 0.05 167.73 114.9 
RL 398.53 18.5 114.29 75.63 1722.3 38.21 2.38 0.22 2370 1722.26 
RZ 1.45 0.31 0.79 12.05 22.15 9.1 0 0.01 45.86 9.1 
S 0 0.02 0.83 0.03 0.9 0 1.16 0 2.95 1.16 
W 7.55 0.23 12.03 0.71 0.98 0.2 0.19 1.96 23.85 1.96 
Total 617.2 50.52 537.96 308.19 1968 57.38 5.18 3.08 3547.5 2292.43  

Fig. 9. Proportional LULC changes illustrated by chord diagram, 1991–2021.  

A. Rash et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e21253

15

In the realm of RS applications, algorithms invariably have inherent strengths and shortcomings. RF shows commendable 
robustness and is not significantly influenced by parameter changes, whereas SVM can be sensitive to hyperparameter adjustments. An 
ideal classification strategy, as suggested in the previous literature, must have low susceptibility, high comprehensiveness, and is fast 
[65]. RF has emerged as a reliable method for gauging the relevance of variables and classifying LULC types. Notably, bagging and 
random subspace selection are two instrumental techniques in the field of RF algorithm processing [17]. However, the SVM is 

Fig. 10. LULC change map from 1991 to 2021 depicting alterations in AL (Agricultural land), BL (Barren land), B (Built-up areas), F (Forests), RL 
(Rangelands), RZ (Riparian zones), S (Snow), and W (Water). 
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renowned for its capability to yield accurate outcomes, even when faced with a sparse training dataset. This can be attributed to its 
underlying principle, which suggests that only training samples at class boundaries are pivotal for a sharp distinction [89]. None-
theless, a potential pitfall should be acknowledged: the SVM tends to falter in accuracy when the feature count surpasses the count of 
the training samples [90]. 

Neural networks, particularly ANNs, have gained prominence in RS for an extended period. ANNs are characterized by their dense 
structures, which are composed of interconnected neurons arranged in layers with specific weights assigned to these connections [19]. 
Notably, this algorithm has the advantage of navigating the mixed pixel challenge. However, it bears the burden of being notably 
time-intensive, especially when the node count increases [20]. Meanwhile, for the KNN algorithm, the K value emerged as a pivotal 
determinant of classifier efficacy. A low K value sketches a rudimentary decision boundary, whereas an elevated K value may usher in 
over-fitting and resultant model instability [19]. For practitioners, the silver lining lies in the feasibility of pinpointing the optimal K 
value for specific scenarios by iterative algorithm runs with varied K values, and subsequently selecting the best fitting one. 

Lately, the ascendancy of XGBoost in the ML spectrum has been unmissable. Recognized for its advantages in both regression and 
classification, XGBoost slashes processing durations, prunes trees to deter overfitting, and leverages a block design for parallel 
computations [91,92]. Consequently, RF may find itself contending with XGBoost’s burgeoning capabilities in foreseeable 
advancements. 

The algorithmic precision of the RS data classification depends significantly on suitable parameter configurations [93]. Impor-
tantly, the perfect calibration for input parameters is a dynamic aspect, influenced by the class count and their intricacy. The care 
dedicated to the parameter settings directly echoes the classification results. In conclusion, the myriad elements influencing the 
classification process must be appreciated beyond data and algorithmic choices. The accuracy of statistical outputs can be contingent 
on facets such as the characteristics of the study locale, adopted classification framework, pixel granularity, and reference data 
integrity [94]. 

In this study, we conducted the first attempt to map LULC using a variety of ML classification methods and examined temporal 
changes over 30 years in Northeast Erbil Province. We employed five different MLAs to achieve high-accuracy assessments for the 
SVM, RF, ANN, KNN, and XGBoost algorithms, with overall accuracies of 93%–96 %, 94%–97.5 %, 92%–97 %, 93%–96.5 %, and 93%– 
96 %, respectively. The corresponding Kc were 0.91–0.95, 0.93–0.97, 0.91–0.96, 0.92–0.96, and 0.92–0.95, respectively. Notably, the 
Kc obtained for the classified images were all >0.9, indicating a high level of accuracy of the generated classified maps. 

Furthermore, the effectiveness of the RF algorithm for LULC classification was supported by Khan and Sudheer [95]. They applied 
the RF algorithm to three decades of Landsat satellite imagery and achieved a high Kc of 0.93–0.97. This finding was consistent with 
the results of the present study. Adugna et al. [96] found that RF outperformed SVM, producing a Kc of 0.83, which was 3 % higher 
than that of SVM. Similarly, Ge et al. [20] obtained a higher Kc 0.96 for both RF and ANN and highlighted RF as the most effective 
classifier owing to its stability, user-friendliness, and processing speed during parameter tuning. 

However, our study’s findings differed from those of Abdi [42], who examined SVM, XGBoost, RF, and deep learning and reported 
overall accuracies of 75.8 %, 75.1 %, 73.9 %, and 73.3 %, respectively. This difference can be attributed to the use of Sentinel-2 data 
and seasonal analyses instead of annual data. Additionally, according to Al-Dousari et al. [97], the RF algorithm recorded a very high 
accuracy for LULC maps, with Kc of 0.86 and 0.93 for the years 2016 and 2021, respectively. They utilized high-resolution multi--
temporal Sentinel imagery to derive LULC maps. 

To implement future conservation measures effectively, a comprehensive understanding of the spatiotemporal land cover state of 
the Region is necessary [4]. In this study, multi-temporal TM and OLI Landsat images were used to differentiate LULC types in a large 
study area. Change detection analysis was then applied over a three-decade period, from 1991 to 2021. The analysis revealed sig-
nificant shifts in land cover types between the two periods. 

Several changes were observed during the first decade (1991–2001). Agricultural land and forest cover increased by 19 % and 7.9 
%, respectively, whereas built-up areas improved by 0.27 %. However, this was accompanied by a 26.34 % degradation of rangelands 
and a 1.26 % increase in barren land. These changes were influenced by various interconnected factors, with political development, 
population growth, and socioeconomic concerns being the primary drivers [98]. This finding is consistent with that of Hamad et al. 
[28], who identified socioeconomic conditions resulting from the United Nations’ post-war economic sanctions from 1991 to 2003 as 
the primary drivers of such shifts. Additionally, the encroachment of rangelands by villagers and suburban populations has contributed 
to these changes. This observation aligns with the findings of Khwarahm et al. [30] in Erbil Province, where unstable economic and 
political conditions were noted. 

In the subsequent decade (2001–2010), changes in most LULC classes showed a trend reversal. Agricultural and forest land cover 
decreased by 7.96 % and 5.77 %, respectively, whereas rangeland and barren land increased by 10.46 % and 3.09 %, respectively. The 
decline in agricultural land and forest cover can be attributed to the rapid socioeconomic growth following the Fall of Baghdad. 
Moreover, an increase in forest fires, often resulting from shifts in land use and conflicts, has led to significant annual losses in forested 
areas [99]. Local villagers residing near forested areas have also contributed to deforestation by cutting trees along major upland roads 
for charcoal and firewood [31]. 

In the third and final decade, from 2010 to 2021, improvements were observed in rangeland (4.55 %), agricultural land (2.41 %), 
forest cover (1.3 %), riparian zones (0.42 %), and built-up areas (0.24 %). Conversely, barren land experienced the highest decrease of 
8.51 %, while water bodies declined by 0.38 %, and snow cover by 0.03 %. These positive changes in rangeland, agricultural land, and 
forest cover indicated an overall increase in vegetation cover. The decrease in water bodies can be attributed to drought conditions, 
whereas the increase in riparian zones was the result of plantation efforts. Evaluating changes in LULC is crucial for understanding the 
intricate relationship between human activities and the natural environment. Fortunately, in the selected study area, these changes 
have led to significant improvements in the natural environment, owing to recent economic growth and political stability. 
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Although a relatively high classification accuracy was achieved, this study still has some limitations. The study area encompassed a 
large region with heterogeneous medium-resolution image classes, resulting in some mixing among classes, particularly in forest cover 
and other classes such as riparian forestry and water bodies. Additionally, the input datasets were not examined using deep learning 
algorithms, which could potentially enhance the accuracy. Xie and Niculescu [100] found that integrating convolutional neural 
networks with MLAs improved the classification performance by 5–10 % compared with other MLAs. 

6. Conclusions 

In this study, a comprehensive spatiotemporal analysis of LULC classification was conducted in a large area northeast of Erbil 
Province in the Kurdistan Region from 1991 to 2021. By incorporating elevation and NDVI layers alongside Landsat bands in a su-
pervised classification system using five MLAs in the R environment, the following conclusions were drawn.  

• All algorithms achieved notable accuracies, surpassing 92 %.  
• The RF algorithm outperformed the other algorithms, exhibiting the highest accuracy with Kc values ranging from 0.93 to 0.97, 

followed by KNN, ANN, XGBoost, and SVM.  
• Over the three-decade study period, the region experienced significant LULC changes, characterized by considerable expansions in 

agricultural land, built-up areas, forests, and riparian zones, and notable reductions in rangeland and barren land. Population 
displacement, political instability, and socioeconomic development played substantial roles in LULC transitions.  

• The change detection analysis revealed a 13.54 % increase in agricultural land use and a 0.71 % increase in built-up areas, 
contributing to an 11.33 % decline in rangelands and a 6.68 % decrease in barren land. Additionally, forested areas had a positive 
growth rate of 3.43 % and riparian zones increased by 0.32 %. 

These findings highlight expansion trends in agriculture, forestation, and urban development in the region. To manage these 
changes sustainably, local authorities should implement regulations for forest conservation and land use planning. The mountainous 
topography and moderate climate of the region also provide opportunities for economic investments in tourism. To further enhance the 
accuracy of the LULC classification, highly detailed aerial photography is recommended to obtain more precise reference data. 
Moreover, future research should explore the use of deep learning algorithms to achieve more accurate outcomes. These advancements 
will contribute to a better understanding and management of LULC changes, and guide decision-making processes for sustainable 
development and environmental preservation in the region. 
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